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A novel one-pot synthesis of 1,1-dihalo-1-alkenes and 1,1-bis(butyltelluro)-1-alkenes was developed
from hydrozirconation of alkynylzinc bromide with Cp2Zr(H)Cl and subsequent capture of the Zn/Zr
1,1-heterodimetallo-1-alkene intermediates with halogen and tellurium electrophiles. These protocols,
which include multiple reactions in a one-pot procedure, allow the preparation of the potentially useful
haloketene acetals and telluroketene acetals from terminal alkynes, under mild conditions and in a good
yield.
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Scheme 1.
New strategies for generation of 1,1-bisanions such as 1,1-sp3

and 1,1-sp2 bismetallic reagents have been the target of intense
research, as reflected in a plethora of articles published in recent
decades.1,2 Vinyl geminated organobismetallic derivatives contain-
ing lithium,3 boron,4 magnesium,5 aluminum,6 copper,7 titanium,8

gallium,9 and indium10 have been applied as an efficient and useful
alternative to prepare functionalized substituted olefins. The total
synthesis of molecules with retinoidal activities11a such as
Temarotene11b,c was performed by palladium catalyzed cross-cou-
pling reactions of gem-borazirconocene alkenes.4b The synthesis
and recent applications of trisubstituted olefins containing two
functional groups attached to the same C-sp2 such as haloketene
acetals (1,1-dibromo-1-alkenes 1 and 1,1-diiodo-1-alkenes 2)12

and telluroketene acetals (1,1-bis(organylchalcogene)-1-alkenes)13

3 were investigated by our group and others. As representative
examples, telluroketene acetals and haloketene acetals can be
obtained by the hydrozirconation of telluroacetylenes13a and
stannylacetylenes12d followed by subsequent quenching of the
sp2 1,1-heterobismetallic intermediates using butyltellurenyl
bromide (C4H9TeBr) and halogen electrophiles, respectively. The
1,1-diiodo-1-alkenes can also be obtained by carbometalation of
alkynyl alanate6a with (CH3)3Al and Cl2ZrCp2 as catalyst. However,
the published methodology to synthesize telluroketene acetals and
haloketene acetals requires the preliminary preparation of
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Table 1
Iodonolysis of C-Zr or C-Zn of 1,1-bismetallic-1-alkenes

ZnBr

ZrCp2Cl

+ +
I2

6 7 25a

C4H9 C4H9
C4H9 C4H9I

I

I

I
THF

Entry Reactions and conditions Ratioa

6: 7: 2:

1 1.0 equiv of I2/THF, �78 �C 78 15 07
2 1.0 equiv of I2/THF, 0 �C 61 30 09
3 1.5 equiv of I2/THF, �78 �C 50 35 15
4 1.5 equiv of I2/THF, 0 �C 48 30 22
5 2.0 equiv of I2/THF, -78 �C 10 05 85
6 2.0 equiv of I2/THF, 0 �C 09 07 84
7 2.5 equiv of I2/THF, �78 �C 05 05 90
8 2.5 equiv of I2/THF, 0 �C — — 100

a Ratio determined by 1H NMR.

Table 2
Bromonolysis of C-Zr or C-Zn of 1,1-bismetallic-1-alkenes

ZnBr

ZrCp2Cl

+ +

 NBS

THF/CH2Cl2

  8                           9     1a5a

C4H9 C4H9
C4H9 C4H9Br Br

BrBr

Entry Reactions and conditions Ratioa

8: 9: 1a:

1 1.0 equiv of NBS/THF/CH2Cl2, �78 �C 91 09 —
2 1.0 equiv of NBS/THF/CH2Cl2, 0 �C 90 10 —
3 1.5 equiv of NBS/THF/CH2Cl2, �78 �C 75 25 —
4 1.5 equiv of NBS/THF/CH2Cl2, 0 �C 75 25 —
5 2.0 equiv of NBS/THF/CH2Cl2, �78 �C 08 05 87
6 2.0 equiv of NBS/THF/CH2Cl2, 0 �C 08 05 87
7 2.5 equiv of NBS/THF/CH2Cl2, �78 �C 05 — 95
8 2.5 equiv of NBS/THF/CH2Cl2, 0 �C — — 100

a Ratio determined by 1H NMR.

Table 3
Synthesis of 1,1-dihalo-1-alkenes

Entry 1,1-Bimetallic reagent Electrophile Time (h)a 1,1-Dihalo-1-alkeneb Yield (%)c

1

ZnBr

ZrCp2Cl

C4H9

5a

I2 1.0

C4H9 I

I2a

76

NBS 1.5

C4H9 Br

Br1a

72

2

ZnBr

ZrCp2Cl

C6H13

5b

I2 1.0

C6H13 I

I2b
73

NBS 1.5

C6H13 Br

Br1b

75

3

ZnBr

ZrCp2Cl

C6H5

5c

I2 1.0

C6H5 I

I2c

65

NBS 1.5

C6H5 Br

Br1c

70

4

BnO

ZnBr

ZrCp2Cl
5d

I2 2.5

I

I

BnO

2d

76

NBS 3.0

Br

Br

BnO

1d

75

5

ZnBr

ZrCp2Cl

Cl

5e

I2 2.0

I

I

Cl

2e

80

NBS 2.5
Cl

Br

Br1e

78

6

ZnBr

ZrCp2Cl

TBSO

5f

I2 2.5

TBSO I

I
2f

78

(continued on next page)
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Table 3 (continued)

Entry 1,1-Bimetallic reagent Electrophile Time (h)a 1,1-Dihalo-1-alkeneb Yield (%)c

NBS 3.0
TBSO Br

Br1f

75

7

ZnBr

ZrCp2Cl
5g

I2 3.0
I

I2g

70

NBS 4.0

Br

Br
1g

63

a Reaction time of the electrophile and 1,1-bismetallic-1-alkene reagent.
b Fully characterized by NMR (1H and 13C), HRMS.
c Isolated yields after purification by chromatography using silica gel (230–400 mesh). Mobile phase: hexane for 1a–c, 1g; 2a–c, 2g and a mixture of ethyl acetate/hexane

(2:8 v/v) for 1d–f, 2d–f.

Table 4
Synthesis of telluroketene acetals21

R ZnBr

ZrCp2Cl

(1.0 equiv)

C4H9TeBr (3.0 equiv.)

         THF/CCl4 /0
oC

R TeC4H9

TeC4H9

3a-c, g,h-j
60% - 75%

5a-c,g,h-j

Entry 1,1-Bimetallic reagent Electrophile Time (min)a Productb Yieldc (%)

1

ZnBr

ZrCp2Cl

C4H9

5a

C4H9TeBr 30

TeC4H9

TeC4H9

C4H9 

3a

70

2

ZnBr

ZrCp2Cl

C6H13

5b

C4H9TeBr 30

TeC4H9

TeC4H9

C6H13 

3b

73

3

ZnBr

ZrCp2Cl

C6H5

5c

C4H9TeBr 50

TeC4H9

TeC4H9

C6H5 

3c

67

4

ZnBr

ZrCp2Cl5g

C4H9TeBr 60

TeC4H9

TeC4H9
3g

60

5

ZnBr

ZrCp2Cl
5h

C4H9TeBr 20

TeC4H9

TeC4H9
3h

65

6

ZnBrC3H7

ZrCp2Cl5i

C4H9TeBr 30

TeC4H9C3H7 

3i TeC4H9

75

7

ZnBr

ZrCp2Cl

CH3O

5j

C4H9TeBr 45

TeC4H9

CH3O 

3j TeC4H9

65

a Reaction time of the electrophile and 1,1-bismetallic-1-alkene.
b Fully characterized by NMR (1H and 13C), GC/MS and microanalysis.
c Isolated yields after purification by chromatography using silica gel (230–400 mesh). Mobile phase: hexane for 3a-c, g, h–i and a mixture of ethyl acetate/hexane (2:8 v/v)

for 3j.
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telluroacetylenes13a or stannylacetylenes12d as starting material
and the carbometalation of the alkynyl alanate6a to afford the
iodoketene acetals, is carried out using the dangerous and pyro-
phoric reagent trimethyl-aluminum.

Knochel and co-workers14 published a long time ago, the syn-
thesis of polyfunctional olefins and allenes using Zn/Zr 1,1-sp2

bismetallic reagents 5. However, to the best of our knowledge,
studies concerning the chemical reactivity involving the powerful
intermediate type 5 with other electrophiles such as chalcogenes
and halogen have not yet been reported. Considering that 1,1
-dihalo-1-alkenes have been applied as important substrates in
cross-coupling reactions,12e,f to prepare therapeutic agents such
as heteroaryl ketones12g and anticancer polyketides,12h we de-
scribe herein our detailed study toward the one-pot synthesis of
telluroketene acetals and haloketene acetals using a wide range
of Zn/Zr alkylidene species.

Corey and Fuchs demonstrated that various aldehydes can be
converted into 1,1-dibromo-1-alkenes using a Wittig-type reaction
with carbon tetrabromide.12a Recently, the use of phosphorus
reagents has been avoided because of their high toxicity and the te-
dious procedures involved in product purification which limits this
protocol.15 Bismetallic vinyl species of Sn16 and In17 generated
from terminal acetylenes have been used to obtain 1,1-dihalo-1-
alkenes of type 1, 2. However, these methodologies are not effi-
cient, since only specific alkynes containing oxygen were used.
Therefore, the development of new, versatile, and general alterna-
tives to afford the synthesis of the useful 1,1-dihalo-alkenes and
telluroketene acetals has been the target of great interest in organ-
ic synthesis.

Our approach to synthesize 1,1-dihalo-1-alkenes and telluroketene
acetals from 1-alkynes using a one-pot procedure, which is described
in Scheme 1, was realized as an extension of the work developed by
Knochel,14 who reported the reduction of alkynylzinc bromide 4 with
Cp2Zr(H)Cl (Schwart́s reagent)18 in CH2Cl2.

We examined the chemical reactivity of the in situ generated
1,1-bismetallic-1-alkenes species 5a as toward I2 and NBS under
several reaction conditions (Tables 1 and 2). A predominance of
(Z)-vinyl halides 6, 8 and low amounts of 1,1-dihalo-1-alkenes 1,
2 (Tables 1 and 2, entries 1–4) were detected when a solution con-
taining iodine in THF or NBS in THF/CH2Cl2 (1.0 and 1.5 equiv) was
added at either 0 �C or �78 �C to a solution of the 1,1-bismetallic-
1-alkenes 5 (1.0 equiv). These results allow us to observe that the
halogenolysis of C-Zn is faster than C-Zr. Larger amounts of 1,1-
dihalo-1-alkenes 1, 2 and traces of vinyl halides 6–9 were observed
after the addition of 2.0 equiv of I2 or NBS to a solution of the
intermediate 5 (Tables 1 and 2, entries 5–6).

The (Z) and (E)-vinyl halides 6–9 are formed by hydrogen
capture during the aqueous workup.

By adding 2.5 equiv of NBS in THF/CH2Cl2 or I2 in THF at 0 �C to
alkylidene species 5, the 1,1-dibromo-1-alkenes19 1, and 1,1-diio-
do-1-alkenes20 2 were obtained exclusively and in good yields
(Tables 1, 2 entry 8 and Table 3).

Exploiting our previous results to prepare the 1,1-dihalo-1-al-
kenes 1–2, we studied the one-pot synthesis of telluroketene ace-
tals type 3 by using butyltellurenyl bromide (C4H9TeBr) instead of
iodine or NBS as electrophile. However, the addition of 2.5 equiv of
C4H9TeBr to 1,1-hetero bismetallic intermediate 5a–b leads to
telluroketene acetals in low yields (15–20%), and an appreciable
amount of telluroacetylene (50–65%) was detected.

To overcome these problems, the best result, as shown in Table 3,
was achieved by the addition of butyltellurenyl bromide (C4H9TeBr;
3.0 equiv) at 0 �C to the Zn/Zr 1,1-dimetallo 1-alkenes 5 (1.0 equiv),
leading to the one-pot preparation of the telluroketene acetals 3 in a
good yield (Scheme 1, Table 4).

Assignments of the 1,1-dihalo-1-alkenes (Table 3)12d and
1,1-bis(butyltelluro)-1-alkenes (Table 4)13a are consistent with
1H NMR, 13C NMR, HRMS, GC/MS and microanalysis published pre-
viously by our group.

In summary, we describe a novel, efficient, and general one-pot
synthesis of the useful 1,1-bis(organyltelluro)-1-alkenes, 1,
1-diiodo-1-alkenes and 1,1-dibromo-1-alkenes by the reactions
of Zn/Zr 1,1-bismetallic-1-alkenes with tellurium and halogen
electrophiles. To the best of our knowledge, this is the first report
in which telluroketene acetals and haloketene acetals are obtained
directly from 1-alkynes via double halogenolysis reactions involv-
ing Zn/Zr 1,1-bismetallic-1-alkenes type 5 under mild conditions.
This procedure tolerates various functional groups that are not
compatible with some published procedures.

Further studies applying the telluroketene acetals and
haloketene acetals toward rapid total synthesis of molecules with
medicinal and biological activities, such as gem-enedyines, which
have anticancer properties, and insect sex pheromones are
presently underway in our laboratories.
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19. Typical procedure for the preparation of 1,1-dibromo-1-alkenes

To a two-neck flask under nitrogen atmosphere and equipped with a magnetic
stirring bar, containing 1-alkyne (1.0 mmol) in THF (5.0 mL), a solution of
phenyl magnesium bromide (1.1 mL; 1.1 mmol; 1.0 M in THF) was added
dropwise at 0 �C. After 10 min, ZnBr2 (0.22 g; 1.1 mmol) in THF (3.0 mL) was
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added at -78 �C and the mixture was stirred for an additional 15 min. Next, the
system was warmed to 25 �C and the THF was totally removed under vacuum
and replaced by dry CH2Cl2 (5.0 mL). Then, Cp2Zr(H)Cl (0.26 g; 1.0 mmol) in
CH2Cl2 (5.0 mL) was added slowly at 25 �C and the mixture was stirred for
10 min for generation of the 1,1-bismetallic intermediate 5. Finally, the
reaction mixture was cooled to 0 �C and NBS (0.44 g, 2.5 mmol) dissolved in
THF (5.0 mL) and CH2Cl2 (5.0 mL) was transferred via syringe and the solution
stirred for the time needed, as indicated in Table 2. The mixture was diluted
with ethyl acetate (50.0 mL) the organic phase was washed with brine
(4 � 20.0 mL) and dried over anhydrous magnesium sulfate. After filtration,
the solvent was removed under vacuum by rotary evaporation and the crude
products were purified by flash chromatography (using silica gel 230–400
mesh and the appropriate mobile phase as shown in Table 1), furnishing the
1,1-dibromo-1-alkenes as a pale yellow oil.
1,1-Dibromo-1-hexene 1a. Yield (72%). IR (cm�1) 2958, 2929, 1623, 1465, 808.
1H NMR (300 MHz) (d in CDCl3) 0.91 (t, J = 7.5 Hz, 3H), 1.2–1.7 (m, 4H), 2.12 (q,
J = 7.2 Hz, 2H), 6.42 (t, J = 7.5 Hz, 1H); 13C NMR (75 MHz) 13.8, 22.2, 29.9, 32.6,
88.5, 138.9. HMRS Calcd for C6H10Br2 (M+): 239.9150 Found: 239.9143.
1,1-Dibromo-1-octene 1b. Yield (75%). IR (cm�1) 2928, 2856, 1623, 1465, 779.
1H NMR (300 MHz) (d in CDCl3) 0.90 (t, J = 7.5 Hz, 3H), 1.3-1.6 (m, 8H), 2.10 (q,
J = 7.5 Hz, 2H), 6.40 (t, J = 7.5 Hz, 1H); 13C NMR (75 MHz) 14.1, 22.5, 27.8, 28.2,
31.6, 33.0, 88.5, 138.9. HMRS Calcd for C8H14Br2 (M+): 267.9465. Found:
267.9453.

20. Typical procedure for the preparation of 1,1-diiodo-1-alkenes
The reaction mixture containing the 1,1-bismetallic 5 intermediate was
performed as described in the Ref19, and cooled to 0 �C. Then, iodine (0.63 g;
2.5 mmol) dissolved in THF (5.0 mL) was transferred via syringe and the
resulting dark-red solution was stirred for the time needed as indicated in
Table 2. The resulting solution was transferred to an Erlenmeyer flask and a
solution of sodium thiosulfate (5 g/100 mL) was added under stirring until the
solution turned pale yellow. The mixture was diluted with ethyl acetate
(50.0 mL) and the organic phase was washed with brine (4 � 20.0 mL) and
dried over anhydrous magnesium sulfate. After filtration, the solvent was
removed under vacuum by rotary evaporation and the crude products were
purified by flash chromatography (using silica gel 230–400 mesh and the
appropriate mobile phase as shown in Table 1), furnishing the 1,1-diiodo-1-
alkenes as a yellow oil.
1,1-Diiodo-1-hexene 2a. Yield (76%). IR (cm�1) 2955, 2925, 2856, 1589, 1463,
715. 1H NMR (300 MHz) (d in CDCl3) 0.92 (t, J = 7.5 Hz, 3H), 1.38 (sext.,
J = 7.5 Hz, 2H), 1.43 (quint, J = 7.5 Hz, 2H), 1.92 (quart, J = 7.5 Hz, 2H), 7.01 (t,
J = 7.5 Hz, 1H); 13C NMR (75 MHZ) 11.5, 13.9, 22.1, 29.5, 39.3, 154.1. HRMS.
Calc for C6H10I2 (M+) 335.8875. Found 335.8872.
1,1-Diiodo-1-octene 2b. Yield (73%). IR (cm�1) 3166, 2924, 2854, 1589, 1464,
715. 1H NMR (300 MHz) (d in CDCl3) 0.95 (t, J = 7.2 Hz, 3H), 1.0-1.5 (m, 6H),
1.45 (quint, J = 7.5 Hz, 2H), 6.60 (t, J = 7.5 Hz, 1H); 13C NMR (75 MHZ) 11.5,
14.1, 22.5, 27.4, 28.5, 31.5, 39.7,153.2. HMRS Calc for C8H14I2 (M+): 363.9186.
Found: 363.9190.

21. Typical procedure for the preparation of 1,1-bis(butyltelluro)-1-alkenes
The reaction mixture containing the 1,1-bismetallic 5 intermediate was
performed as described in the Ref19, and cooled to 0 �C. Then, butyltellurenyl
bromide [(C4H9TeBr; 3.0 mmol, prepared separately by the addition of bromine
(0.24 g; 1.5 mmol) in CCl4 (5.0 mL) to a solution of dibutyl ditelluride22 (0.55 g;
1.5 mmol) in THF (10.0 mL)], was added dropwise via syringe. The stirring was
continued for 30 min. at 0 �C, and the mixture was transferred to an
Erlenmeyer flask (500 mL) and diluted with ethyl acetate (20.0 mL), water
(50.0 mL) and 95% (v/v) ethanol (20.0 mL). Finally, butyl bromide (1.0 mL) and
NaBH4 (until the mixture turned pale yellow) were added to transform dibutyl
ditelluride to the corresponding telluride, which is easily removed by
distillation. After this treatment, the crude product was extracted with ethyl
acetate (3 � 20.0 mL) and washed with brine (4 � 15.0 mL). The organic phase
was dried over anhydrous MgSO4, and the solvent was evaporated. After
filtration through Celite using hexane as the eluent, the product was
concentrated under vacuum. Dibutyl telluride was removed by distillation
from the crude product using a Kugelrohr apparatus (80 �C/0.01 mmHg). Flash
column chromatography (using silica gel 230–400 mesh and the appropriate
mobile phase as shown in Table 1) of the residue furnished the telluroketene
acetals as a yellow oil.
1,1-Bis(butyltelluro)-1-hexene 3a. Yield (70%). GC/MS m/z 456 (12.15), 454
(20.24), 452 (23.00), 315 (40.47), 313 (42.45), 258 (22.38), 169 (19.63), 81
(100.00), 57(61.38). 1H NMR (300 MHz) (d in CDCl3) 0.93 (t, J = 7.0 Hz, 9H), 1.3–
1.5 (m, 6H), 1.7–1.9 (m, 4H), 2.26 (q, J = 7.0 Hz, 2H), 2.79 (t, J = 7.0 Hz, 1H), 6.72
(t, H = 7.0 Hz, 1H); 13C NMR (75 MHz) 14.2, 15.8, 23.2, 25.7, 26.2, 29.0, 32.3,
34.2, 39.9, 49.2, 126.5, 155.6. Anal. Calcd for C14H28Te2: C 35.29, H 5.93. Found:
C 35.41, H 5.77.
1,1-Bis(butyltelluro)-1-octene 3b. Yield (73%). GC/MS m/z 482 (3.00), 480 (3.19),
406 (2.04), 315 (2.30), 313 (2.99), 109 (39.37), 57 (100.00). 1H NMR (300 MHz)
(d in CDCl3) 0.8–1.0 (m, 9H), 1.2–1.5 (m, 12H), 1.78 (quint, J = 7.2 Hz, 2H), 1.82
(quint, J = 7.2 Hz, 2H), 2.24 (q, J = 7.2 Hz, 3H), 2.78 (t, J = 7.2 Hz, 4H), 6.71 (t,
J = 7.2 Hz, 1H); 13C NMR (75 MHz) 11.8, 13.4,13.5, 13.7, 14.1, 22.6,25.0, 25.2,
28.8, 31.7, 33.4, 33.9, 34.2, 39.4, 102.4, 145.6. Anal. Calcd for C16H32Te2: C
40.07, H 6.72. Found: C 40.45, H 6.70.

22. (a) Engman, L.; Cava, M. Synth. Commun. 1982, 12, 163; (b) de Araujo, M. A.;
Raminelli, C.; Comasseto, J. V. J. Braz. Chem. Soc. 2004, 15, 358.
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