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a b s t r a c t

A novel colorimetric chemodosimeter for cyanide (CN�) and 1-allyl-4-[2-(4-hydroxyphenyl)ethenyl)]-
quinolinium bromide (AHPEQB) was designed and synthesized by condensation and terminal N alkyl
reaction. AHPEQB exhibited highly selective and sensitive recognition properties toward CN� over other
competing anions in ethanol, a protic solvent, with a 1:1 binding stoichiometry and a detection limit of
1.7 � 10�6 mol L�1. AHPEQB also displayed rapid colorimetric response that could be readily observed by
the naked eye and good reversibility. The sensing mechanism of the proposed chemodosimeter was
studied by UVeVis, 1H NMR titration, and comparison 1-allyl-4-[2-(4-acetoxyphenyl)ethenyl)]-quinoli-
nium bromide (AAPEQB). The colorimetric chemodosimeter showed high accuracy in determining the
concentration of CN� in real water samples.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Anions are extensively used in the environmental, industrial,
biological, and medical fields [1e7]. Among important anions, cy-
anide (CN�) is widely used in various areas, such as organic syn-
thesis, fiber/resin synthesis, electroplating, and gold extraction;
unfortunately, CN� use has led to leaching of the anion into the
environment and widespread human exposure [8e11]. Cyanide is
lethal to humans at concentrations of 0.5e3.5 mg kg�1 of body
weight. Thus, the development of efficient, selective, fast, and
inexpensive detection methods to determine CN� in the environ-
ment is of great importance.

Several methods to detect CN� have been developed using
various experimental protocols and detection techniques, such as
chromatography [12], spectrophotography [13], electrochemical
methods [14,15], and flow injection analysis technique [16].
However, these methods require complex preprocessing, expen-
sive equipments, special operators, and long detection times.
Colorimetric CN� sensing, which allows CN� detection by the
ax: þ86 23 68254000.
ong), qiantang@swu.edu.cn
naked eye without expensive instruments, has attracted consid-
erable attention in the past decade [17e32]. Receptors such as
amide [17], urea [18], thiourea [19e21], imidazolium [22,23],
borane [24], naphthalene [25], coumarinehemicyanine [26], dia-
rylethene derivatives [29], oxazine [30], and heptamethine cyanine
dye [32] have been reported. While remarkable achievements in
colorimetric CN� sensing have been obtained, poor reversibility
and lack of efficiency in protic media continue to present chal-
lenges to researchers. Therefore, the fabrication of CN� receptors
with simple design, rapid response, good reliability and revers-
ibility, and high selectivity in protic solvents or aqueous environ-
ments is necessary.

In this work, a novel colorimetric CN� receptor, 1-allyl-4-[2-(4-
hydroxyphenyl)ethenyl]-quinolinium bromide (AHPEQB), was
designed and synthesized. The receptor displayed good selectivity,
fast response and good reversibility toward CN� in ethanol, a protic
solvent.
2. Experimental

2.1. Reagents and apparatus

4-Methylquinoline (98%), 4-hydroxybenzaldehyde (98%), ace-
tic anhydride (98%), and allyl bromide (98%) were purchased from
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Aladdin Co., Shanghai, China. All anions in the form of tetra-
butylammonium salts were purchased from Aladdin Co.,
Shanghai, China. All chemical reagents and solvents used were
purchased from commercial suppliers and used without further
purification.

1H NMR and 13C NMR were recorded on a Bruker AV-300 NMR
instrument using trimethylsilane as an internal standard. Ultravi-
oleteVisible spectroscopy (UVeVis) spectra were obtained on
a UV-4802 spectrophotometer [UNICO (Shanghai) Instruments Co.
Ltd, China]. Elemental analysis was performed using a Leco CHN-
900micro carbonehydrogenenitrogen analyzer. The concentration
of CN� was measured using a CNO150X Cyanide electrode (Van
London-pHoenix Co., USA).

2.2. Synthesis of AHPEQB

AHPEQB was synthesized via a two-step method (Fig. 1). The
synthetic procedure is as follows: Under a N2 atmosphere, 4-
hydroxybenzaldehyde (8.54 g, 70.0 mmol) and 15.0 mL of acetic
anhydride were added to a 50mL flask. 4-Methylquinoline (10.02 g,
70.0 mol) was added dropwise to the mixture for 10 min and then
refluxed for 24 h, yielding a black oil mixture. After cooling to room
temperature, the mixture was poured into 100 mL of ice water and
then stirred for 30 min to hydrolyze the excess acetic anhydride.
The resultant mixture was filtered, and the cake obtained was
washed with ice water and recrystallized in ethanol. The obtained
solid was introduced to an ethanolic solution (80 mL) of KOH
(5.00 g). Themixturewas heated to reflux for 150min, resulting in a
dark solution. The pH of the solution was adjusted to 5e6 with
acetic acid, and a pale yellow precipitate was formed. 4-[2-(4-
Fig. 1. Synthetic route of A
Hydroxyphenyl)ethenyl]quinoline as a light yellow powder was
obtained by filtration and dried over in a freeze-drier (11.58 g, yield:
70.0%). The structure of 4-[2-(4-hydroxyphenyl)ethenyl]quinoline
was confirmed by 1H NMR and 13C NMR (see Supporting
information).

4-[2-(4-Hydroxyphenyl)ethenyl]quinoline (1.50 g, 6.0 mmol)
and 15.0 mL of dry acetonitrile were dispensed to a 50 mL flask.
After heating to 60 �C under stirring, allyl bromide (0.74 g,
6.1 mmol) acetonitrile solution (5.0 mL) was added dropwise to
the mixture within 5 min; the resultant mixture was refluxed for
6 h, during which the color of the mixture changed from red to
orange. The mixture was cooled to room temperature and
filtered, and the solid was washed with acetonitrile and meth-
anol, producing 1.41 g of AHPVEB as an orange powder. Yield:
71.3% .1H NMR (300 MHz, d6-DMSO) d (ppm): 10.31 (s, broad,
1H), 9.34 (d, 1H, J ¼ 9.0), 9.08 (d, 1H, J ¼ 6.0), 8.52 (d, 1H, J ¼ 9.0),
8.42 (t, 1H, J ¼ 9.0), 8.24 (t, 1H, J ¼ 6.0), 8.19 (d, 2H, J ¼ 6.0), 8.02
(t, 1H, J ¼ 15.0), 7.92 (d, 2H, J ¼ 9.0), 6.94(d, 2H, J ¼ 9.0), 6.22 (m,
1H, J ¼ 3.0e33.0), 5.64 (d, 2H, J ¼ 3.0), 5.38 (m, 1H, J ¼ 12.0),
5.27(d, 1H, J ¼ 18.0). 13C NMR (75 MHz, d6-DMSO) d (ppm):
161.00, 154.11, 147.59, 144.64, 138.42, 135.36, 132.15, 131.78,
129.33, 127.21, 127.16, 126.85, 120.12, 119.80, 116.46, 116.35,
115.97, 58.44. Elemental analysis cal. (%): C 64.68, H 5.43, N 3.72;
found (%): C 64.62, H 5.42, N 3.74. M.p. 213.5e214.0 �C.

To investigate the CN� recognition mechanism, 1-allyl-4-[2-(4-
acetoxyphenyl)ethenyl]-quinolinium bromide (AAPEQB) was syn-
thesized (Supporting Information: S. Fig. 1) according to a previ-
ously reported method [27]. The detailed synthesis procedure and
1H NMR and 13C NMR information of this compound are described
in Supporting information.
HPEQB and AAPEQB.



Fig. 2. (A) Color changes in ethanol solutions of AHPEQB (2.0 � 10�5 mol L�1) in the
presence of various anions (5 equiv.). Added anions from left to right: none, F�, Cl�, Br�,
I�, AcO�, CN�, H2PO4

�, and HSO4
�. (B) UVeVis spectra of AHPEQB (2.0 � 10�5 mol L�1) in

ethanol upon addition of various anion salts (5 equiv.). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this
article.)
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2.3. General procedure for anion response

A stock solution of AHPEQB (1.0 � 10�3 mol L�1) was prepared
by dissolving 3.70 mg of AHPEQB in 10 mL of ethanol. Solutions of
various anions (F�, Cl�, Br�, I�, AcO�, CN�, H2PO4

�, and HSO4
�;

1.0 � 10�3 mol L�1) were prepared by dissolving the corresponding
tetra-butylammonium salts in ethanol.

Approximately 60 mL of AHPEQB solution and 300 mL of anion
solution were placed in a 3.0 mL cuvette. Ethanol was added to this
mixture to a total volume of 3.0 mL. Characterization was con-
ducted via UVeVis spectroscopy.

2.4. Titration of CN�

Titration experiments were carried out at 25 �C. Approximately
60 mL of AHPEQB solution and different volumes of CN� solution
were place in a 3.0mL cuvette. Ethanol was added to this mixture to
a total volume of 3.0 mL. Characterization was performed by UVe
Vis spectroscopy.

2.5. Analytical applications for the detection of cyanide in water
samples

Four real water samples (distilled water, river water, domestic
sewage, and industrial wastewater) were used. Approximately
60 mL of AHPEQB solution and 300 mL of the water sample were
placed in a 3.0 mL cuvette. Ethanol was added to this mixture to a
total volume of 3.0 mL. Sample spectra were obtained by UVeVis
spectroscopy.

3. Results and discussion

3.1. Selectivity of AHPEQB

Changes in the UVeVis spectra and colors of the receptors to-
ward anions are highly solvent sensitive [33,34]. Therefore, the
response of AHPEQB to anions (F�, Cl�, Br�, I�, AcO�, CN�, H2PO4

�,
and HSO4

�) in different solvents (DMSO, acetonitrile, THF, methanol,
methanol, H2O, CHCl3, and toluene) was investigated. AHPEQB
showed poor solubility in THF, toluene, and CHCl3, whereas the
anions showed low selectivity in acetonitrile, methanol and water.
Therefore, these solvents cannot be used for anion detection.
Ethanol was finally selected as the solvent; in its solvent, AHPEQB
showed high selectivity and CN� displayed good selectivity over
other interfering anions, as evidenced by the rapid color and
obvious UVeVis spectral changes observed. As shown in Fig. 2(A), a
color change from pale yellow to blue was readily observed after
addition of CN� to an ethanolic solution of AHPEQB; the response
timewas 2 s. Other anions (F�, Cl�, Br�, I�, AcO�, H2PO4

�, and HSO4
�)

produced minimal changes in color. CN� also caused a significant
change in the UVeVis absorption spectrum of AHPEQB. As shown in
Fig. 2(B), the UVeVis spectrum of AHPEQB is characterized by one
band centered at 464 nm. Upon addition of CN� to the AHPEQBe
ethanol solution, the band at 464 nm weakened and a new band
appeared at 610 nm, which indicates that a new complex had
formed between AHPEQB and CN�. This new complex was also
responsible for the color change in Fig. 2(A). Other interfering an-
ions could not produce any obvious change in the UVeVis spectrum
of AHPEQB. The anti-jamming ability of AHPEQB was evaluated
using UVeVis competition experiments, and results illustrated that
coexistence with other anions cannot induce significant in-
terferences in CN� recognition (Supporting Information: S. Fig. 2).

The interaction of AHPVQB with CN� was also investigated by
fluorospectro-photometer. The fluorescence spectrum of AHPVQB
(2.0 � 10�5 mol L�1) exhibited a strong fluorescence emission at
560 nm in ethanol which could be ascribed to the quinoline skel-
eton. Upon the addition of CN�, the original fluorescence emission
of AHPVQB was quenched sharply (Supporting Information: S.
Fig. 3). The emission change could also be readily distinguished
by the naked eye. And no significant change was observed in the
emission spectrum of AHPVQB upon the addition of other inter-
fering anions.

These results indicate that AHPEQB is an excellent CN� colori-
metric receptor in ethanol with fast responses and good selectivity
over other interfering anions.

3.2. Mechanism studies for CN� recognition

UVeVis titration was conducted with CN� (Fig. 3). As the con-
centration of CN� gradually increased, the absorption peak at
464 nm gradually decreased, a new peak at 610 nm gradually
increased, and the spectra showed a clear isosbestic point at
515 nm, which indicates the formation of a new complex between
AHPEQB and CN�. After addition of 7 equiv. of CN�, it reached a
saturation level (Fig. 3(A)). A color change from pale yellow to green
to blue during titration was also observed by the naked eye
(Fig. 3(B)).

The stoichiometry between AHPEQB and CN� was determined
from the UVeVis titration data. The measured absorbance variation
at 610 nm (A¼ Aabs � Ai) reached maximumvalues when the molar
fraction of ([AHPEQB]/[CN�] þ [AHPEQB]) was 0.5, which indicates
that AHPEQB and CN� form a 1:1 complexes [19] (Fig. 3(C)). Ben-
esieHildebrand plots [35e37] yield an association constant of
1.69 � 104 (Fig. 3(D)), which is greater than that obtained in pre-
vious reports [34,38]. The limit of detection of AHPEQB for CN� in
ethanol was determined to be 1.7 � 10�6 mol L�1 in ethanol



Fig. 3. (A) UVeVis titration spectra of AHPEQB in ethanol (2.0 � 10�5 mol L�1) after addition of various amounts of CN� (0, 0.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, and 7.0 equiv.).
(B) Color changes in the AHPEQBeethanol solution with increasing CN� concentration. (C) Job plot of AHPEQB with tetra-butylammonium cyanide determined by UVeVis in
ethanol. (D) Plot of relative absorbance at 610 nm versus CN� concentration. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. 1H NMR titration of AHPEQB in DMSOed6.

Fig. 5. (A)Colorchange inethanol solutionsofAAPEQB(2.0�10�5molL�1) inthepresence
of various anions (5 equiv.). Addedanions fromleft to right: none, F�, Cl�, Br�, I�, AcO�, CN�,
H2PO4

�, and HSO4
�. (B) UVevis spectra of AAPEQB (2.0 � 10�5 mol L�1) in ethanol upon

addition of various anion salts (5 equiv.). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

H.-m. Nie et al. / Dyes and Pigments 106 (2014) 74e80 77



Fig. 6. Sensing mechanism of AHPEQB for CN�.

Fig. 8. Changes in absorbance at 603 nm as a function of CN� concentration.
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according to DL ¼ 3s/K [39e42], which is lower than the upper
limit of 1.9 � 10�6 mol L�1 for CN� in drinking water set by the
World Health Organization [43].

1H NMR titration was carried out to further elucidate the
intermolecular interaction between AHPEQB and CN�. As shown in
Fig. 4, the eOH signal in the receptor that appears at 10.31 in
AHPEQB disappeared after addition of 0.05 equiv. of CN�, illus-
trating a hydrogen bonding interaction between AHPEQB and CN�

at a small quantities of CN� [11,39]. This also demonstrated that
APHEQB was a highly sensitive colorimetric chemosensor for CN�.
A noticeable upfield chemical shift was observed in the case of
benzene protons as well as in the quinolinium ring because of this
complexation. This result could be ascribed to the delocalization of
electrons in the benzene ring [19,34].

The anionic response of AAPEQB (which does not contain eOH
group) was investigated to verify our assumption. None of the an-
ions caused obvious changes in both color and UVeVis spectra
(Fig. 5), which demonstrates that CN� interacts with theeOH group
of AHPEQB to form the AHPEQBeCN� complex.

As illustrated in Fig. 6, the relevant reaction mechanism can be
reasonably explained by the interaction of CN� anion with the
Fig. 7. (A) UVeVis spectrum of AHPEQB in ethanol and corresponding spectral changes upon
of free AHPEQBeethanol solution and corresponding color changes upon alternate addition
reader is referred to the web version of this article.)
hydrogen of eOH. This interaction increases the separation be-
tween H and O, and the electron-rich O increases the conjugation of
AHPEQB. Obvious spectral and color changesmay then be observed.

3.3. Reversibility of AHPEQB

The reversibility of the AHPEQB sensor for CN� was studied
through Cu2þ displacement [23,42,44]. The UVeVis spectrum of
free AHPEQB in ethanol displayed strong absorbance at 464 nm and
a pale yellow color. When 1.0 equiv. CN� was introduced to
AHPEQB, a newabsorbance peak at 610 nm appeared because of the
alternate addition of CN� and Cu2þ and (B) the absorbance at 464 nm. (C) Photograph
of CN� and Cu2þ. (For interpretation of the references to color in this figure legend, the



Table 1
Determination of CN� concentration in water samples.

Water samples Aat 603 nm Addition of
CN� (mol L�1)

Aat 603 nm after
CN� addition

Detected CN�

concentration (mol L�1)
Deduced CN�

concentration (mol L�1)
CN� concentration detected
by selective electrode (mol L�1)

Distilled water 0.00675 2.00E-5 0.08493 2.00E-05 Null Null
River water 0.00915 2.00E-5 0.08582 2.03E-05 0.03 E-05 Null
Domestic sewage 0.03185 1.00E-5 0.07395 1.47E-05 0.47 E-05 0.50 E-05
Industrial wastewater 0.05617 1.00E-5 0.09175 2.20E-05 2.20 E-05 2.33 E-05
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formation of AHPEQBeCN� complex and a color change from yel-
low to bluewas observed. Upon addition of Cu2þ, CN�was removed
from AHPEQBeCN� complex to form a more stable complex
[Cu(CN)4]2�; here, the peak at 610 nm disappears and the peak at
464 nm is restored to the original value obtained from the
AHPEQBeethanol solution (Fig. 7(A) and (B)). A color change from
blue to yellow was simultaneously observed (Fig. 7(C)). Alternate
addition of CN� and Cu2þ resulted in results similar to those
observed in previous cycles, which demonstrates that the recog-
nition of CN� is reversible.
3.4. Analytical application

As described above, AHPEQB is a colorimetric receptor for CN�

with good selectivity and reversibility, high sensitivity, rapid
response, and convenient detection. Therefore, AHPEQB should have
broad applications in fields containing CN�. In the present study, the
application of AHPEQB for the ultrasensitive determination of CN� in
four water samples was studied. These water samples included
distilled water (as the blank), river water, domestic sewage, and in-
dustrial wastewater; these samples were spiked with CN� at con-
centrations of 2.0 � 10�5, 2.0 � 10�5, 1.0 � 10�5, and
1.0 � 10�5 mo L�1. To determine CN� in water samples, a calibration
cure was first plotted via UVeVis titration (Fig. 8).

The CN� determination procedure was similar to the UVeVis
titration procedure described in Section 2.4, except that the solvent
used for CN� determination was a mixture of ethanol and water
with a volume ratio of 9:1. Approximately 10.00 mL of river water,
domestic sewage, and industrial wastewater was placed in a test
tube for centrifugal separation, and the aqueous solution was
neutralized to pH 7 with Na2CO3 (10%) and HCl (0.01 mol L�1). The
experiments were repeated six times. The average concentration of
CN� in the three water samples can be deduced from the curve of
the absorbance at 603 nm versus the concentration of CN� after
deduction of the blank. Determination results are shown in Table 1.
Industrial wastewater contained the highest CN� concentration.
For comparison, the CN� concentration of four water samples
without CN� spiking was detected by a CN�-selective electrode. As
shown in Table 1, the CN� concentration in industrial wastewater
and domestic sewage measured by AHPEQB was comparable with
the data measured by the CN� selective electrode with a relative
standard deviation of approximately 5% and an accuracy of
approximately 94.6%. The CN� concentrations in distilled water and
river water could not be detected because they were far below the
limit of detection of our proposed CN�-selective electrode
(0.1 ppm). This result illustrates that the colorimetric chemo-
dosimeter developed in this work could be used for the ultrasen-
sitive detection of CN�.
4. Conclusions

A colorimetric chemodosimeter for CN� based on quinolinium
with rapid responses and good sensitivity and selectivity over other
anions in ethanol was developed. The receptor-ethanol solution
immediately showed obvious changes in color from yellow to blue
after introduction of CN�, which allows rapid detection of CN� in
ethanol. This receptor was used for the ultrasensitive determina-
tion of CN� in real samples by UVeVis. Results implied that the
receptor has broad applications in fields requiring CN� determi-
nation. The receptor also displayed good reversibility toward CN�

through Cu2þ displacement.
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