

Note

Regioselective Synthesis of 5-Metalated 2-Pyrones by Intramolecular Oxymetalation of Carbonyl-Ene-Yne Compounds Using Indium Trihalide

Tetsuji Yata, Yuji Kita, Yoshihiro Nishimoto, and Makoto Yasuda

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02186 • Publication Date (Web): 09 Oct 2019

Downloaded from pubs.acs.org on October 12, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Regioselective Synthesis of 5-Metalated 2-Pyrones by Intramolecular Oxymetalation of Carbonyl-Ene-Yne Compounds Using Indium Trihalide

Tetsuji Yata,[‡] Yuji Kita,[‡] Yoshihiro Nishimoto,^{*†} and Makoto Yasuda^{*‡}

† Frontier Research Base for Global Young Researchers, Center for Open Innovation Research and Education (COiRE),

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

[‡] Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Supporting Information Placeholder

ABSTRACT: The oxyindation of carbonyl-ene-yne compounds with indium trihalides proceeded efficiently to give di-, tri-, and tetrasubstituted 2-pyrones bearing a carbon-indium bond. The metalated 2-pyrone and a zwitterion intermediate were identified by X-ray crystallographic analysis. The application of organoindium compounds to oxidation or cross-coupling provided easy access to various multi-functionalized 2-pyrones. Some 2-pyrone derivatives show intensefluorescence only in the solid state (aggregation-induced emission).

2-Pyrones are an important class of oxygen-containing heterocycles with a broad range of biological activities and are versatile building blocks in organic synthesis.¹ Therefore, the development of general and selective synthetic methods for highly substituted 2-pyrones, particularly tetra-substituted versions, holds great significance. Intramolecular or intermolecular ring-forming reactions catalyzed by transition metals have been recognized as typical methods for the construction of 2-pyrone frameworks. Established general procedures are sufficient for the synthesis of di- and trisubstituted 2-pyrones.² In contrast, only a few studies have focused on the synthesis of tetrasubstituted 2-pyrones.³ Larock reported a palladium-catalyzed intermolecular [2+4] cyclization between internal alkynes and α , β -unsaturated esters. ^{3a} This reaction system is an efficient methodology to achieve regioselective synthesis of di-, tri-, and tetrasubstituted 2-pyrones containing aryl, alkyl, silyl, and ester groups (Scheme 1A). Miura and Satoh reported a rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes, in which only symmetric alkynes were used for tetrasubstituted 2-pyrones (Scheme 1B).^{3b} Ryu and Fukuyama accomplished a Ru-catalyzed [3+2+1] cycloaddition of α,β -unsaturated ketones with silvlated alkynes and CO toward the synthesis of tetrasubstituted 2pyrones. Alkynes other than silvlacetylenes were not applicable

to this three-compornet reaction (Scheme 1C).3c The Larock established transition-metal-catalyst-free group а iodolactonization of carbonyl-ene-ynes with I2. In this case, tetrasubstituted 2-pyrones were synthesized, but the regioselectivity in the cyclization was low (Scheme 1D).^{3d} In this context, we envisioned a strategy employing 2-pyrones with a carbon-metal bond (metalated 2-pyrones) after receiving a hint from our developed oxyindation to afford metalated isocoumarins.^{6,7} Transformations of the metal-carbon bond selectively gives multi-substituted pyrones.⁴ Herein, we describe a novel selective synthetic method for highly substituted 2-pyrones, including tetrasubstituted versions, by using metalated 2-pyrones synthesized via the intramolecular oxyindation carbonyl-ene-yne compounds 1 with InI₃ (Scheme 1E). With this method, it is possible to obtain tetrasubstituted 2pyrones containing bromine, iodine, and ketone moieties, which have not been prepared by previous methods.

Scheme 1. (A) Reported Work: The Synthesis of Tetrasubstituted 2-Pyrones; (B) This Work: Oxyindation of Carbonyl-ene-yne Compound 1 with InI₃ to Access Di-, Tri- and Tetrasubstituted Metalated 2-Pyrones

(A) Larock's work (ref 3a)

Easy access to functionalized tetrasubstituted 2-pyrones

A metalated 2-pyrone is the key compound in our stratey. Almost all reported syntheses of metalated 2-pyrones depend on a halogen-metal exchange of halogenated 2-pyrones. Therefore, the lack of a facile synthetic procedure for di- or trisubstituted halogenated 2-pyrones⁵ has led to an underdevelopment in the synthesis of highly substituted metalated 2-pyrones (Scheme 2A).⁴ In addition, a synthesis of tetrasubstituted 2-pyrones has not been achieved (Scheme 2B). With the present synthetic method, the establishment of an oxymetalation of fully substituted carbonyl-ene-ynes 1, which are easily synthesized from iodoacrylate derivatives and acetylene derivatives, achieves the preparation of 5-metalated 2-pyrones A, which includes di-, tri-, and tetrasubstituted versions. This is the first report of the synthesis of tetrasubstituted metalated 2-pyrones.

Scheme 2. Retrosynthesis of Metalated 2-Pyrones: (A) Diand Trisubstituted Metalated 2-Pyrones, (B) Tetrasubstituted Metalated 2-Pyrones

First, various metal salts were surveyed in an intramolecular oxymetalation of carbonyl-ene-yne 1a (Table 1). Recently, we reported an indium salt-mediated oxymetalation of 2alkynylbenzoates to synthesize metalated isocoumarins.⁶ Therefore, oxyindations of 1a were conducted using indium halides. A solution of **1a** and InX_3 (X = Cl, Br, and I) in toluene was heated at 80 °C, and then the reaction mixture was

Table 1. Effect of Lewis Acids on the Oxymetalation of 1a, 1b, and 1c^{*a*}.

	MtX _n (1.0 eq) toluene 80 °C, 24 h h	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\xrightarrow{\text{HCl aq}} \begin{array}{c} R^1 \\ R^2 \\ H \\ 2 \end{array} \begin{array}{c} 0 \\ Ph \\ Ph \\ D \\ 2 \end{array} \begin{array}{c} 0 \\ Ph \\ Ph \\ D \\ 2a-d \end{array}$
entry	$1 (R^1, R^2)$	MtX _n	yield of 2 /%
1	1a (H, H)	InCl ₃	2a :0
2	1a (H, H)	InBr ₃	2a :88
3 ^c	1a (H, H)	InI_3	2a :100 (2a - <i>d</i> :82% D)
4	1a (H, H)	BBr ₃	2a :0
5	1a (H, H)	$ZnBr_2$	2a :14
6	1a (H, H)	AlBr ₃	2a :0
7	1a (H, H)	GaBr ₃	2a :45
8	1a (H, H)	$PdCl_2$	2a :0
9	1a (H, H)	AuCl	2a :6
10	1a (H, H)	AgOTf	2a :0
11	1b (H, Ph)	InI_3	2b :92
12 ^d	1b (H, Ph)	ClBcat	2b :0
13	1c (Et, Ph)	InI ₃	2c :95

^{*a*}1 (0.5 mmol), MX_n (0.5 mmol), toluene (1 mL) ^{*b*}The yield of 2 was determined by ¹H NMR. ^cThe reaction mixture was quenched by 1 M DCl in D₂O (1 mL) and a subsequent addition of H₂O (10 mL).^d1b (0.5 mmol), ClBcat (1.4 eq.), toluene (1 mL) 24 h, 100 °C, and then quenched by pinacol (3 eq.) and NEt₃ (1 mL).

quenched using 1 M HCl aq. The use of InCl₃ resulted in no reaction (Table 1, entry 1). On the other hand, $InBr_3$ and InI_3 gave the desired product 2a in 88 and 100% yields, respectively (Table 1, entries 2 and 3). When the reaction using InI_3 was quenched by DCl in D_2O , product **2a**-d deuterated at the 5position was obtained. Typical Lewis acids such as BBr₃, ZnBr₂, AlBr₃ and GaBr₃ were unsuitable (Table 1, entries 4-7). Subjecting the other alkynophilic Lewis acids such as PdCl₂, AuCl, and AgOTf to the present oxymetalation resulted in decomposition or recovery of the starting material **1a** (Table 1, entries 8-10). To our delight, a more substituted carbonyl-enevne 1b or 1c afforded the highly substituted 2-pyrones 2b or 2c, respectively (Table 1, entries 11 and 13). Blum and co-workers reported an oxyboration of carbonyl-ene-yne 1a using Bchlorocatecholborane (ClBcat) to afford borylated 2-pyrone,⁸ but the oxyboration system was not applicable to multisubstituted substrates such as **1b** (Table 1, entry 12).

When the reaction of 1b with InI_3 was performed under the optimal conditions (Table 1, entry 11) without acid-quenching, metalated 2-pyrone 3b bearing an InI₂ group at the 5-position was obtained as a white solid (Scheme 3(i), (A)) and protonated product 2b was hardly observed. This result suggested the oxyindation proceeded. The structure of a 3b pyridine complex was identified by X-ray crystallographic analysis (Scheme 3(ii), (A)). (See Supporting Information (SI) for details of the experiments). Oxyindation at room temperature also afforded a white solid (Scheme 3(i), (B)), and, interestingly, it was not **3b**. ¹H NMR spectroscopic and X-ray crystallographic analysis clarified the formation as that of zwitterion **4b** (Scheme 3(ii), (B)). An indium atom (In1) of **4b** in the solid state was bound to three iodine atoms (I1, I2, and I3) and a carbon atom (C2), and displayed a

Scheme 3. Mechanistic Studies and Proposed Mechanism

(i) The observation of zwitterion 4b and organoindium 3b

distorted tetrahedral geometry. One of the iodine atoms on In1 coordinated to InI_3 in a crystal structure. The bond lengths of the two carbon-oxygen bonds (C1-O1 = 1.300(10) Å, C1-O2 = 1.327(11) Å) in **4b** showed values that fell between that of a typical C-O double bond (1.233 Å) and a single bond (1.401 Å)

of the 3b-pyridine complex. Thus, the positive charge was delocalized in the ester moiety.⁹ Subjecting zwitterion 4b to heating conditions gave metalated 2-pyrone 3b via the elimination of MeI.

To gain insight into the reaction mechanism, the coordination mode of carbonyl-ene-yne **1a** to a Lewis acid was investigated by DFT calculation (Scheme 3(iii)). In the coordination of either the alkyne moiety (**B**) or the carbonyl oxygen (**A**) in **1a** to InBr₃, the Gibbs energy changes were -17.2 kcal mol⁻¹ and - 30.5 kcal mol⁻¹, respectively. Therefore, both complexations were thermodynamically stable, but carbonyl coordination was more favorable. The energy gap between carbonyl complex **A** and alkyne complex **B** of AlBr₃ was very large ($\Delta G^{A \text{ to } B} = 24.5$ kcal mol⁻¹), but InBr₃ showed a relatively small value ($\Delta G^{A \text{ to } B} = 13.3$ kcal mol⁻¹). Consequently, InBr₃ was more susceptible to the subsequent alkyne coordination compared with AlBr₃ after dissociation of the carbonyl coordination (See SI).

A possible reaction mechanism is depicted in Scheme 3(iv). First, InI_3 acts as an efficient π -electrophilic Lewis acid for the activation of the alkyne moiety of carbonyl-ene-yne 1^7 , and then the intramolecular nucleophilic attack of a carbonyl oxygen atom occurs to generate zwitterion **4**. Then, the elimination of MeI gives metalated 2-pyrone **3**. The elimination is a rate-determining step.

Scheme 4. Sequential Oxymetalation/halogenation of Various Types of Carbonyl-ene-yne^a

^aFirst step: **1** (0.5 mmol), InI₃ (0.5 mmol), toluene (1 mL), 80 °C, 24 h. Second step: PhI(OAc)₂ (1.0 mmol), THF (2 mL), rt, 12 h. The isolated yields are shown. ^bInBr₃ was used instead of InI₃.

Various types of carbonyl-ene-ynes **1** were applied to the synthesis of 2-pyrone derivatives via the present oxyindation (Scheme 4). Oxyindation of **1a** using InI_3 followed by oxidation of **3a** with PhI(OAc)₂ was carried out in a one-pot procedure to

afford 5-iodo-2-pyrone 5a in a 96% yield.⁶ Substrates 1 with substituents such as Me, tert-Bu, MeO, Cl, and F groups on the aromatic ring bindng to an alkyne moiety gave the target products 5d, 5e, 5f, 5g, and 5h, respectively. The substrates bearing aliphatic alkyne moieties 1i and 1j also worked well. Dicarbonyl-ene-yne compound 1k provided the desired trisubstituted 2-pyrone 5k in a moderate yield. Subjecting 1b to halogenation yielded 5-iodo-4,6-diphenyl-2-pyrone **5b**. α , β -Disubstituted substrate 1c was surveyed in the sequential oxyindation/halogenation process to afford tetrasubstituted 2pyrone 5c. Gratifyingly, 2-pyrone 5l bearing four different substituents on the ring was produced by the reaction using 11. The oxyindation of 1m proceeded in 6-endo cyclization to exclusively give 2-pyrone 5m in contrast to Larock's iodocyclization of **1m** with ICl giving a 5-membered oxacycle as a major product.^{3d} Therefore, this result shows our developed method is more effective for the synthesis of multisubstituted 2-pyrones. To our delight, subjecting InBr₃ instead of InI₃ to the oxyindation reaction provided fully substituted brominated 2pyrones 5n in a moderate yield. Therefore, our approach accomplished the synthesis of tetrasubstituted brominated 2pyrones as well as iodinated ones. Iodinated 2-pyrone 5m was used for further transformations with Migita-Kosugi-Stille coupling to give tetra-carbon-substitued 2-pyrones (Scheme 5).10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Scheme 5. Synthesis of Tetrasubstituted 2-Pyrones Using Stille Coupling

Palladium-catalyzed, cross-coupling syntheses of metalated 2-pyrones **3** with aryl iodides or acid chlorides were performed (Scheme 6).¹¹ After the oxyindation of **1a** with InI₃, iodobenzene, Pd₂(dba)₃ catalyst, NaOMe, and DMF were added to the reaction mixture involving InI₂-substituted 2-pyrone **3a**. The Pd-catalyzed coupling reaction between **3a** and iodobenzene smoothly proceeded to produce 5,6-diphenyl-2-pyrone **6a** in a 96% yield. The trisubstituted metalated 2-pyrone derived from **1b** also underwent coupling to afford 4,5,6-triphenyl-2*H*-pyran-2-one **6b**. Various types of tetrasubstituted metalated 2-pyrones derived from **1c**, and **1l-1o** were employed to produce tetra-carbon-substitued 2-pyrones **6c** and **6l-6o**, respectively.

Scheme 6. One-pot Formation of Highly Substituted 2-Pyrones by Palladium-catalyzed Cross Coupling

^{*a*}Oxyindation conditions: **1** (0.5 mmol), InI₃ (0.5 mmol), toluene (1 mL), 80 °C, 24 h. Second step conditions: Pd₂dba₃ (0.025 mmol), NaOMe (1.0 mmol), ArI (Ar = 0.35 mmol), DMF (2.5 mL), 110 °C, 24 h. ^{*b*}Oxyindation conditions: **1** (0.5 mmol), InI₃ (0.5 mmol), toluene (1 mL), 80 °C, 24 h. Second step conditions: Pd₂dba₃ (0.025 mmol), R⁴COCl (1.0 mmol), 1,3-dimethyl-2-imidazolidinone (2.5 mL), 80 °C, 24 h. The isolated yields are shown. ^{*c*}The cross coupling was run at 80 °C and KCl was used instead of NaOMe.

Both electron-rich and -poor aryl iodides worked as feasible coupling partners to afford 2-pyrones **6n** and **6o** bearing four different carbon substitutents. Furthermore, the Pd-catalyzed cross coupling of InI_2 -substituted 2-pyrones **3** with an acid chloride also proceeded under condition B to give multi-functionalized 2-pyrones **7a-7c**, **7l**, and **7m**. The structure of 2-pyrone **7l** was confirmed by X-ray crystallographic analysis. The present oxyindation/cross-coupling sequential process established a modular synthesis of multi-functionalized 2-pyrones.

Tetrasubstituted 2-pyrones **6m** and **7m** had no fluorescence properties in the solution, but an aggregation-induced emission (AIE) was observed in the solid state. Triphenylated 2-pyrone **2c** is known to possess AIE properties and exhibit a higher quantum yield than Alq₃, which is generally used in electroluminescence devices.¹² However, tetrasubstituted 2pyrones have not been investigated in detail because relatively little is known about a facile synthetic method. We expected to improve the light emission properties by installing a substituent at the 5-position, and thus **6m** and **7m** exhibited greater quantum yields than **2c** (Figure 1A). This result can be ascribed to the fact that the installation of either a phenyl- or an aloyl group changed the intermolecular interactions in the solid state. Figure 1B shows the molecular packing diagrams of compound

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

6m, **7m** and **2c**¹². In the crystal structure of these compounds, there are C-H $\cdots\pi$ interactions and/or hydrogen bonds among molecules. These interactions limited the molecular motions, giving rise to the emission enhancement in the solid state. A quenching effect is caused by the stacking interactions between 2-pyrone structures in **6m** and **2c**, but not in **7m**. Inhibition of the stacking by the steric hindrance of benzoyl group at the 5-position achieved the strongest light emission of **7m**. The distance between the 2-pyrone skeleton of **6m** is longer than that of **2c** due to the Ph group at the 5-position, so **6m** shows stronger light emission than **2c**.

Figure 1. (A) Fluorescence spectra of **6m** and **7m** and **2c** in the solid state upon excitation at 365 nm. The fluorescence intensities of their compounds were calculated based on quantum yield. (B) Packing mode and multiple interactions of compound **6m** and **7m** and **2c**.

In conclusion, we developed a process fo the oxyindation of carbonyl-ene-yne compounds to give 2-pyrones bearing a carbon-indium bond at the 5-position. Metalated 2-pyrones **3** and zwitterion intermediate **4** were fully characterized by X-ray crystallographic analysis and NMR spectroscopy. These results supported a reaction mechanism that is composed of two steps: an indium trihalide-mediated cyclic oxymetalation and the sequential elimination of MeI from **4**. The bromination or iodination of **3** provided 5-halo-2-pyrones **5** which are quite useful as synthetic precursors to multi-substituted 2-pyrones. We developed a general synthesis method for highly substituted 2-pyrones via a cross-coupling reaction using **3**. The synthesized tetrasubstituted 2-pyrones showed aggregationinduced emission (AIE). The oxyindation chemistry described herein could contribute to a modular synthesis of multifunctionalized 2-pyrones.

EXPERIMENTAL SECTION

General Information.

NMR spectra were recorded on a JEOL JNM-400 (400 MHz for $^1\mathrm{H}$ NMR and 100 MHz for ¹³C NMR) spectrometer. Chemical shifts were reported in ppm on the δ scale relative to tetramethylsilane (δ = 0 for ¹H NMR) and residual CHCl₃ (δ = 77.0 for ¹³C NMR) as an internal reference. New compounds were characterized by ¹H, ¹³C, ¹³C off-resonance techniques, COSY, HMOC, and HMBC. Infrared (IR) spectra were recorded on a JASCO FT/IR-6200 Fourier transform infrared spectrophotometer. Column chromatographies were performed with silica gel. Purification by recycle HPLC was performed using the SHIMADZU recycle HPLC system (SPD-20A, RID-10A, DGU-20A, LC-6AD, and FCV-20H2) from the Japan Analytical Industry Co. (NEXT recycling preparative HPLC). High-resolution mass spectra were obtained using a magnetic sector type mass spectrometer. Reactions were carried out in dry solvents under a nitrogen atmosphere, unless otherwise stated. Reagents were purchased from Aldrich or Tokyo Chemical Industry Co., Ltd. (TCI), FUJIFILM Wako Pure Chemical Corporation and used either after purification by distillation or without purification for solid substrates. X-ray diffraction analysis was carried out via Rigaku XtaLAB Synergy with a Hypix-6000HE. Steady-state emission spectra were recorded on a HAMAMATSU C11347-01 spectrometer with an integrating sphere.

Materials

Dehydrated solvents, such as toluene, THF, 1,4-dioxane, DMF, and DMI were purchased from FUJIFILM Wako Pure Chemical Corporation and used as obtained. PhI(OAc)₂ was purchased from Tokyo Chemical Industry Co., Ltd., and used without further purification. Carbonyl-ene-yne compounds, **1a**, **1b**, **1d-1k**, and **1m** were synthesized by reported procedures, and the spectral data for these compounds are provided in the Supporting Information. Carbonyl-ene-ynes **1c** and **1l** are new compounds, and the synthetic methods and spectral data for these compounds are shown below. InI₃ (Indium Triiodide 99.99%) was purchased from Kojundo Chemical Laboratory. All other reagents were commercially available.

General Procedure for the synthesis of carbonyl-ene-yne $1a^{3d}$, $1b^{13}$, $1d^{14}$, $1e^{14}$, $1f^{14}$, $1g^{14}$, $1h^{14}$, $1i^{15}$, $1j^8$, $1k^{16}$, and 1m.^{3d}

To a solution of methyl (*Z*)-3-iodoacrylate (5 mmol, 1 equiv) in Et₃N (20 mL) were added PdCl₂(PPh₃)₂ (0.1 mmol, 0.02 equiv), CuI (0.1 mmol, 0.02 equiv) and acetylene (6.5 mmol, 1.3 equiv). The resulting mixture was heated under nitrogen atmosphere at 55 °C by oil bath. The reaction was monitored by TLC to establish completion. When the reaction was complete, the mixture was quenched by NH₄Cl aq (30 mL). The solution was extracted by Et₂O (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography. Product-containing fractions were combined and concentrated in vacuo to afford **1**.

methyl (Z)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (1c)

The 3-Phenyl-2-propyn-1-ol (20.2 mmol, 2.67 g), dry Et₂O (30 mL), and CuI (2.35 mmol, 0.448 g) were added to a three-necked flask. To the cooled, stirred mixture at 0 °C was added a 3.0M EtMgBr in diethyl ether (17 mL). Upon complete addition of the Grignard reagent, the mixture was allowed to warm up to room temperature and stirred for 20 h. The dark green mixture was then cooled to 0 °C and I₂ (22.2 mmol, 5.63 g) was added. After warming up to room temperature and stirring at room temperature for 1 h, the reaction mixture was cooled to 0 °C and quenched with sat. NH₄Cl aq (20 mL). The organic layer was separated and the aqueous layer was extracted with ether (3 x 50 mL). The combined ether layers were dried over MgSO4, filtered, and concen-

trated in vacuo and then the crude (*Z*)-2-{iodo(phenyl)methylene}butan-1-ol (12.3 mmol, 3.56 g) was obtained. The crude (*Z*)-2-{iodo(phenyl)methylene}butan-1-ol was used without further purification.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

To a solution of (Z)-2-{iodo(phenyl)methylene}butan-1-ol (12.3 mmol, 3.56 g), CH₂Cl₂ (123 mL), and MnO₂ (247 mmol, 21.8 g) were added to a three-necked flask. The reaction mixture was stirred at room temperature for 2 h. The black precipitate was filtered off and the filtrate was concentrated in vacuo and then the crude (*Z*)-2-{iodo(phenyl)methylene}butanal (11.7 mmol, 3.34 g) was obtained. The crude (*Z*)-2-{iodo(phenyl)methylene}butanal was used without further purification.

The (*Z*)-2-{iodo(phenyl)methylene}butanal (11.7 mmol, 3.34 g), MeOH (150 mL), NaCN (47.7 mmol, 2.34 g), AcOH (17.5 mmol, 1.05 g), and MnO₂ (238 mmol, 20.7 g) were added to a three-necked flask. The mixture was stirred at room temperature for 12 h under N₂ atm. The black precipitate was filtered off and the filtrate was concentrated under vacuo. The resulting residue was partitioned between 80 mL of H₂O and 80 mL of Et₂O. The organic layer was separated and the aqueous layer was extracted with ether (3 x 50 mL). The combined ether layers were dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 5:95, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the methyl (*Z*)-2-{iodo(phenyl)methylene}butanoate (**9**) as a yellow oil (3.45 g, 54%).

IR: (neat) 1733 (C=O) cm⁻¹, ¹H NMR: (400 MHz, CDCl₃) 7.38-7.32 (m, 2H), 7.30-7.24 (m, 3H), 3.88 (s, 3H), 2.25 (q, J = 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H), ¹³C {¹H} NMR: (100 MHz, CDCl₃) 169.6 (s), 144.7 (s), 142.5 (s), 128.3 (d), 127.7 (d), 96.8 (s), 52.3 (q), 26.2 (t), 13.1 (q), HRMS: (EI, 70 eV) Calculated (C₁₂H₁₃O₂I) 315.9960 (M⁺) Found 315.9962

To a solution of methyl (Z)-2-{iodo(phenyl)methylene}butanoate (5.43 mmol, 1.72 g) in Et₃N (20 mL) were added PdCl₂(PPh₃)₂ (0.114 mmol, 0.0800 g), CuI (0.105 mmol, 0.0200 g) and phenylacetylene (6.51 mmol, 0.665 g). The resulting mixture was heated under nitrogen atmosphere at 55 °C. The reaction was monitored by TLC to establish completion. When the reaction was complete, the mixture was quenched by NH₄Cl aq (30 mL). The solution was extracted by Et₂O (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 nm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow oil (1.24 g, 78%). IR: (neat) 2196 (C=C), 1721 (C=O) cm⁻¹, ¹H NMR: (400 MHz, CDCl₃) 7.43-7.26 (m, 10H), 3.90 (s, 3H), 2.40 (q, J = 7.4 Hz, 2H), 1.04 (t, J = 7.4 Hz, 3H), ¹³C NMR: (100 MHz, CDCl₃) 168.8 (s), 141.4 (s), 138.2 (s), 131.6 (d), 128.5 (d), 128.4 (d), 128.3 (d), 128.2 (d), 128.0 (s), 128.0 (s), 123.1 (s), 96.8 (s), 89.1 (s), 51.9 (q), 24.0 (t), 13.4 (q), HRMS: (EI, 70 eV) Calculated (C20H18O2) 290.1307 (M+) Found 290.1306

methyl (Z)-5-cyclopropyl-2-ethyl-3-phenylpent-2-en-4-ynoate (11)

To a solution of methyl (Z)-2-{iodo(phenyl)methylene}butanoate (9) (2.91 mmol, 0.921 g) (The experimental procedure and characterization of this compound (9) were described in experimental procedure of methyl (Z)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (1c)) in Et₃N (12 mL) were added PdCl₂(PPh₃)₂ (0.0329 mmol, 0.0231 g), CuI (0.0735 mmol, 0.0140 g) and phenylacetylene (3.49 mmol, 0.230 g). The resulting mixture was heated under an N2 atmosphere at 55 °C. The reaction was monitored by TLC to establish completion. When the reaction was complete, the mixture was quenched by NH₄Cl aq (10 mL). The solution was extracted by Et₂O (3 x 10 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 nm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow oil (0.443 g, 60%). IR: (KBr) 2212 (C=C), 1722 (C=O) cm⁻ ¹; ¹H NMR: (400 MHz, CDCl₃) 7.38-7.27 (m, 5H), 3.84 (s, 3H), 2.30 (q, J = 7.5 Hz, 2H), 1.43-1.36 (m, 1H), 0.97 (t, J = 7.5 Hz, 3H), 0.86-0.82 (m, 2H), 0.76-0.72 (m, 2H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 169.0 (s), 139.9 (s), 138.8 (s), 128.7 (s), 128.2 (d), 128.1 (d), 127.8 (d),

102.5 (s), 75.8 (s), 51.7 (q), 23.7 (t), 13.5 (q), 9.1 (t), 0.7 (d), HRMS: (CI, 70 eV) Calculated (C $_{17}H_{19}O_2$): 255.1385 [M+H]+Found 255.1387

General Procedure for oxymetalation of methyl (Z)-5-phenylpent-2-en-4-ynoate followed by protonolysis (Table 1)

In a glove box filled for nitrogen, to a sealed vial, InI_3 (0.5 mmol, 1 equiv), toluene (1 mL) and methyl (*Z*)-5-phenylpent-2-en-4-ynoate **1a** (0.5 mmol, 1 equiv) were added. The solution was stirred at 80 °C for 24 h in a heated aluminum block and the reaction mixture was quenched by 1 M HCl aq (1 mL). After addition of water (10 mL), the solution was extracted with CH₂Cl₂ (5 mL x 3). The collected organic layer was dried over MgSO₄. The solvent was evaporated and the yield of 6-phenyl-2*H*-pyran-2-one **2** was determined by ¹H NMR using internal standards (1,1,2,2-tetrachloroethane)

Oxymetalation of a carbonyl-ene-yne using InI_3 (1.0 mmol Scale)

To a 10 mL vial filled with InI_3 (0.999 mmol, 0.495 g) in toluene (2 mL) was added methyl (Z)-5-phenylpent-2-en-4-ynoate **1a** (1.01mmol, 0.187 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h in a heated aluminum block and the reaction mixture was quenched by water (10 mL) and 1 M HCl aq (2 mL). The solution was extracted by dichloromethane (3 x 10 mL) and the combined organic solution was dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Fractions containing the desired product were combines and concentrated in vacuo to give the product **2a** as a pale yellow solid (0.115 g, 67%). (The experimental procedure at 0.5 mmol scale and characterization of **2a** were shown below)

Observation of Zwitterion Intermediate 4b by ¹H NMR spectroscopy and X-ray Crystallographic Analysis (Scheme 3)

Oxyindation of methyl (*Z*)-3,5-diphenylpent-2-en-4-ynoate **1b** (0.501 mmol, 0.131 g) with InI₃ (0.505 mmol, 0.250 g) was carried out in toluene (1 mL) at room temperature for 2 h to give a white solid, and then the toluene was evaporated and the residual solid was dissolved in CDCl₃. ¹H NMR spectroscopy measurements showed that the solid was mixture of two compounds, which were neither the metalated pyrone **3b** nor the starting material **1b**. Recrystallization of the mixture from CHCl₃ and heptane provided a crystal and X-ray crystallographic analysis revealed that the one of the two components was the zwitterion intermediate **4b** (CCDC 1910563).

Isolation of Organoindium Compounds 3b and 3b · pyridine (Scheme 3-i-A and Scheme 3-ii-A)

All operations were carried out in a nitrogen-filled glove box. To a 10 mL vial filled with InI₃ (0.502 mmol, 0.249 g) in toluene (1 mL) was added methyl (Z)-3,5-diphenylpent-2-en-4-ynoate (0.493 mmol, 0.129 g). The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, the solvent was removed by decantation to obtain a white solid and the solid was washed by CHCl₃ (3 mL x 6). The residue was dried under vacuum to give the product **3b** as a white solid (0.297 g, 81%). 3b was added to pyridine (0.399 mmol, 0.0316 g) and recrystallized from CHCl₃ and heptane to give a single crystal of **3b**·pyridine. The structure was determined by X-ray crystallographic analysis (CCDC 1910738). Characterization by NMR study was also carried out. ¹H NMR: (400 MHz, CDCl₃) 8.27 (d, J = 4.8 Hz, 2H, 15-H x 2), 7.77-7.72 (m, 3H), 7.54-7.48 (m, 2H, 8-H x 2), 7.36-7.34 (m, 6H), 7.28-7.26 (m, 2H, 16-H x 2), 6.35 (s, 1H, 3-H), ¹³C NMR: (100 MHz, CDCl₃) 167.2 (s, C-6), 162.7 (s), 162.6 (s), 148.0 (d, C-15), 141.1 (s, C-7), 139.1 (d, C-17), 136.0 (s, C-11), 131.2 (d), 130.1 (d), 129.6 (d), 129.09 (d), 129.06 (d), 127.7 (d, C-8), 124.9 (d, C-16), 118.9 (s, C-5), 111.8 (d, C-3).

General Procedure for oxymetalation of carbonyl-ene-yne compounds followed by halogenation (Scheme 4)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

In a glove box filled with nitrogen, to a sealed vial, InI_3 (0.5 mmol, 1 equiv), toluene (1 mL) and carbonyl-ene-yne compound 1 (0.5 mmol, 1 equiv) were added. After stirring at 80 °C for 24 h in a heated aluminum block, the suspension was diluted by THF (2.5 mL) and PhI(OAc)₂ (1.0 mmol, 1 equiv) was added to the solution in the glove box. The reaction mixture was stirred at rt for 24 h and then quenched by water (5 mL) and 1 M HCl aq (1 mL). The solution was extracted with CH₂Cl₂ (30 mL x 2) and the collected organic layer was dried over MgSO₄. The solvent was evaporated and the residue was purified by column chromatography.

General Procedure for oxymetalation of carbonyl-ene-yne compounds followed by palladium catalyzed cross coupling with iodoarenes (Scheme 6, Conditions A)

In a glove box filled with nitrogen, to a sealed vial, InI_3 (0.5 mmol, 1.4 equiv), toluene (1 mL) and carbonyl-ene-yne compound **1** (0.5 mmol, 1.4 equiv) were added, and the solution was stirred at 80 °C for 24 h in a heated aluminum block. $Pd_2(dba)_3$ (0.025 mmol, 0.071 equiv), a base such as KCl and NaOMe (2.9 equiv or none), ArI (0.35 mmol, 1 equiv) and DMF (2.5 mL) was added to the reaction mixture in the glove box and the mixture was stirred at 110 °C for 24 h. The reaction mixture was quenched by water (5 mL) and 1 M HCl aq (1 mL). The solution was extracted with dichloromethane (3 x 30 mL) and the collected organic layer was dried over MgSO4. The solvent was evaporated and the residue was purified by column chromatography.

General Procedure for oxymetalation of carbonyl-ene-yne compounds followed by palladium catalyzed cross coupling with acid chlorides (Scheme 6, Conditions B)

In a glove box filled with nitrogen, to a sealed vial, InI_3 (0.5 mmol, 1 equiv), toluene (1 mL) and carbonyl-ene-yne compound **1** (0.5 mmol, 1 equiv) were added, and the solution was stirred at 80 °C for 24 h in a heated aluminum block. Pd₂(dba)₃ (0.025 mmol, 0.05 equiv), 4-methylbenzoyl chloride (1.0 mmol, 2 equiv) and 1,3-dimethyl-2-imid-azolidinone (2.5 mL) was added to the reaction mixture in the glove box and the mixture was stirred at 80 °C for 24 h in a heated aluminum block. The reaction mixture was quenched by water (5 mL) and 1 M HCl aq (1 mL). The solution was extracted with dichloromethane (3 x 30 mL) and the collected organic layer was dried over MgSO₄. The solvent was evaporated and the residue was purified by column chromatography.

6-phenyl-2H-pyran-2-one (2a)

To a 10 mL vial filled with InI_3 (0.503 mmol, 0.249 g) in toluene (1 mL) was added methyl (*Z*)-5-phenylpent-2-en-4-ynoate (0.500mmol, 0.0931 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h and the reaction mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.0797 g, 93%). The NMR date was agreement with the literature¹⁷.

4,6-diphenyl-2H-pyran-2-one (2b)

To a 10 mL vial filled with InI_3 (0.503 mmol, 0.249 g) in toluene (1 mL) was added methyl (*Z*)-3,5-diphenylpent-2-en-4-ynoate (0.500mmol, 0.131 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h and the reaction mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a white solid (0.100 g, 81%). The NMR date was agreement with the literature^{2a}.

3-ethyl-4,6-diphenyl-2H-pyran-2-one (2c)

To a 10 mL vial filled with InI₃ (0.504 mmol, 0.248 g) in toluene (1 mL) was added methyl (Z)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (0.502 mmol, 0.146 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h and the mixture was quenched by water (3 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and combined organic solution was dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a white solid (0.126 g, 90%). IR: (KBr) 1716 (C=O) cm⁻¹, mp: 59-61 °C, ¹H NMR: (400 MHz, CDCl₃) 7.82 (d, J = 5.1 Hz, 2H), 7.51-7.41 (m, 6H), 7.35 (d, J = 7.4 Hz, 2H), 6.62 (s, 1H), 2.50 (q, J = 7.4 Hz, 2H), 1.16 (t, J = 7.4 Hz, 3H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 163.2 (s), 156.3 (s), 152.2 (s), 137.9 (s), 131.4 (s), 130.2 (d), 128.7 (d), 128.6 (d), 127.4 (d), 125.5 (s), 125.2 (d), 104.6 (d), 21.2 (t), 13.3 (q), HRMS:(EI, 70 eV) Calculated (C₁₉H₁₆O₂) 276.1150 (M⁺) Found 276.1151.

5-iodo-6-phenyl-2H-pyran-2-one (5a)

To a 10 mL vial filled with InI₃ (0.503 mmol, 0.249 g) in toluene (1 mL) was added methyl (*Z*)-5-phenylpent-2-en-4-ynoate (0.500 mmol, 0.931 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.331 g, 1.03 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq. (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.143 g, 96%). The NMR date was agreement with the literature^{3d}.

5-iodo-4,6-diphenyl-2H-pyran-2-one (5b)

To a 10 mL vial filled with InI_3 (0.500 mmol, 0.248 g) in toluene (1 mL) was added methyl (*Z*)-5-phenylpent-2-en-4-ynoate (0.500 mmol, 0.931 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.331 g, 1.03 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq. (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.123 g, 66%). The NMR date was agreement with the literature¹⁶.

3-ethyl-5-iodo-4,6-diphenyl-2H-pyran-2-one (5c)

To a 10 mL vial filled with InI₃ (0.518 mmol, 0.257 g) in toluene (1 mL) was added methyl (*Z*)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (0.502 mmol, 0.146 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.195 g, 0.604 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (3 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.139 g, 69%). IR: (KBr) 1714 (C=O) cm⁻¹, mp: 143-144 °C, ¹H NMR: (400 MHz, CDCl₃) 7.71-7.69 (m, 2H), 7.50-7.46 (m,

6H), 7.16 (d, J = 6.8 Hz, 2H), 2.35 (q, J = 7.4 Hz, 2H), 1.04 (t, J = 7.4 Hz, 3H), ${}^{13}C{}^{1}H$ NMR: (100 MHz, CDCl₃) 162.1 (s), 157.9 (s), 155.7 (s), 140.8 (s), 134.9 (s), 130.3 (d), 129.6 (d), 128.6 (d), 128.5 (d), 128.0 (d), 127.5 (d), 127.3 (s), 77.5 (s), 23.4 (t), 13.1 (q), HRMS: (EI, 70 eV) Calculated (C₁₉H₁₅O₂I) 402.0122 (M⁺) Found 402.0117.

5-iodo-6-(p-tolyl)-2H-pyran-2-one (5d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

To a 10 mL vial filled with InI₃ (0.503 mmol, 0.249 g) in toluene (1 mL) was added methyl (Z)-5-(p-tolyl)pent-2-en-4-ynoate (0.510 mmol, 0.102 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.324 g, 1.01 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq. (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.131 g, 84%). IR: (KBr) 1715 (C=O) cm⁻¹, mp: 83-84 °C, ¹H NMR: (400 MHz, CDCl₃) 7.68-7.61 (m, 3H), 7.27 (d, J = 7.7 Hz, 2H), 6.09 (d, J = 9.7 Hz, 1H), 2.42 (s, 3H), ${}^{13}C{}^{1}H$ NMR: (100 MHz, CDCl₃) 161.05 (s), 160.98 (s), 153.2 (d), 141.4 (s), 130.5 (s), 129.2 (d), 128.9 (d), 115.2 (d), 66.2 (s), 21.6 (q), HRMS : (EI, 70 eV) Calculated (C12H9O2I) 311.9647 (M⁺) Found 311.9649.

6-{4-(tert-butyl)phenyl}-5-iodo-2H-pyran-2-one (5e)

To a 10 mL vial filled with InI₃ (0.503 mmol, 0.249 g) in toluene (1 mL) was added methyl (Z)-5-{4-(tert-butyl)phenyl}pent-2-en-4-ynoate (0.499 mmol, 0.121 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.331 g, 1.03 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethel acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.150 g, 84%). IR: (KBr) 1731 (C=O) cm⁻¹,mp: 107-109 °C, ¹H NMR: (400 MHz, CDCl₃) 7.71 (d, J = 8.7 Hz, 2H), 7.63 (d, J = 9.2 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 6.08 (d, J = 9.2 Hz, 1H), 1.35 (s, 9H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 160.92 (s), 160.88 (s), 154.3 (s), 153.2 (d), 130.4 (s), 129.0 (d), 125.1 (d), 115.1 (d), 66.0 (s), 35.0 (s), 31.1 (q), HRMS : (EI, 70 eV) Calculated (C₁₅H₁₅O₂I) 354.0117 (M⁺) Found 354.0111.

5-iodo-6-(4-methoxyphenyl)-2H-pyran-2-one (5f)

To a 10 mL vial filled with InI₃ (0.500 mmol, 0.248 g) in toluene (1 mL) was added methyl (Z)-5-(4-methoxyphenyl)pent-2-en-4-ynoate (0.513 mmol, 0.111 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.330 g, 1.02 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Productcontaining fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.139 g, 85%). IR: (KBr) 1748 (C=O) cm⁻¹, mp: 117-118 °C, ¹H NMR: (400 MHz, CDCl₃) 7.74 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 9.7 Hz, 1H), 6.95 (d, J = 8.7 Hz, 2H), 6.05 (d, J = 9.7 Hz, 1H), 3.85 (s, 3H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 161.3 (s), 160.9 (s), 160.5 (s), 153.3 (d), 130.9 (d), 125.4 (s), 114.5 (d), 113.4 (d), 65.5 (s), 55.3 (q), HRMS : (EI, 70 eV) Calculated (C12H9O3I) 327.9596 (M⁺) Found 327.9601.

6-(4-chlorophenyl)-5-iodo-2H-pyran-2-one (5g)

To a 10 mL vial filled with InI₃ (0.500 mmol, 0.248 g) in toluene (1 mL) was added methyl (Z)-5-(4-chlorophenyl)pent-2-en-4-ynoate (0.499 mmol, 0.110 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.324 g, 1.01 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Productcontaining fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.115 g, 71%). IR: (KBr) 1715 (C=O) cm⁻¹, mp: 129-130 °C, ¹H NMR: (400 MHz, CDCl₃) 7.70 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 9.7 Hz, 1H), 7.43 (d, J = 8.2 Hz, 2H), 6.12 (d, J = 9.7 Hz, 1H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 160.3 (s), 159.4 (s), 152.8 (d), 136.8 (s), 131.6 (s), 130.5 (d), 128.4 (d), 115.6 (d), 66.8 (s), HRMS: (EI, 70 eV) Calculated (C₁₁H₆ClO₂I) 331.9101 (M⁺) Found 331.9098.

6-(3-fluorophenyl)-5-iodo-2H-pyran-2-one (5h)

To a 10 mL vial filled with InI₃ (0.507 mmol, 0.251 g) in toluene (1 mL) was added methyl (Z)-5-(3-fluorophenyl)pent-2-en-4-ynoate (0.509 mmol, 0.104 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.195 g, 0.604 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (3 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and combined organic solution was washed by sat. Na₂S₂O₃ aq (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.126 g, 80%). IR: (KBr) 1724 (C=O) cm⁻¹, mp: 82-83 °C, ¹H NMR: (400 MHz, CDCl₃) 7.64 (d, J = 9.7 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.46-7.43 (m, 2H), 7.20 (m, 1H), 6.14 (d, *J* = 9.7 Hz, 1H), ${}^{13}C{}^{1}H$ NMR: (100 MHz, CDCl₃) 162.1 (d, ${}^{1}J_{CF} = 247.4$ Hz), 160.3 (s), 159.2 (s), 152.9 (d), 135.1 (d, ${}^{3}J_{CF} = 8.2 \text{ Hz}$), 130.0 (dd, ${}^{3}J_{CF}$ = 8.2 Hz), 125.1 (dd, ${}^{4}J_{CF}$ = 3.3 Hz), 117.9 (dd, ${}^{2}J_{CF}$ = 21.3 Hz), 116.5 $(dd, {}^{2}J_{CF} = 23.8 \text{ Hz}), 116.0 (d), 67.0 (s), HRMS : (EI, 70 \text{ eV}) Calculated$ (C₁₁H₆FO₂I) 315.9397 (M⁺) Found 315.9397.

6-hexyl-5-iodo-2H-pyran-2-one (5i)

To a 10 mL vial filled with InI₃ (0.500 mmol, 0.248 g) in toluene (1 mL) was added methyl (*Z*)-undec-2-en-4-ynoate (0.500 mmol, 0.0971 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.331 g, 1.03 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq. (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow oil (0.115 g, 75%). The NMR date was agreement with the literature¹⁵.

6-cyclopropyl-5-iodo-2H-pyran-2-one (5j)

To a 10 mL vial filled with InI_3 (0.501 mmol, 0.248 g) in toluene (1 mL) was added methyl (*Z*)-5-cyclopropylpent-2-en-4-ynoate (0.507 mmol, 0.0762 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.334 g, 1.04 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (3 mL) and 1 M HCl aq (1 mL). The solution was

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

extracted by dichloromethane (2 x 30 mL) and combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.105 g, 64%). IR: (KBr) 1714 (C=O) cm⁻¹, mp: 87-88 °C, ¹H NMR: (400 MHz, CDCl₃) 7.44 (d, J = 9.2 Hz, 1H), 5.92 (d, J = 9.2 Hz, 1H), 2.24-2.17 (m, 1H), 1.21-1.20 (m, 2H), 1.07-1.05 (m, 2H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 165.3 (s), 160.7 (s), 151.9 (d), 113.1 (d), 66.2 (s), 17.5 (d), 9.8 (t), HRMS: (EI, 70 eV) Calculated (C₈H₇O₂I) 261.9491 (M⁺) Found 261.9490.

methyl 5-iodo-2-oxo-6-phenyl-2H-pyran-3-carboxylate (5k)

To a 10 mL vial filled with InI₃ (0.500 mmol, 0.248 g) in toluene (1 mL) was added dimethyl 2-(3-phenylprop-2-yn-1-ylidene)malonate (0.501 mmol, 0.122 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.318 g, 0.987 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.0920 g, 52%). IR: (KBr) 1757 (C=O) cm⁻¹, mp: 144-146 °C, ¹H NMR: (400 MHz, CDCl₃) 8.53 (s, 1H), 7.82 (d, J = 7.2 Hz, 2H), 7.58-7.47 (m, 3H), 3.94 (s, 3H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 165.5 (s), 162.7 (s), 158.9 (d), 156.6 (s), 132.5 (s), 131.8 (d), 129.4 (d), 128.3 (d), 115.7 (s), 64.8 (s), 53.0 (q), HRMS: (EI, 70 eV) Calculated (C13H9O4I) 355.9546 (M⁺) Found 355.9550.

6-cyclopropyl-3-ethyl-5-iodo-4-phenyl-2H-pyran-2-one (5l)

To a 10 mL vial filled with InI₃ (0.301 mmol, 0.149 g) in toluene (1 mL) was added methyl (Z)-5-cyclopropyl-2-ethyl-3-phenylpent-2-en-4-ynoate (0.30 mmol, 0.0765 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.195 g, 0.604 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (3 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Productcontaining fractions were combines and concentrated in vacuo to give the product as a yellow solid (0.0701 g, 64%). IR: (KBr) 1714 (C=O) cm⁻¹, mp: 83-84 °C, ¹H NMR: (400 MHz, CDCl₃) 7.49-7.40 (m, 3H), 7.08-7.05 (m, 2H), 2.40-2.38 (m, 1H), 2.24 (q, J = 7.5 Hz, 2H), 1.28-1.16 (m, 2H), 1.05-1.00 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H), ${}^{13}C{}^{1}H{}$ NMR: (100 MHz, CDCl₃) 161.9 (s), 161.1 (s), 155.6 (s), 140.7 (s), 128.40 (d), 128.36 (d), 127.3 (s), 125.0 (s), 76.5 (s), 23.1 (t), 18.3 (d, C-13), 13.1 (q, C-8), 9.4 (t, C-14), HRMS: (EI, 70 eV) Calculated (C₁₆H₁₅O₂I) 366.0117 (M⁺) Found 366.0113.

5-iodo-3,4,6-triphenyl-2H-pyran-2-one (5m)

To a 10 mL vial filled with InI₃ (0.503 mmol, 0.249 g) in toluene (1 mL) was added methyl (*Z*)-2,3,5-triphenylpent-2-en-4-ynoate (0.499 mmol, 0.1691 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.331 g, 1.03 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (5 mL), 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (2 x 30 mL) and the combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel) Product-containing fractions were combines and concentrated in vacuo to give the product

as a yellow solid (0.1424 g, 63%). The NMR date was agreement with the literature $^{\rm 3d}$

5-bromo-3-ethyl-4,6-diphenyl-2H-pyran-2-one (5n)

To a 10 mL vial filled with InBr₃ (0.499 mmol, 0.177 g) in toluene (1 mL) was added methyl (Z)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (0.496 mmol, 0.144 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, iodobenzene diacetate (0.324 g, 1.01 mmol) in THF (2.5 mL) was added to the reaction mixture at room temperature. After stirring for 24 h, the mixture was quenched by water (3 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 20 mL) and combined organic solution was washed by sat. Na₂S₂O₃ aq (1 x 25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 95:5, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.0812 g, 46%). IR: (KBr) 1714 (C=O) cm⁻¹, mp: 114-116 °C, ¹H NMR: (400 MHz, CDCl₃) 7.79-7.78 (m, 2H), 7.50-7.46 (m, 6H), 7.20 (d, J = 6.8 Hz, 2H), 2.33 (q, J = 7.2 Hz, 2H), 1.05 (t, J =7.2 Hz, 3H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 161.7 (s), 155.0 (s), 153.6 (s), 137.3 (s), 132.6 (s), 130.3 (d), 129.3 (d), 128.5 (d), 128.4 (d), 128.2 (s), 128.1 (d), 127.6 (d), 102.7 (s), 22.9 (t), 13.0 (q), HRMS: (EI, 70 eV) Calculated (C19H15O2Br) 354.0255 (M+) Found 354.0253

5,6-diphenyl-2H-pyran-2-one (6a)

To a 10 mL vial filled with InI₃ (0.507 mmol, 0.251 g) in toluene (1 mL) was added methyl (*Z*)-5-phenylpent-2-en-4-ynoate (0.499 mmol, 0.0930 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd₂dba₃ (0.0317 mmol, 0.0290 g), NaOMe (1.02 mmol, 0.0551 g), iodobenzene (0. 350 mmol, 0.0715 g), DMF (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a pale yellow solid (0.0834 g, 96%). The NMR date was agreement with the literature^{3b}.

4,5,6-triphenyl-2H-pyran-2-one (6b)

To a 10 mL vial filled with InI₃ (0.505 mmol, 0.250 g) in toluene (1 mL) was added methyl (*Z*)-3,5-diphenylpent-2-en-4-ynoate (0.499 mmol, 0.131 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd₂dba₃ (0.0317 mmol, 0.0290 g), NaOMe (1.02 mmol, 0.0551 g), iodobenzene (0. 350 mmol, 0.0715 g), DMF (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a pale yellow solid (0.0727 g, 64%). The NMR date was agreement with the literature¹⁸.

3-ethyl-4,5,6-triphenyl-2H-pyran-2-one (6c)

To a 10 mL vial filled with InI₃ (0.507 mmol, 0.251 g) in toluene (1 mL) was added methyl (*Z*)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (0.503 mmol, 0.146 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd₂dba₃ (0.0317 mmol, 0.0290 g), NaOMe (1.02 mmol, 0.0551 g), iodobenzene (0. 350 mmol, 0.0715 g), DMF (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80 :

 20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a pale yellow solid (0.0987 g, 80%). IR: (KBr) 1706
 (C=0 cm⁻¹, mp: 159-161 °C, ¹H NMR: (400 MHz, CDCl₃) 7.28 (d, J = 8.7 Hz, 2H), 7.22-7.14 (m, 6H), 7.04-6.99 (m, 3H), 6.95-6.92 (m, 2H), 6.86-6.82 (m, 2H), 2.37 (q, J = 7.4 Hz, 2H), 1.09 (t, J = 7.4 Hz, 3H), 1³C {¹H} NMR: (100 MHz, CDCl₃) 162.8 (s), 154.7 (s), 154.5 (s), 136.3
 (C=0)

(s), 135.1 (s), 132.7 (s), 131.1 (d), 129.1 (d), 128.1 (d), 127.9 (d), 127.81 (d), 127.78 (d), 127.4 (d), 127.0 (d), 126.7 (s), 119.4 (s), 22.0 (t), 13.3 (q), HRMS: (EI, 70 eV) Calculated ($C_{25}H_{20}O_2$) 352.1463 (M⁺) Found 352.1465.

6-cyclopropyl-3-ethyl-4,5-diphenyl-2H-pyran-2-one (6l)

To a 10 mL vial filled with InI₃ (0.300 mmol, 0.148 g) in toluene (0.6 mL) was added methyl (Z)-5-cyclopropyl-2-ethyl-3-phenylpent-2en-4-ynoate (0.300 mmol, 0.0763 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd2dba3 (0.0165mmol, 0.0151 g), NaOMe (0.583 mmol, 0.0315 g), iodobenzene (0.225 mmol, 0.046 g), DMF (1.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a pale yellow solid (0.0605 g, 85%). IR: (KBr) 1699 (C=O) cm⁻¹, mp: 138-140 °C, ¹H NMR: (400 MHz, CDCl₃) 7.18-7.10 (m, 6H), 7.00 (d, J = 7.7 Hz, 2H), 6.90 (d, J = 7.2 Hz, 2H), 2.28 (q, J = 7.4 Hz, 2H), 1.62-1.57 (m, 1H), 1.23-1.19 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H), 0.83-0.78 (m, 2H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 162.9 (s), 159.2 (s), 154.1 (s), 136.6 (s), 135.1 (s), 131.0 (d), 128.0 (d), 127.9 (d), 127.7 (d), 127.3 (d), 126.9 (d), 123.7 (s), 118.3 (s), 21.7 (t), 13.4 (q), 12.4 (d), 8.5 (t), HRMS: (EI, 70 eV) Calculated (C₂₂H₂₀O₂) 316.1463 (M⁺) Found 316.1460.

3,4,5,6-tetraphenyl-2H-pyran-2-one (6m)

To a 10 mL vial filled with InI₃ (0.300 mmol, 0.148 g) in toluene (0.6 mL) was added methyl (Z)-2,3,5-triphenylpent-2-en-4-ynoate (0.300 mmol, 0.0763 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd2dba3 (0.0165mmol, 0.0151 g), NaOMe (0.583 mmol, 0.0315 g), iodobenzene (0.225 mmol, 0.046 g), DMF (1.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Productcontaining fractions were combined and concentrated in vacuo to give the product as a white solid (0.0712 g, 79%). The NMR date was agreement with the literature^{3b}. This compound was identified by X-ray crystallographic analysis (CCDC 1910558).

6-cyclopropyl-3-ethyl-5-(4-methoxyphenyl)-4-phenyl-2H-pyran-2-one (6n)

To a 10 mL vial filled with InI₃ (0.520 mmol, 0.258 g) in toluene (1 mL) was added methyl (*Z*)-5-cyclopropyl-2-ethyl-3-phenylpent-2-en-4-ynoate (0.500 mmol, 0.127 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd₂dba₃ (0.0285 mmol, 0.0261 g), NaOMe (0.102 mmol, 0.0551 g), 4-iodoanisole (0.0351 mmol, 0.0821 g), and DMF (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.101 g, 80%). IR: (KBr) 1698 (C=O) cm⁻¹, mp: 109-111 °C, ¹H NMR: (400 MHz, CDCl₃) 7.16-7.06 (m, 6H), 6.80-6.78 (m, 2H), 6.60 (d, J = 8.2 Hz, 1H), 3.58 (s, 3H), 2.32-2.22 (m, 2H), 1.56-1.51 (m, 1H), 1.20-1.18 (m, 2H), 1.02 (t, J = 7.5 Hz, 3H), 0.81-0.76 (m, 2H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 163.3 (s), 159.1 (s), 157.0 (s), 154.8 (s), 136.7 (s), 132.5 (d), 129.2 (d), 127.8 (d), 127.6 (d), 127.2, 127.15, 127.10, 124.0 (s), 123.5 (d), 120.0 (d), 114.7 (s), 110.2 (d), 54.9 (q), 21.7 (t), 13.4 (q), 12.2 (d), 8.13 (t), 8.06 (t), HRMS: (EI, 70 eV) Calculated (C₂₃H₂₂O₃) 346.1569 (M⁺) Found 346.1570.

6-cyclopropyl-3-ethyl-5-(4-nitrophenyl)-4-phenyl-2H-pyran-2-one (60)

To a 10 mL vial filled with InI₃ (0.520 mmol, 0.258 g) in toluene (1 mL) was added methyl (Z)-5-cyclopropyl-2-ethyl-3-phenylpent-2-en-4-ynoate (0.500 mmol, 0.127 g) in a nitrogen-filled glove box. The vial was sealed and the mixture was stirred at 80 °C for 24 h. Then, Pd2dba3 (0.0263 mmol, 0.0241 g), NaOMe (0.990 mmol, 0.0540 g), 1-iodo-4nitrobenzene (0.354 mmol, 0.0881 g), and DMF (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL) and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow solid (0.102 g, 80%). IR: (KBr) 1714 (C=O) cm⁻¹, mp: 167-169 °C, ¹H NMR: (400 MHz, CDCl₃) 8.01 (d, J = 8.2 Hz, 2H), 7.24-7.15 (m, 5H), 6.93-6.86 (m, 2H), 2.29 (q, J = 7.4 Hz, 2H), 1.52-1.46 (m, 1H), 1.30-1.24 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H), 0.90-0.83 (m, 2H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 162.2 (s), 159.6 (s), 152.8 (s), 146.7 (s), 142.6 (s), 135.8 (d), 132.1 (d), 128.2 (s), 128.0 (s), 127.8 (s), 124.5 (s), 123.1 (d), 116.6 (s), 21.7 (t), 13.3 (q), 12.6 (d), 8.9 (t), HRMS: (EI, 70 eV) Calculated (C22H19NO4) 361.1314 (M⁺) Found 361.1312.

5-(4-methylbenzoyl)-6-phenyl-2H-pyran-2-one (7a)

To a 10 mL vial filled with InI₃ (0.502 mmol, 0.249 g) in toluene (1 mL) was added methyl (Z)-5-phenylpent-2-en-4-ynoate (0.499 mmol, 0.0930 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, Pd2dba3 (0.0262 mmol, 0.0240 g), p-toluoyl chloride (0.990 mmol, 0.153 g), DMI (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a yellow oil (0.0595 g, 41%). IR: (neat) 1743 (C=O), 1651 (C=O) cm⁻¹, ¹H NMR: (400 MHz, CDCl₃) 7.60 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 9.4 Hz, 1H), 7.47 (d, J = 8.2 Hz, 2H), 7.32-7.27 (m, 1H), 7.23 (t, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 6.39 (d, J = 9.4 Hz, 1H), 2.31 (s, 3H), ${}^{13}C{}^{1}H$ NMR: (100 MHz, CDCl₃) 193.3 (s), 163.0 (s), 160.7 (s), 144.7 (s), 144.5 (d), 133.5 (s), 131.22 (d), 131.16 (s), 129.8 (d), 129.2 (d), 128.9 (d), 128.4 (d), 116.6 (s), 113.6 (d), 21.6 (q), HRMS: (EI, 70 eV) Calculated (C₁₉H₁₄O₃) 290.0943 (M⁺) Found 290.0941.

5-(4-methylbenzoyl)-4,6-diphenyl-2H-pyran-2-one (7b)

To a 10 mL vial filled with InI_3 (0.507 mmol, 0.251 g) in toluene (1 mL) was added methyl (*Z*)-3,5-diphenylpent-2-en-4-ynoate (0.511 mmol, 0.134 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, Pd₂dba₃ (0.0247 mmol, 0.0226 g), *p*-toluoyl chloride (0.100 mmol, 0.155 g), DMI (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was extracted by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO4, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm,

55

56

57 58 59

60

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a white solid (0.101 g, 55%). IR: (KBr) 1724 (C=O), 1662 (C=O) cm⁻¹, mp: 199-201 °C, d¹H NMR: (400 MHz, CDCl₃) 7.58-7.53 (m, 4H), 7.32-7.19 (m, 8H), 7.05 (d, J = 8.2 Hz, 2H), 6.36 (s, 1H), 2.29 (s, 3H), ¹³C {¹H} NMR: (100 MHz, CDCl₃) 193.4 (s), 161.0 (s), 159.9 (s), 157.2 (s), 144.8 (s), 135.9 (s), 134.7 (s), 131.5 (s), 130.9 (d), 129.4 (d), 129.3 (d), 128.6 (d), 128.52 (d), 128.45 (d), 127.5 (d), 118.0 (s), 113.2 (d), 21.7 (q), HRMS : (EI, 70 eV) Calculated (C₂₅H₁₈O₃) 366.1256 (M⁺) Found 366.1259.

3-ethyl-5-(4-methylbenzoyl)-4,6-diphenyl-2H-pyran-2-one (7c)

To a 10 mL vial filled with InI₃ (0.502 mmol, 0.249 g) in toluene (1 mL) was added methyl (Z)-2-ethyl-3,5-diphenylpent-2-en-4-ynoate (0.506 mmol, 0.147 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, Pd2dba3 (0.0263 mmol, 0.0229 g), p-toluoyl chloride (0.996 mmol, 0.154 g), DMI (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a white solid (0.0749 g, 38%). IR: (KBr) 1715 (C=O), 1661 (C=O) cm⁻¹, mp: 192-194 °C, ¹H NMR: (400 MHz, CDCl₃) 7.55 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.28-7.20 (m, 6H), 7.03 (d, J = 8.2 Hz, 4H), 2.36 (q, J = 7.2 Hz, 2H), 2.29 (s, 3H), 1.08 (t, J = 7.2 Hz, 3H), ${}^{13}C{}^{1}H{}$ NMR: (100 MHz, CDCl₃) 193.7 (s), 162.2 (s), 155.5 (s), 151.6 (s), 144.6 (s), 134.8 (s), 131.5 (s), 130.4 (d), 129.4 (d), 129.1 (d), 128.4 (d), 128.25 (d), 128.22 (d), 128.1 (d), 127.8 (d), 127.3 (s), 119.0 (s), 21.6 (s), 21.5 (s), 13.2 (s), HRMS: (EI, 70 eV) Calculated (C₂₇H₂₂O₃) 394.1569 (M⁺) Found 394.1574.

5-(4-methylbenzoyl)-3,4,6-triphenyl-2H-pyran-2-one (7m)

To a 10 mL vial filled with InI₃ (0.500 mmol, 0.248 g) in toluene (1 mL) was added methyl (Z)-2,3,5-triphenylpent-2-en-4-ynoate (0.501 mmol, 0.169 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, Pd2dba3 (0.0263 mmol, 0.0229 g), p-toluoyl chloride (1.01 mmol, 0.157 g), DMI (2.5 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a white solid (0.0750 g, 34%). IR: (KBr) 1722 (C=O), 1663 (C=O) cm⁻¹, mp: 158-159 °C, ¹H NMR: (400 MHz, CDCl₃) 7.62 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.35-7.26 (m, 3H), 7.21-6.89 (m, 12H), 2.29 (s, 3H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 193.5 (s), 161.5 (s), 157.5 (s), 152.7 (s), 144.7 (s), 134.9 (s), 134.8 (s), 133.0 (s), 131.5 (s), 130.8 (d), 130.6 (d), 129.4 (d), 129.2 (d), 128.9 (d), 128.51 (d), 128.50 (d), 128.1 (d), 127.8 (d), 127.7 (d), 125.2 (s), 119.3 (s), 21.7 (q), HRMS : (EI, 70 eV) Calculated (C₃₁H₂₂O₃) 442.1569 (M⁺) Found 442.1571. This compound was identified by X-ray crystallographic analysis (CCDC 1910562).

6-cyclopropyl-3-ethyl-5-(4-methylbenzoyl)-4-phenyl-2H-pyran-2-one (7l)

To a 10 mL vial filled with InI₃ (0.301 mmol, 0.149 g) in toluene (0.6 mL) was added methyl (*Z*)-5-cyclopropyl-2-ethyl-3-phenylpent-2-en-4-ynoate (0.300 mmol, 0.0763 g) in a nitrogen-filled glove box. The vial was sealed, and the mixture was stirred at 80 °C for 24 h. Then, Pd₂dba₃ (0.0154 mmol, 0.0141 g), *p*-toluoyl chloride (0.598 mmol, 0.0924 g), DMI (1.6 mL) were added to the reaction mixture at room temperature. After stirring at 110 °C for 24 h, the mixture was quenched by water (5 mL), and 1 M HCl aq (1 mL). The solution was extracted by dichloromethane (3 x 30 mL) and dried over MgSO₄, filtered, and

concentrated in vacuo. The resulting oily residue was purified by column chromatography (hexane/ethyl acetate = 80 : 20, column length 11 cm, diameter 26 mm, spherical silica gel). Product-containing fractions were combined and concentrated in vacuo to give the product as a white solid (0.0419 g, 39%). IR: (KBr) 1715 (C=O), 1659 (C=O) cm⁻¹, mp: 120-121 °C, ¹H NMR: (400 MHz, CDCl₃) 7.60 (d, J = 8.2 Hz, 2H), 7.17-7.15 (m, 5H), 6.99-6.98 (m, 2H), 2.37 (s, 3H), 2.29 (q, J = 7.4 Hz, 2H), 1.62-1.58 (m, 1H), 1.26-1.25 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H), 0.88-0.86 (m, 2H), ¹³C{¹H} NMR: (100 MHz, CDCl₃) 194.0 (s), 162.1 (s), 160.5 (s), 151.3 (s), 144.6 (s), 135.2 (s), 113.2 (s), 21.7 (q), 21.1 (t), 13.2 (q), 12.9 (d), 8.9 (t), HRMS: (EI, 70 eV) Calculated (C₂₄H₂₂O₃) 358.1569 (M⁺) Found 358.1567. This compound was identified by X-ray crystallographic analysis (CCDC 1910561).

3,4,6-triphenyl-5-(phenylethynyl)-2H-pyran-2-one (8)

To a solution of 5-iodo-3,4,6-triphenyl-2H-pyran-2-one (0.206 mmol, 0.0928 g) and PdCl₂(PPh₃)₂ (0.0245 mmol, 0.0172 g) in 1,4-dioxane (1 mL) was added tributyl(phenylethynyl)stannane (0.249 mmol, 0.0977 g). The mixture was stirred at 90 °C for 14 h. The mixture was quenched by H₂O (1 mL) and was extracted with dichloromethane (3 x 10 mL). The collected organic layer was dried over MgSO₄. The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 99:1, column length 10 cm, diameter 26 mm silica gel) to give the product (0.0555 g, 63%) IR: (KBr) 1722 (C=O) cm⁻¹, mp : 208-210 °C, ¹H NMR: (400 MHz, CDCl₃) 8.30-8.26 (m, 2H), 7.52-7.50 (m, 3H), 7.28-7.16 (m, 13H), 6.95 (dd, J = 8.0, 1.7Hz, 2H), 13C{1H} NMR: (100 MHz, CDCl3) 161.0 (s), 154.9 (s), 136.1 (s), 133.3 (s), 131.8 (s), 131.0 (s), 130.7 (d), 130.5 (d), 129.3 (d), 128.7 (d), 128.3 (d), 128.2 (d), 128.1 (d), 127.7 (d), 127.61 (d), 127.57 (d), 125.5 (d), 124.4 (s), 122.5 (s), 104.9 (d), 102.7 (s), 97.6 (s), 84.4 (s), HRMS: (EI, 70 eV) Calculated (C31H20O2) 424.1463 (M⁺) Found 424.1466 This compound was identified by X-ray crystallographic analysis (CCDC 1915263).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications websiteat DOI:.

Electronic Supplementary Information of NMR Spectra (PDF)

Electronic Supplementary Information of Computational Section (PDF)

Electronic Supplementary Information of Observation of Zwitterion 4b and Metalated 2-Pyrone 3b (PDF)

Electronic Supplementary Information of X-Ray Diffraction Data of 6m, 7m, 7l, 8, 3b pyridine, 4b (PDF)

AUTHOR INFORMATION

Corresponding Author

*nishimoto@chem.eng.osaka-u.ac.jp *yasuda@chem.eng.osaka-u.ac.jp

ORCID

Tetsuji Yata: 0000-0002-2470-4905 Yuji Kita: 0000-0002-3729-4087 Yoshihiro Nishimoto: 0000-0002-7182-0503 Makoto Yasuda: 0000-0002-6618-2893

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI grant number JP15H05848 in the Middle Molecular Strategy, and also grants

number JP16K05719, JP18K19079, JP18H01977, and JP19K05455. Y. N. acknowledges support from the Frontier Research Base for Global Young Researchers, Osaka University, of the MEXT program, and from the Mitsui Chemicals Award in Synthetic Organic Chemistry, in addition to the Shorai Foundation for Science and Technology. We would like to thank Prof. Dr S. Minakata and Prof. Dr Y. Takeda (Department of Applied Chemistry, Osaka University, Japan) for suggestions concerning the analysis of AIE.

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

59

60

(1) (a) T. Sunazuka, S. Ömura, Total Synthesis of α-Pyrone Meroterpenoids, Novel Bioactive Microbial Metabolites, *Chem. Rev.* 2005, 105, 4559-4580. (b) A. Goel, V. J. Ram, Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis, *Tetrahedron* 2009, 65, 7865-7913. (c) J. S. Lee, Recent Advances in the Synthesis of 2-Pyrones, *Mar. Drugs* 2015, 13, 1581-1620. (d) Y. Hoshino, Y. Ikeda, Y. Nakai, K. Honda, Facile Synthesis of Silylated 4,5-Disubstituted Phthalates via Inverse Electron-demand Cycloaddition of 2-Pyrone-4,5-dicarboxylate with Silylacetylenes, *Chem. Lett.* 2017, 46, 1743-1746. (e) E. M. C. Chaves, J. E. R. Honório-Júnior, C. N. S. Sousa, V. S. Monteiro, D. T. T. Nonato, L. P. Dantas, A. S. S. C. Lúcio, J. M. Barbosa-Filho, M. C. A. Patrocínio, G. S. B. Viana, S. M. M. Vasconcelos, Metab. The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action, *Brain Dis.* 2018, 33, 139-149.

(2) For selective examples, see.: (a) R. Manikandan, M. Jeganmohan, Ruthe-nium-Catalyzed Dimerization of Propiolates: A Simple Route to α-Pyrones, Org. Lett. 2014, 16, 652-655. (b) S.-Q. Qiu, T. Ahmad, Y.-H. Xu, T.-P. Loh, Palladium-Catalyzed Cascade Intramolecular Cyclization and Allylation of Enynoates with Allylic Alcohols, J. Org. Chem. 2019, 84, 6729. (c) J. Preindl, S. Schulthoff, C. Wirtz, J. Lingnau, A. Fürstner, Polyunsaturated C-Glycosidic 4-Hydroxy-2-pyrone Derivatives: Total Synthesis Shows that Putative Orevactaene Is Likely Identical with Epipyrone A, Angew. Chem. Int. Ed., 2017, 56, 7525-7530. (d) C. -X. Zhou, A. Fürstner, Catalysis-Based Total Synthesis of Pateamine A and DMDA-Pat A, J. Am. Chem. Soc., 2018, 140, 10514-10523. (e) A. Fürstner, Gold Catalysis for Heterocyclic Chemistry: A Representative Case Study on Pyrone Natural Products, Angew. Chem. Int. Ed., 2018, 57, 4215-4233. and references cited therein.

(3) (a) R. C. Larock, M. J. Doty, X. Han, Synthesis of Isocoumarins and α -Pyrones via Palladium-Catalyzed Annulation of Internal Alkynes, *J. Org. Chem.* **1999**, *64*, 8770-8779. (b) S. Mochida, K. Hirano, T. Satoh, M. Miura, Synthesis of Functionalized α -Pyrone and Butenolide Derivatives by Rhodium-Catalyzed Oxidative Coupling of Substituted Acrylic Acids with Alkynes and Alkenes, *J. Org. Chem.* **2009**, *74*, 6295-6298. (c) T. Fukuyama, Y. Higashibeppu, R. Yamaura, I. Ryu, Ru-Catalyzed Intermolecular [3+2+1] Cycloaddition of α , β -Unsaturated Ketones with Silylacetylenes and Carbon Monoxide Leading to α -Pyrones, *Org. Lett.* **2007**, *9*, 587-589. (d) T. Yao, R. C. Larock, Synthesis of Isocoumarins and α -Pyrones via Electrophilic Cyclization, *J. Org. Chem.* **2003**, *68*, 5936-5942.

43 (4) (a) K. Hauge, The Cyclization of Some cis-Alkenynoic Acids to 44 alpha-Pyrones. I., Acta Chem. Scand. 1969, 23, 1059-1061. (b) T. A. Carpenter, P. J. Jenner, F. J. Leeper, J. Staunton, A novel kinetic depro-45 tonation at a vinylic carbon in a pyrone ring, J. Chem. Soc., Chem. 46 Commun., 1980, 1227. (c) G. H. Posner, W. Harrison, D. G. Wettlaufer, 47 3-Cuprio-2-pyrone: an extraordinary organocopper reagent, J. Org. 48 Chem. 1985, 50, 5041-5044. (d) Z. Liu, J. Meinwald, 5-(Trime-49 thylstannyl)-2H-pyran-2-one and 3-(Trimethylstannyl)-2H-pyran-2one: New 2H-Pyran-2-one Synthons, J. Org. Chem. 1996, 61, 6693-50 6699. (e) J. Sauer, D. K. Heldmann, K.-J. Range, M. Zabel, Stannylated 51 α-pyrones: Synthesis, halogenation and destannylation reactions, Tet-52 rahedron 1998, 54, 12807-12822. (f) H. Hagiwara, K. Kobayashi, S. 53 Miya, T. Hoshi, T. Suzuki, M. Ando, T. Okamoto, M. Kobayashi, I. Yamamoto, S. Ohtsubo, M. Kato, H. Uda, First Total Syntheses of the 54 Phytotoxins Solanapyrones D and E via the Domino Michael Protocol, 55 J. Org. Chem. 2002, 67, 5969-5976. (g) Q. Lin, W. K. Leong, Reaction 56 of Pyrones with Triosmium Clusters, Organometallics 2003, 22, 3639-57 3648. (h) C. M. Crawforth, I. J. S. Fairlamb, R. J. K. Taylor, Efficient 58

and selective Stille cross-coupling of benzylic and allylic bromides using bromobis(triphenylphosphine)(N-succinimide)palladium(II), *Tetrahedron Lett.* **2004**, *45*, 461-465. (i) X. Yang, P. Knochel, Preparation and Reactions of Functionalized Organocopper Reagents, *Synthesis* **2006**, *15*, 2618-2623. (j) N. P. Yahaya, K. M. Appleby, M. Teh, C. Wagner, E. Troschke, J. T. W. Bray, S. B. Duckett, L. A. Hammarback, J. S. Ward, J. Milani, N. E. Pridmore, A. C. Whitwood, J. M. Lynam, I. J. S. Fairlamb, Manganese(I) - Catalyzed C–H Activation: The Key Role of a 7 - Membered Manganacycle in H - Transfer and Reductive Elimination, *Angew. Chem. Int. Ed.* **2016**, *55*, 12455-12459.

(5) (a) I. E.-S. El-Kholy, F. K. Rafla, M. M. Mishrikey, Pyrone series. Part X. Reactivity of 4,5,6-triaryl-2-pyrones and the corresponding thio-analogues, J. Chem. Soc. C 1969, 1950-1954. (b) P. d. March, M. Moreno-Maňas, R. Pi, I. Ripoll, F. Sánchez-Ferrando, Brominated derivatives of 4 - hydroxy - and 4 - methoxy - 6 - methyl - 2H - pyran - 2 - ones, J. Heterocyclic Chem. 1985, 22, 1537-1542. (c) T. Shimo, M. Ohe, K. Somekawa, Preparation of 3 - (2H - pyran - 2 on - 6 - yl)indolizines and the diels - alder reactions with some olefinic and acetylenic dienophiles, J. Heterocyclic Chem. 1991, 28, 1831-1833. (d) Y. Wang, D. J. Burton, A Facile, General Synthesis of 3,4-Difluoro-6-substituted-2-pyrones, J. Org. Chem. 2006, 71, 3859-3862. (e) A. Nakhi, Md. S. Rahman, S. Archana, R. Kishore, G. P. K. Seerapu, K. L. Kumar, D. Haldar, M. Pal, Construction and functionalization of pyranone ring fused with pyran moiety: Design and synthesis of novel pyrano[4,3-b]pyran-5(4H)-ones as potential inhibitors of sirtuins, Bioorg. Med. Chem. Lett. 2013, 23, 4195-4205. (f) E. Wei, B. Liu, S. Lin, B. Zhao, F. Liang, Halonium-initiated double oxa-cyclization cascade as a synthetic strategy for halogenated furo[3,2-c]pyran-4-ones, Org. Biomol. Chem. 2013, 11, 7212-7217.

(6) Y. Kita, T. Yata, Y. Nishimoto, K. Chiba, M. Yasuda, Selective oxymetalation of terminal alkynes via 6-endo cyclization: mechanistic investigation and application to the efficient synthesis of 4-substituted isocoumarins, *Chem. Sci.* **2018**, *9*, 6041-6052.

(7) Indium salts were widely used as carbophilic Lewis acid. For selective review articles, see: (a) J. P. Sestelo, L. A Sarandeses, M. M. Martinez, L. A. Marañón, Indium(III) as π -acid catalyst for the electrophili activation of carbon-carbon unsaturated systems, *Org. Biomol. Chem.*, **2018**, *16*, 5733. (b) S. I. Lee, N. Chatani, Catalytic skeletal reorganization of enynes through electrophilic activation of alkynes: double cleavage of C-C double and triple bonds, *Chem. Commun.*, **2009**, *4*, 371-384. (c) V. Mamane, P. Hannen, A. Fürstner, Synthesis of Phenanthrenes and Polycyclic Heteroarenes by Transition-Metal Catalyzed Cycloisomerization Reactions, *Chem. Eur. J.* **2004**, *10*, 4556-4575.

(8) D. J. Faizi, A. Issaian, A. J. Davis, S. A. Blum, Catalyst-Free Synthesis of Borylated Lactones from Esters via Electrophilic Oxyboration, *J. Am. Chem. Soc.* **2016**, *138*, 2126–2129.

(9) The bond lengths of two carbon-oxygen bonds (C1-O1 and C1-O2) in **4b** are similar with the reported cationic 2-pyrone. P. Legzdins, W. S. McNell, E. G. Vessey, Organometallic nitrosyl chemistry. 55. Regioselective synthesis of 2-pyrones mediated by organometallic dinitrosyl cations of the Group 6 metals, *Organometallics* **1992**, *11*, 2718-2723.

(10) (a) M. Kosugi, K. Sasazawa, Y. Shimizu, T. Migita, Reactions of allyltin compounds III. Allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(0), *Chem. Lett.* **1977**, 301-302. (b) M. Kosugi, Y. Shimizu, T. Migita, Alkylation, Arylation, and Vinylation of acyl chlorides by means of organotin compounds in the presence of catalytic amounts of tetrakis(triphenylkphosphine)palladium(0), *Chem. Lett.* **1977**, 1423-1424. (c) D. Milstein, J. K. Stille, A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium, *J. Am. Chem. Soc.* **1987**, *100*, 3636-3638. (d) C. Cordovilla, C. Bartolome, J. M. Martínez-Ilarduya, P. Espinet, The Stille Reaction, 38 Years Later, ACS Catal. **2015**, *5*, 3040-3053.

(11) Zhao, L. Shen, Z.-L. Shen, T.-P. Loh, Transition metal-catalyzed cross-coupling reactions using organoindium reagents, *Chem. Soc. Rev.* **2017**, *46*, 586–602

(12) (a) K. Hirano, S. Minakata, M. Komatsu, Unusual Fluorescent Properties of 3,4,6-Triphenyl-α-pyrones, *Chem. Lett.* **2001**, *30*, 8-9. (b)

K. Hirano, S. Minakata, M. Komatsu, Unusual Fluorescent Properties of Novel Fluorophores, 6-Aryl-3,4-diphenyl-α-pyrone Derivatives, *Bull. Chem. Soc. Jpn.* **2001**, *74*, 1567-1575. (c) Z. Kin, H. Kajii, Y. Ohmori, M. Komatsu, S. Minakata, M. Tsumura, K. Namura, Optical and electroluminescent properties of 3,4,6-triphenyl-α-pyrone, *J. Phys. Chem. Solids* **2006**, *67*, 2326-2330.

(13) Y. Zhu, and Z. Shen, Copper-Catalyzed Acyloxycyanation of Alkynes with Acetonitrile: Regioselective Construction of Cyclic Acrylonitriles by 6-endo or 5-exo Cyclization, *Adv. Synth. Cata.*, **2017**, *359*, 3515-3519.

(14) P.-Y. Tseng, S.-C. Chuang, Chemo-, Regio- and Stereoselective Tricyclohexylphosphine-Catalyzed [3+2] Cycloaddition of Enynes with [60]Fullerene Initiated by 1,4-Michael Addition: Synthesis of Cyclopenteno[60]fullerenes and their Electrochemical Properties, *Adv. Synth. Catal.*, **2013**, *355*, 2165-2171.

(15) F. Bellina, M. Biagetti, A. Carpita, R. Rossi, Selective synthesis of natural and unnatural 5,6-disubstituted 2(2H)-pyranones via iodolactonization of 5-substituted (Z)-2-en-4-ynoic acids, *Tetrahedron*, **2001**, *57*, 2857-2870.

(16) C.-Z. Zhu, Y.-L. Sun, Y. Wei, M. Shi, Phosphine-Mediated Dimerization of Conjugated Ene-Yne Ketones: Stereoselective Construction of Dihydrobenzofurans, *Adv. Synth. Catal.*, **2017**, *359*, 1263-1270.

(17) M. Uchiyama, H. Ozawa, K. Takuma, Y. Matsumoto, M. Yonehara, K. Hiroya, T. Sakamoto, Regiocontrolled Intramolecular Cyclizations of Carboxylic Acids to Carbon–Carbon Triple Bonds Promoted by Acid or Base Catalyst, *Org. Lett.*, **2016**, *8*, 5517-5520.

(18) R. Prakash, K. Shekarrao, S. Gogoi, Ruthenium(II)-Catalyzed Alkene C–H Bond Functionalization on Cinnamic Acids: A Facile Synthesis of Versatile α-Pyrones, *Org. Lett.*, **2015**, *17*, 5264-5267.