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Expedient Synthesis of N-Fused Indoles: A C�F Activation and C�H
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Indoles are versatile components of many natural and
synthetic biologically active compounds, and a vast number
of pharmaceuticals containing the indole skeleton are being
used for therapeutic purposes.[1] N-fused indoles are indole
derivatives that have great biological and pharmaceutical
importance. For example, mitomycin C[2] and cryptaustoline[3]

possess the N-fused indole structure (Scheme 1). These and

related indole alkaloids exhibit antitumor[4] and tubulin
polymerization inhibitory[5] activities. Pyrazino[1,2-a]indoles
behave as 5-HT2c receptor agonists[6] and are related to the
treatment of hyperglycemia and other diseases by controlling
appetite.

Despite the importance of N-fused indole derivatives, the
synthesis of this class of compounds has not yet been fully
developed: alkyl chain elongation and ring closure on an
existing indole platform have been reported by many research
groups (for example, by intramolecular alkylation,[7a] radical
cyclization,[7b–e] and other methods[7f]). Transannulation reac-
tions[8] also afford N-fused indoles. In recent years, many
transition-metal-catalyzed reactions have been reported.[9]

However, the ring-closure strategy still poses many problems

and most importantly, a multistep synthesis of the substrates is
required regardless of the synthetic strategy selected.

Herein we describe an expedient synthesis of N-fused
indoles by means of a direct, catalytic C�H carbenoid
insertion approach. Our strategy consists of two steps: 1) a
cyclic amine is introduced into o-(trifluoromethyl)bromoben-
zene as a fused ring component by a palladium-catalyzed
amination reaction, and 2) a niobium-catalyzed C(sp3)�H
insertion reaction completes the indole core skeleton
(Scheme 2). The well-established amination reaction, origi-

nally explored by Buchwald and co-workers,[10] will ensure the
flexibility of the fused-ring substructure. Insertion reactions
of a niobium fluorocarbenoid center, which is generated from
a CF3 group attached to an aromatic nucleus, into a C(sp2)�H
bond were developed recently by our group.[11–13]

Scheme 3 shows precursors which were prepared in good
yields mainly by the Buchwald amination reaction (see the
Supporting Information for details).[10] Notably, CF3 groups,
which would generate the key carbenoid centers, were not
affected by the C�N coupling conditions.

Scheme 1. Biologically active N-fused indoles.

Scheme 2. Our strategy.

Scheme 3. List of insertion precursors 1.
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With the insertion precursors 1 in hand, the key C�H
insertion reaction was examined (Table 1). Initially, 1 c was
treated with lithium aluminum hydride in the presence of

1.5 equivalents of niobium(V) chloride.[10a] To our delight,
piperidinoindole 2c and piperidinoindoline 3 were obtained
in 20% yield each, with 1c recovered in 52% yield (Table 1,
entry 1). The conversion rate improved dramatically when
sodium aluminum hydride was used, giving 2 c and 3 in yields
of 27 % and 46 %, respectively (Table 1, entry 2; 30 mol%
niobium(V) chloride).[14, 15] In contrast, alkoxy-substituted
aluminum hydride reagents were unreactive, resulting in the
recovery of starting material 1c (Table 1, entries 3 and 4) even
when an equimolar amount of niobium(V) chloride was
used.[16]

Dehydrogenation of isolated 3 proceeded smoothly in the
presence of a ruthenium catalyst (Scheme 4). Indoline 3
afforded indole 2c in quantitative yield when treated with

8 mol% ruthenium zirconium phosphate[17] under dioxygen at
atmospheric pressure. 2,6-Dichloro-3,5-dicyano-p-benzoqui-
none (DDQ) was found to be less efficient for this aroma-
tization, giving 75 % yield of 2c upon heating for 11 h in
toluene (1 equiv, RT to 50 8C; not shown).

Precursors 1a–l were subjected to niobium-catalyzed
C�H insertion conditions and the isolated indolines were
then dehydrogenated with the ruthenium catalyst. Table 2
shows the overall yields of indoles 2a–l from the consecutive
reactions. The C�H insertion step was found to proceed
smoothly with a range of cyclic amino groups: indoles with
five- to nine-membered fused-ring substructures were syn-

Table 1: Optimization of the reaction conditions.

Entry NbCl5 Reducing agent[a] t [h] Yield [%]
2c 3 1c

1 1.5 equiv LiAlH4 (10) 49 20 20 52
2 30 mol% NaAlH4 (4) 23 27 46 –[b]

3 1.0 equiv LiAl(OtBu)H3 (10) 72 – – [c]

4 1.0 equiv Red-Al (19)[d] 24 – – [c]

[a] The amount of reducing agent (equiv) is indicated in parenthesis.
[b] 4 was obtained in 15 % yield. [c] 1c was recovered as the sole product
(yields were not determined). [d] Red-Al =sodium bis(methoxyethoxy)-
aluminum hydride.

Scheme 4. Ruthenium-catalyzed dehydrogenation of indoline 3.

Table 2: Synthesis of N-fused indoles.

Entry Precursor Product t [h][a] Yield [%][b]

1 1a 6 65, 2a

2 1b 5 78, 2b

3 1c 23 70, 2c

4 1d 13 64, 2d

5 1e 6.5 68, 2e

6 1 f 19 71, 2 f

7 1g 4 87, 2g

8 1h 6 85, 2h

9 1 i 15 52, 2 i

10 1 j 25 59, 2 j

11 1k 13 57, 2k

12 1 l 19 56,[c] 2 l

[a] Reaction time of the C�H insertion step. [b] Overall yield of two
contiguous reactions. [c] 1-Benzyl-5-phenylindole was obtained in 11%
yield.
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thesized in good to high yields (Table 2, entries 1–8). Oxygen,
sulfur, and nitrogen atoms in the cyclic amino groups did not
interfere with the insertion, and the corresponding hetero-
atom-containing N-fused indoles were obtained in good yields
(Table 2, entries 9–11). Acyclic 1 l also underwent insertion,
with the reaction proceeding mainly at an electronically
favored benzylic site (Table 2, entry 12). This result clearly
contrasts with the result of the [Rh2(S-dosp)4]-catalyzed
insertion (dosp = N-(p-dodecylphenylsulfonyl)prolinato),[18]

in which the sterically less hindered methyl site is preferred.
Mechanistically, the C�H insertion reaction can be

rationalized similarly to our previous C(sp2)�H insertion
reactions (Scheme 5):[10c] fluorine-substituted carbenoid inter-
mediate 5 is generated in the reaction medium and then the

carbenoid center undergoes insertion into a C�H s bond
adjacent to a nitrogen atom. Dehydrofluorination of the
resulting fluoroindoline 6 (not detected) gives indole 2.[19]

Hydrodefluorination of 6, however, gives indolines (for
example, 3).[20] Further studies to gain a full understanding
of the niobium-catalyzed C�H insertion reaction are ongoing.

In summary, we have developed a new route to biolog-
ically and pharmaceutically important N-fused indole deriv-
atives. Indoles with a nine-membered ring substructure
(maximum ring size) and with a heteroatom-containing ring
substructure could be synthesized in good yields. The
combined use of a palladium-catalyzed amination reaction
and a newly developed niobium-catalyzed C(sp3)�H insertion
reaction has resulted in a facile, short-step synthesis.

Experimental Section
Niobium(V) chloride (27 mg, 0.10 mmol, 30 mol%) and sodium
aluminum hydride (65 mg, 1.2 mmol) were added to a solution of 1c
(103 mg, 0.338 mmol) in dioxane (3.3 mL). The reaction mixture was
refluxed for 23 h and then quenched with water at 0 8C. Purification
by column chromatography (SiO2, hexane/dichloromethane 3:1) gave
indole 2c (23 mg, 0.091 mmol) and indoline 3 (39 mg, 0.16 mmol) in
27 and 46% yield, respectively. Commercially available ruthenium
zirconium phosphate (40 mg, 10 mol% Ru, Kanto Co.) was added to
a solution of isolated 3 in toluene (1.5 mL). Dioxygen (1 atm) was
introduced into the flask and the reaction mixture was heated at
reflux for 24 h. The reaction mixture was filtered through a small pad
of silica gel and purified by column chromatography (SiO2, hexane/
dichloromethane 3:1) to give indole 2c (36 mg, 0.14 mmol, 43%
based on 1c) .
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