A Facile Synthesis of 3,5-Diaryl- and 3,5-Diheteroaryl-1,2,4-selenadiazoles

Victor Israel COHEN

Laboratory of Organic Chemistry, Faculty of Sciences, Ferdowsi University, Mashhad, Iran

The two first 1,2,4-selenadiazoles were synthesized in 1904 by treatment of selenocarboxamides with iodine; yields and physical data of the products were not given. More recently,

Received: March 23, 1978 phy

0039 - 7881 / 78 / 1032 - 0768 \$ 03.00

© 1978 Georg Thieme Publishers

October 1978 Communications 769

Table 1. 3,5-Disubstituted 1,2,4-Selenadiazoles (3)

3	Ar	Yield	m.p.	Molecular
		[%]	(from solvent)	formula
a	$\langle \overline{} \rangle$	42	85°	$C_{14}H_{10}N_2Se$
			(ethanol)	(284.2)
b	Br~()	52	162°	$C_{14}H_8Br_2N_2Se$
			(propanol)	(443.0)
c	cı()	86	168°	C ₁₄ H ₈ Cl ₂ N ₂ Se
			(butanol)	(354.1)
d	⟨¯ <i>⟩</i> −	40	69°	$C_{16}H_{14}N_2Se$
	CH ₃		(methanol)	(313.3)
e	H ₃ C-(48	122°ь	$C_{16}H_{14}N_2Se$
			(ethanol)	(313.3)
f	H ₃ CO-()-	37	139°	$C_{16}H_{14}N_2O_2Se$
	· 🖒		(ethanol)	(345.3)
	H₃CO			
g	(_)-	74	132°	$C_{18}H_{18}N_2O_4Se$
	H ₃ CO		(ethanol)	(405.3)
h	cs_	35	98°	$C_{10}H_6N_2S_2Se$
	<u>_</u> //	~~	(ethanol)	(296.3)

^a The microanalyses of all products were in good accord with the calculated values: C, ± 0.20 ; H, ± 0.12 ; N, ± 0.14 ; Se, ± 0.25 . ^b Ref. ¹, m.p. 116°.

were prepared from N-haloamidines and potassium selenocyanate². Based on the brief report of Ref. ¹ we have now worked out a facile general synthesis of 3,5-diaryl-1,2,4-selenadiazoles (3) and its 3,5-bis[2-thienyl] analog from the readily available areneselenocarboxamides³ (1) (thiophene-2-selenocarboxamide, respectively) and iodine in methanol. The reaction is assumed to proceed by oxidative N—Se coupling of 1 and subsequent ring closure of the open-chain intermediate 2 with elimination of hydrogen selenide.

5-amino-3-alkyl- and 5-amino-3-aryl-1,2,4-selenadiazoles

Compounds 3 are thus obtained in yields of 35-86%. The structures of compounds 3 were established on the basis of microanalyses, mass-spectral fragmentation, and ¹H-N.M.R. data.

The mass spectra were recorded using a Varian-Mat CH7A instrument. The ¹H-N.M.R. spectra were recorded on a Varian EM-360

Table 2. Mass Spectra and ¹H-N.M.R. Data of Compounds 3

3	Mass Numbers (calculated	M.S. <i>m</i> / <i>e</i>		¹H-N.M.R.
	on the basis of ⁷⁸ Se and ⁸⁰ Se)		Solvent	δ [ppm]
a	284: 286	51 (9); 76 (23); 77 (14); 103 (70) $C_6H_5 - C = \overset{+}{N}$; 181 (50); 183 (100) $C_6H_5 - N = C = \overset{+}{Se}$; 284 (8); 286 (16)	DMSO-d ₆	7.60 (6H, m); 8.25 (4H, m)
b	442; 444	51 (12); 75 (20); 102 (66); 180 (20); 181 (36) 4- BrC ₆ H ₄ — $C \approx \mathring{N}$; 182 (47); 183 (35); 259 (48); 261	DMSO-d ₆	7.60–7.88 (4H); 7.89-8.32 (4H)
		(100) 4-Br $-C_6H_4$ $-N$ $=$ C $=$ $\stackrel{!}{Se}$; 263 (78); 442 (13); 444 (16)		
c	352; 354; 356	51 (7); 75 (13); 102 (31); 137 (80) 4-Cl $-C_6H_4 - C = \overset{+}{N}$; 139 (27); 215 (48); 217 (100) 4-Cl $-C_6H_4 -$	pyridine-d ₅	7.88 · 8.15 (4H); 8.32-8.60 (4H)
		$N=C=\dot{S}e$; 219 (43); 352 (6); 354 (13); 356 (8)		
d	312; 314	89 (22); 90 (24); 115 (64); 117 (77) 3-H ₃ CC ₀ H ₄	DMSO-d ₆	2.42 (6H, s); 7.22-7.65 (4H); 7.78-8.25 (4H)
		$C = \overset{+}{N}$; 195 (60); 197 (100) 3-H ₃ C-C ₆ H ₄ -N-C= $\overset{+}{Se}$; 312 (11); 314 (22)		
e	312; 314	89 (17); 90 (24); 116 (52); 117 (71) $4-H_3C-C_6H_4-C_6H_4$ $C = \dot{N}$; 195 (51); 197 (100) $4-H_3C-C_6H_4-C_6H_4$	DMSO-d ₆	2.40 (6 H, s); 7.20 - 7.50 (4 H); 7.87 - 8.30 (4 H)
		$N=C=\dot{S}e; 312 (9); 314 (18)$		
f	344; 346	90 (14); 103 (13); 133 (100) 4-H ₃ CO -C ₆ H ₄ C=N;	DMSO-d ₆	3.85 (6H, s); 6.90-7.23 (4H);
		211 (24); 213 (48) 4-H ₃ COC ₆ H ₄ NCSe; 344 (7); 346 (14)		7.90-8.37 (4H)
g	404; 406	65 (4); 77 (4); 90 (3); 103 (14); 120 (4); 133 (10);	DMSO-d ₆	3.85 (12H, s); 6.50-6.87 (2H, m); 7.10-7.50 (4H)
		134 (9); 149 (4); 163 (100) 3.5-(H_3CO) ₂ $C_6H_3-C \equiv N$; 203 (4); 241 (22); 243 (45) 3.5-(H_3CO) ₂ C_6H_3-C		
		N=C=\$e; 404 (8); 406 (17)		
h	296, 298	39 (12); 45 (24); 58 (18); 109 (100) C₄H₃S−C≡N;	DMSO-d ₆	7.22 (2H, m); 7.85 (2H, m); 8.15 (2H)
		187 (45); 189 (91) $C_4H_3S-N=C=\overset{+}{Se}$; 296 (14); 298 (30)	v	

N.M.R. spectrometer using TMS as internal standard. The melting points were determined on a Kofler hot-bench apparatus. The microanalyses were performed by Dornis & Kolbe, Mikroanalytisches Laboratorium, Hohenweg 17, D-4330 Mülheim/Ruhr, West Germany.

3,5-Diaryl- and 3,5-Bis[2-thienyl]-1,2,4-selenadiazoles (3):

The selenocarboxamide 1 (0.01 mol) is added to a hot solution of iodine (2.8 g, 0.011 mol) in methanol (30 ml). The mixture is refluxed for 1 min, then cooled, and poured into cold water (150 ml). The solid which separates is isolated by filtration, dried, and recrystallized from the solvent given in Table 1.

Received: February 10, 1978

0039-7881/78/1032-0770 \$ 03.00

© 1978 Georg Thieme Publishers

¹ W. Becker, J. Meyer, Ber. Disch. Chem. Ges. 37, 2550 (1904).

² J. Goerdeler, D. Gross, H. Klinke, Chem. Ber. 96, 1289 (1963).

³ V. I. Cohen, Synthesis **1978**, 668.