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Abstract

The first organocatalytic oxa-Diels–Alder reaction of acyclic a,b–unsaturated ketones with aldehydes is described. This reaction
represents a highly chemo- and diastereoselective synthesis of substituted tetrahydropyran-4-ones in good yields with dr up to >95:5.
� 2008 Elsevier Ltd. All rights reserved.
Substituted di- and tetrahydropyran rings are frequently
occurring structural motifs in biologically active natural
products.1 The oxa-Diels–Alder (ODA) reaction is a valu-
able method for the construction of six-membered oxygen-
containing ring systems.2 Many Lewis acid catalysts have
been well established for this particular transformation,3

while Brønsted acid, for instance, hydrogen bonding has
been also developed as a mode of activation for the ODA
reaction.4 However, only a few active dienes, such as Dani-
shefsky’s diene5 and Brassard’s diene,6 are used as the sub-
strates in most cases. Recently, Barbas and co-workers7a

reported amine catalyzed self-cycloaddition7b of a,b-unsat-
urated ketones, their direct Diels–Alder reaction with nitro
olefins,7c and Knoevenagel–Diels–Alder reaction.7d–f Criti-
cal to the success of this strategy involved in situ generation
of 2-amino-1,3-butadienes with amine catalyst provid-
ing for the synthesis of cyclohexanone derivatives. Utiliz-
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ing the similar benign fashion, Yamamoto et al.8a,b and
Córdova8c have also developed the organocatalytic asym-
metric hetero-Diels–Alder (HDA) reactions using cyclic
a,b-unsaturated ketones with nitroso compounds and imi-
nes as dienophiles, respectively. However, to the best of our
knowledge, there is no organocatalytic HDA reaction yet
involving acyclic a,b-unsaturated ketones probably due
to the favored formation of the trans acyclic dienes, which
is disadvantageous for the progress of the HDA reaction.
Accordingly, the exploration of such reaction between
acyclic a,b-unsaturated ketones with aldehydes should pro-
vide new protocol toward selective synthesis of biologically
important tetrahydropyran rings.

Recently, we have reported that chiral secondary amine
catalysts can react with ketones or aldehydes forming
enamines intermediate, which can be exploited as nucleo-
philes in aldol9a–d and Michael reactions,9e,f or imines
intermediates to realize inter- and intramolecular Friedel–
Crafts reactions.9g,h Based on the mechanism of amine
catalysis, we envisioned that enamines generated from
a,b-unsaturated ketones and amine would act as dienes
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and undergo ODA reactions with aldehydes. Herein, we
demonstrate the first organocatalytic ODA reaction of
acylic a,b-unsaturated ketones with aldehydes for the con-
struction of six-membered oxa-heterocycles.

Considering the possible side reactions between a,b-
unsaturated ketones with aldehydes catalyzed by amine,
for example, aldol reaction, self-DA reaction of a,b-unsat-
urated ketones, and Baylis–Hillman reaction (Scheme 1),
we initially studied a variety of parameters for the reaction
of a,b-unsaturated ketones with aldehydes to provide tetra-
hydropyran derivatives by the ODA approach. Some
selected results are shown in Table 1.

Application of pyrrolidine and HOAc as the ODA reac-
tion catalytic system (Table 1) was firstly studied by mixing
1a (2.5 mmol) with 2a (0.5 mmol) and pyrrolidine
(0.15 mmol), HOAc (0.15 mmol) in dichloromethane
(0.5 mL) at room temperature. Fortunately, the syn ODA
product 3a (Scheme 2) was obtained in 65% isolated yield
after 24 h when the full conversion of 2a was observed by
1H NMR (Table 1, entry 1), with dr (syn/anti) = 90:10
and ODA/aldol product = 87:13. However, when other
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Table 1
Optimization of the reaction conditionsa

Ph

O

+

30 mol % catal

solvent (1.0 M
rt

1a 2a

30 mol % co-cata

O2N

CHO

Entry Catalyst Co-catalyst Solv

1 Pyrrolidine HOAc CH
2 Bn2NH HOAc CH
3 Morpholine HOAc CH
4 Piperidine HOAc CH
5 Pyrrolidine No acid CH
6 Pyrrolidine PhCO2H CH
7 Pyrrolidine NCCH2CO2H CH
8 Pyrrolidine HCl CH
9 Pyrrolidine HOAc DM

10 Pyrrolidine HOAc i-Bu
11 Pyrrolidine HOAc CH
12 Pyrrolidine HOAc TH
13 Pyrrolidine HOAc Tol

a All reactions were carried out using 1 equiv of 2a, 5 equiv of 1a in the presen
at room temperature, 24 h.

b Determined by 1H NMR.
c Not determined.
amines, such as dibenzylamine, morpholine, and piperidine
were used as the catalyst, the reaction proceeded much
more slowly with decreased diastereoselectivities or
chemo-selectivities (Table 1, entries 2–4). Variation in co-
catalysts,9,10 Brønsted acid, of pyrrolidine catalyst was next
investigated and we found that this changing had a very
pronounced effect on the reaction (Table 1, entries 1, 6–8).
As can be seen from Table 1, weak acid, such as HOAc,
PhCO2H can effectively promote the ODA reaction, while
stronger acid, NCCH2CO2H, showed somewhat poorer
results. No reaction happened when very strong acid HCl
was used. Notably, without any acid, a slight decrease in
the chemo- and diastereoselectivities was observed though
with comparable conversion (Table 1, entries 1 vs 5). Pre-
sumably, the tautomerization of enamine and imine inter-
mediates may be sensitive to the nature of acid that are
crucial to the ODA reaction. When strong acid was
employed as the co-catalyst, the conjugated imine inter-
mediate might be dominant,9g which was detrimental to both
ODA and aldol reactions. After further examination of the
solvents, dichloromethane was the best of choice in terms
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side reactions of a,b-unsaturated ketones with aldehydes.
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NO2
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)

3a 4a

lyst + Aldol adduct

ent Conv.b 3a/4ab dr (syn/anti)b

2Cl2 >99 87:13 90:10

2Cl2 <5 NDc NDc

2Cl2 31 79:21 81:19

2Cl2 40 90:10 73:27

2Cl2 97 85:15 84:16

2Cl2 99 71:29 90:10

2Cl2 44 70:30 75:25

2Cl2 <5 NDc NDc

F 84 69:13 68:32
OH 98 62:38 81:29

Cl3 92 76:24 83:17
F 99 71:29 83:17
uene 99 77:23 82:18

ce of 30 mol % of catalyst and 30 mol % of co-catalyst in 0.5 mL of solvent



Scheme 2. The related configuration of product 3a determined by X-ray.11
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of selectivity and reaction efficiency. So, we chose the follo-
wing parameters for the highly chemo- and diastereoselec-
tive ODA reaction of a,b-unsaturated ketones with
aldehydes: pyrrolidine as catalyst, HOAc as co-catalyst
and dichloromethane as reaction medium.

Under the optimal reaction conditions, the scope of the
ODA reaction was examined with a number of a,b-unsat-
urated ketones and aromatic aldehydes. As presented in
Table 2, pyrrolidine and HOAc catalyzed the reactions
between 1 and 2 efficiently to provide the substituted tetra-
hydropyran-4-ones derivatives 3. All reactions shown in
Table 2 gave the desired ODA products as the major prod-
ucts with high chemo- and diastereoselectivities. Signifi-
cantly, the ODA adducts and Aldol adducts can be easily
separated by column chromatography. However, this strat-
egy was limited to activated aromatic aldehydes, such as
p-nitrobenzaldehyde, o-nitrobenzaldehyde, m-nitrobenzalde-
hyde, and p-cyanobenzaldehyde (Table 1, entries 1–4).12

For the a,b-unsaturated ketones, both aromatic and ali-
phatic ketones with electronic and steric variations are well
tolerated in this reaction.
Table 2
Organocatalytic oxa-Diels–Alder reaction of a,b-unsaturated ketones and alde

R1

O 30 mol % pyrroli
30 mol %  HOA+ R2CHO

1 2

CH2Cl2 (1.0 M)

Entry R1 R2 Tim

1 Ph (1a) p-NO2–Ph (2a) 24
2 Ph (1a) o-NO2–Ph (2b) 24
3 Ph (1a) m-NO2–Ph (2c) 24
4 Ph (1a) p-NC–Ph (2d) 96
5d p–NO2–Ph (1b) p-NO2–Ph (2a) 24
6 p-Cl–Ph (1c) p-NO2–Ph (2a) 21
7 p-Br–Ph (1d) p-NO2–Ph (2a) 24
8 m-Br–Ph (1e) p-NO2–Ph (2a) 24
9 p-MeO–Ph (1f) p-NO2–Ph (2a) 21

10 C6H11 (1g) p-NO2-Ph (2a) 21

a All reactions were carried out using 1 equiv of aldehyde, 5 equiv of a,b-u
(30 mol %) in 0.5 mL of CH2Cl2 at room temperature.

b Determined by 1H NMR.
c Isolated yield.
d Reaction was carried out in THF.
Based on the above observation and related litera-
tures,7,8a–c a possible mechanism was proposed to account
for the chemoselectivity of the reaction (Scheme 3). The
pyrrolidine catalyst reacts first with a,b-unsaturated ketone
1 to form diene A, which then is attacked by 2 affording
activated iminium salt B. The oxygen anion of the iminium
salt B undergoes the subsequent cyclization to furnish the
corresponding six-membered oxygen-containing ring C,
while competitive aldol reaction proceeds if the oxygen
anion captures a proton before it attacks the b-position
of conjugated iminium salt B. The ODA adduct is obtained
after hydrolysis and the pyrrolidine is released for the next
catalytic cycle. The high syn-selectivity was ascribed to the
lower energy of transition state when both subsititutes are
in e-position.

Finally, an attempt to carry out the organocatalytic
asymmetric version of this reaction has also been tried.
The bifunctional organocatalyst 5, originally developed
for enantioselective Aldol reactions of ketones,9a–d was
employed in the reaction of 1a and 2a (Scheme 4). The
reaction gave promising results with 45% yield, 77:23 dr,
hydesa

O

O

R1 R2

dine 
c

3 4

, rt
Aldol adduct+

e (h) 3/4b Yieldc (%) dr (syn/anti)b

87:13 65 (3a) 90:10
93:7 62 (3b) 95:5

>95:5 67 (3c) 92:8
>95:5 78 (3d) 94:6

85:15 66 (3e) 92:8
91:9 55 (3f) 93:7
94:6 65 (3g) 93:7

>95:5 69 (3h) 92:8
>95:5 80 (3i) >95:5

95:5 56 (3j) 95:5

nsaturated ketone in the presence of pyrrolidine (30 mol %) and HOAc



R

N

N
H

OR R'

O

R

O

OR R'

N

H2O

OR R'

N

R'CHO

H2O

A

BC

1

2
3

R

N

R'

OH

D

H3O

O

N

R'

R

R

O

R'

OH

4

H2O N
H

TS

Scheme 3. Proposed mechanism for the pyrrolidine catalyzed oxa-Diels–Alder reaction.
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Scheme 4. Asymmetric catalytic oxa-Diels–Alder reaction of 1a and 2a.
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and 40% ee of the cis isomer. Attempts to carry out this
asymmetric ODA reaction with L-proline as the catalyst
were unsuccessful.

In summary, we have demonstrated for the first time
organocatalyzed ODA reaction of acyclic a,b-unsaturated
ketones with aldehydes to generate substituted tetrahydro-
pyran rings. High chemo- and diastereoselectivities were
obtained by the use of pyrrolidine and HOAc as the organ-
ocatalysts.13 Further studies on the chiral amine catalyzed
asymmetric ODA reactions are underway in our laboratory.
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