Article

A Tandem Metal Carbene Cyclization–Cycloaddition Approach to the Pseudolaric Acids

Bin Chen, Rebecca Y. Y. Ko, Mabel S. M. Yuen, Kin-Fai Cheng, and Pauline Chiu*

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China

pchiu@hku.hk

Received September 4, 2002

An approach toward the synthesis of the antifungal and cytotoxic pseudolaric acids based on the tandem metal carbene cyclization-cycloaddition reaction is described. Using this strategy, the advanced intermediate 3a bearing three of the four stereocenters of the target molecules has been synthesized. The substrate-controlled diastereoselectivity of the tandem carbene cyclizationcycloaddition was preferential for the undesired diastereomer, but reagent control through the use of Hashimoto's chiral rhodium catalyst Rh₂(S-BPTV)₄ reversed the selectivity in favor of **3a**. Ring opening of the oxabicyclic nucleus to give a hydroxycycloheptene has been demonstrated in a model study.

Introduction

The root bark of Pseudolarix kaempferi Gordon (Pinaceae), a tree native to the Zhejiang province in China, has been harvested as a traditional Chinese medicine called tujinpi for the topological treatment of dermatological fungal infections as early as the 17th century.¹ From this preparation, a family of diterpenoids called the pseudolaric acids have been isolated. Pseudolaric acid B (1b) has been determined to be the main antifungal principle and has been evaluated to have activity comparable to that of amphotericin B against a number of strains of fungi.² In vitro tests of pseudolaric acids A, B, and C (1a-c) revealed their cytotoxicities to several cancer cell lines at submicromolar levels with low toxicity in vivo,^{1b,3} with pseudolaric acids A and B being the more potent constituents.

Pseudolaric acids A, B, and C all possess the same characteristic perhydroazulene constitution with transfused acetoxy or hydroxy and lactone groups at the junctions, which is a rare arrangement for naturally occurring hydroazulenes.⁴ Embedded in the common structure are a tertiary and three quaternary stereocenters lodged in a contiguous array. The overall compactness of the molecule also adds to the synthetic challenge posed by these natural products. Owing to their intriguing molecular architecture and promising biological activities, the pseudolaric acids have been the targets of a number of synthetic efforts. $^{5-9}$

Our aim was to develop a convergent strategy to all of the members of the pseudolaric acid family. Previous approaches to these molecules based on an aldol cyclization as the key ring-forming reaction suffered from being unable to obtain the trans-fused 5,7-membered ring system as the major product.^{5,8} Thus, alternative approaches that ensured the formation of this trans-ring junction were examined. To this end, we retroanalyzed these target molecules through a cleavage of the lactone functionality, a disconnection of a vinyl nucleophile at C11, back to a common enol triflate precursor 2 (Scheme 1). From this intermediate, pseudolaric acid A bearing a methyl substituent will be accessible via methylcuprate addition,¹⁰ while pseudolaric acids B and C with carbomethoxy groups at C7 can be synthesized via palladium-catalyzed carbonylation.¹¹ This strategy permits flexibility for variations at C7,¹² and the methyl ketone at C3 allows for the addition of different groups at C11 for the synthesis of pseudolaric acid analogues.

Enol triflate **2** can in turn be obtained via a reductive elimination of oxatricyclic ketone **3**, in which the acetate of the tertiary alcohol at C4 has been masked as an

^{*} Corresponding author. Tel: (852) 2859-8949. Fax: (852) 2857-1586.

^{(1) (}a) Zhou, B. N.; Ying, B. P.; Song, G. Q.; Chen, Z. X.; Han, J.; Yan, Y. F. *Planta Med.* **1983**, *47*, 35. (b) Hamburger, M. O.; Shieh, H. L.; Zhou, B. N.; Pezzuto, J. M.; Cordell, G. A. *Magn. Res. Chem.* **1989**, 27. 1025

⁽²⁾ Li, E.; Clark, A. M.; Hufford, C. D. J. Nat. Prod. 1995, 58, 57. (3) Pan, D. J.; Li. Z. L.; Hu, C. Q.; Chen, K.; Chang, J. J.; Lee, K. H. Planta Med. **1990**, *56*, 383.

⁽⁴⁾ Beyer, J.; Becker, H.; Toyota, M.; Asakawa, Y. Phytochemistry 1987, 26, 1085.

⁽⁵⁾ Pan, B. C.; Chang, H. Y.; Cai, G. L.; Guo, Y. S. Pure Appl. Chem. 1989, 61, 389

⁽⁶⁾ Higuchi, R. I. Ph.D. Dissertation, Stanford University, Stanford, CA, 1995

^{(7) (}a) Bonk, J. D. Ph.D. Dissertation, University of Mississippi, MS, 1997. (b) Wu, B.; Karle, J. M.; Watkins, E. B.; Avery, M. A. Tetrahedron Lett. 2002, 43, 4095.

^{(8) (}a) Chiu, P.; Chen, B.; Cheng, K. F. Tetrahedron Lett. 1998, 39, 9229. (b) Chiu, P.; Chen, B.; Cheng, K. F. Org. Lett. 2001, 3, 1721.
(9) (a) Hu, Y.; Ou L.; Bai, D. Tetrahedron Lett. 1999, 40, 545. (b) Ou, L.; Hu, Y.; Song, G.; Bai, D. Tetrahedron 1999, 55, 13999.

⁽¹⁰⁾ McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1980, 21, 4313. (11) Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1985, 26, 1109

⁽¹²⁾ Ritter, K. Synthesis 1993, 735.

SCHEME 1. Retrosynthetic Analysis of Pseudolaric Acids A, B, and C

oxygen bridge. Oxatricyclic ketone 3 is envisioned as the key intermediate that could be constructed by a reaction cascade initiated by the decomposition of an appropriately functionalized acyclic diazo ketone 4. This tandem carbene cyclization-intramolecular cycloaddition reaction¹³ has been studied extensively by Padwa and coworkers.¹⁴ This reaction was known to generate exclusively the cycloadduct with the oxygen bridge and the side chain at C10 in a trans relationship, as the alternative cis-fused adduct was extremely high in energy. Some applications of this powerful reaction for the synthesis of natural products have appeared.^{15,16} Recently, a highly enantioselective tandem carbene cyclization intramolecular cycloaddition reaction using a chiral rhodium BINOL phosphate catalyst has been achieved.¹⁷

In this approach, the metal carbene derived from diazo ketone 4 would undergo intramolecular cyclization with the carbonyl group to form a six-membered cyclic carbonyl ylide, followed by a [3 + 2] cycloaddition with the 1,1disubstituted olefin to give the oxatricyclic intermediate. Two aspects of this reaction in the context of the total synthesis have not been adequately explored in previous studies. According to our strategy, the carbonyl ylide is required to accomplish a dipolar cycloaddition with a tethered allylic ether, so that an alkoxy substituent at

the bridgehead of the cycloadduct would be installed and could be further oxidized to ultimately generate the carboxylate at C20 of the pseudolaric acids. However, in the previous studies of this reaction, many of which were methodological in their aims, the olefins undergoing cycloaddition with the carbene-derived ylides were relatively simple; functionalized olefins, such as derivatives of allylic alcohols, have rarely been used as dipolarophiles.¹⁸

Furthermore, there were few reports dealing with the influence of preexisting stereocenters on the diastereoselectivity of the carbonyl ylide cycloaddition. Studies of this reaction cascade for the construction of the tigliane system by Dauben et al. showed that a number of stereocenters on the tether had no bearing on the stereochemistry of the carbonyl ylide cycloaddition.^{15b} However, Maier's studies showed that cycloadditions of related isomünchnones generated from rhodium carbenes gave products with the α -substituent trans to the bridgehead substituent, a stereochemical result contrary to the requirements for the pseudolaric acids.¹⁹

Results and Discussion

Model Studies.

To address the first issue, a model substrate 12a was prepared to ascertain the viability of an allylic ether as the dipolarophile in this tandem carbene cyclizationcycloaddition reaction (Scheme 2). Zinc homoenolate 5a was alkylated with chloride **6a**²⁰ to give the homologated ester **7a** in 50% yield.²¹ The use of bromide analogue **6b**, which was obtained efficiently from 6a, escalated the yield of the allylation to 88%. Chain extension via a second homoenolate reaction with 5a was initially planned, but neither the acid chloride nor the thioester derivative of 7a gave good yields of coupled product under palladium catalysis.²² However, conversion of ester 7a to Weinreb amide 8a allowed homologation via reaction with Normant's Grignard reagent **9**²³ to give hydroxy ketone **10a**. Oxidation to afford acid 11a, followed by activation and treatment with diazomethane, produced the desired model diazo ketone substrate 12a. Gratifyingly, the rhodium-catalyzed decomposition to the carbene and its subsequent cyclization-cycloaddition produced the expected trans cycloadduct 13 in 61% yield without incident.

Another model substrate 12b with a substituent at C3 was prepared in an analogous manner. Starting from ester **7b**, an α -methyl group was appended by alkylation to give methylated substrate 7c (Scheme 2). Following the analogous sequence of reactions employed for the preparation of 12a, ester 7c was homologated and

⁽¹³⁾ Reviews: (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, (13) Reviews: (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263. (b) Padwa, A. Acc. Chem. Res. 1991, I, 22. (c) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Chiu, P.; Lautens, M. Top. Curr. Chem. 1997, 190, 3. (e) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic synthesis with Diazo Compounds; J. Wiley & Sons: New York, 1998; Chapter 7, pp 397– 416. (f) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50.

 ^{(14) (}a) Padwa, A.; Fryxell, G. E.; Zhi, L. J. Org. Chem. 1988, 53,
 (2875. (b) Padwa, A.; Hornbuckle, S. F.; Fryxell, G. E.; Stull, P. D. J. Org. Chem. 1989, 54, 817. (c) Padwa, A.; Hornbuckle, S. F.; Fryxell, G. E.; Zhang, Z. J. J. Org. Chem. 1992, 57, 5747.

⁽¹⁵⁾ Examples of carbene cyclization intramolecular cycloaddition: (a) McMills, M. C.; Zhuang L.; Wright, D. L. Watt, W. *Tetrahedron Lett.* **1994**, *35*, 8311. (b) Dauben, W. G.; Dinges, J.; Smith, T. C. J. Org. Chem. 1993, 58, 7635.

⁽¹⁶⁾ Examples of carbene cyclization intermolecular cycloaddition. Illudins and ptaquilosins: (a) Padwa, A.; Sandanayaka, V. P.; Curtis, E. A. J. Am. Chem. Soc. 1994, 116, 2667. (b) Padwa, A.; Curtis, E. A.; Sandanayaka, V. P. J. Org. Chem. 1996, 61, 73. Zaragozic acids: (c) Koyama, H.; Ball, R. G.; Berger, G. D. Tetrahedron Lett. 1994, 35, 9185. (d) Hodgson, D. M.; Bailey, J. M.; Harrison, T. Tetrahedron Lett. 1996, 37, 4623. Brevicomin: (e) Padwa, A.; Fryxell, G. E. Zhi, L. J. Am. Chem. Soc. 1990. 112, 3100.

⁽¹⁷⁾ Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Chem. Commun. 1999, 2185.

⁽¹⁸⁾ There is one example of a cycloaddition of an isomünchnone with a propargyl ether: Maier, M. E.; Schoffling, B. Chem. Ber. 1989, 122. 1081.

⁽¹⁹⁾ Maier, M. E.; Evertz, K. Tetrahedron Lett. 1988, 29, 1677.

⁽²⁰⁾ van der Louw, J.; van der Baan, L. L.; de Kanter, F. J. J.;
Bickelhaupt, F.; Klumpp, G. W. *Tetrahedron* **1992**, *48*, 6087.
(21) Ochiai, H.; Tamaru, Y.; Tsubaki, K.; Yoshida, Z. J. Org. Chem.

^{1987. 52. 4420.}

^{(22) (}a) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Org. Synth. Coll. Vol VIII, 274. (b) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Tsubaki, K.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5559. (c) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189.

⁽²³⁾ Normant, J. F.; Cahiez, G.; Alexakis, A. Tetrahedron Lett. 1978, *33*, 3013.

SCHEME 2. Synthesis of Model Diazo Precursors 12a and 12b^a

^a Reagents and Conditions: (a) LiBr, Aliquat 336, 60 °C, 97%; (b) IZnCH₂CH₂CO₂Et **5a**, CuCN, THF, DMA, rt, 88% for **7a**, IZnCH₂CO₂Me **5b**, 86% for **7b**; (c) (i) LDA, THF, -78 °C, (ii) MeI, 88%; (d) MeONHMe·HCl, Me₃Al, CH₂Cl₂, 92% for **8a**, 75% for **8b**; (e) ClMg(CH₂)₃OMgCl **9**, CuI, THF, 92% for **10a**, 94% for **10b**; (f) PDC, DMF, H₂O, 71% for **11a**, 45% for **11b**; (g) (i) *i*-BuOCOCl, Et₃N, THF, -10 °C, (ii) CH₂N₂, Et₂O, 0 °C, 74% for **12a**, 68% for **12b**; (h) cat. Rh₂(OAC)₄, 61% for **13**, 63% total yield of **(±)-14a**:(±)-**14b**, 4:1.

SCHEME 3. Synthesis of Diazo Precursor 4^a

^a Reagents and Conditions: (a) NaOH, MeOH, 98%; (b) *t*-BuCOCl, Et₃N, DMAP, (*S*)-4-benzyl-2-oxazolidone, THF, -78 °C to room temperature, 80%; (c) (i) *n*-Bu₂BOTf, Et₃N, CH₂Cl₂, 0 °C; (ii) CH₃CHO, -78 to 0 °C, 67%, (92% based on recovered substrate); (d) MEMCl, DIPEA, CH₂Cl₂, rt, 93%; (e) (i) LiOH, H₂O₂, THF-H₂O, 0 °C, (ii) Na₂SO₃, 86%; (f) MeONHMe+HCl, *i*-Pr₂NEt, DCC, CH₂Cl₂, 44%; (g) EtSH, DCC, DMAP, CH₂Cl₂, rt, 91%; (h) ClMg(CH₂)₃OMgCl **9**, CuI, THF, 77%, (93% based on recovered substrate); (i) PDC, DMF, H₂O, 75%; (j) (i) *i*-BuOCOCl, Et₃N, THF, -20 °C, (ii) CH₂N₂, Et₂O, 0 °C to room temperature, 72%.

elaborated in a straightforward manner to produce diazo ketone precursor **12b**. The tandem carbene cyclizationcycloaddition initiated by a catalytic amount of rhodium acetate produced two cycloadducts in 63% yield and in a ratio of 4:1 (Scheme 2). Gratifyingly, the major diastereomer was found to be **14a**, in which the methyl substituent and the benzyloxymethylene group were syn, as required in the structure of pseudolaric acid. The relative stereochemistry in **14a** was determined by the observation of an NOE between the methyl and the benzyloxymethylene protons, which showed that these groups were on the same side of the cyclopentane ring, and confirmed by the absence of this effect in isomer **14b**.

Preparation of the Chiral Precursor 4.

With these preliminary results in hand, the synthesis of the optically pure diazo ketone precursor **4** was undertaken (Scheme 3). The absolute stereochemistry at C3 was conferred using Evan's chiral auxiliary methodology.²⁴ Thus, ester **7a** was hydrolyzed to give acid **7d**, which was activated to synthesize the acylated oxazolidinone **15**. Aldol reaction via the boron enolate of **15** with

acetaldehyde produced alcohol **16** as one diastereomer, which was subsequently protected as the MEM ether **17**.

Following the route previously worked out for model compound **12a**, transamination to give Weinreb amide **19** was the next step. Although the conversion of acyloxazolidinones directly to Weinreb amides is a welldocumented methodology,²⁵ this transformation failed for the hindered substrate **17**. A variety of alkylaluminum amides reagents based on Me₃Al, Me₂AlCl, and Et₂AlCl were tried, but the major product isolated was urea **20**, resulting from the attack of the oxazolidone, accompanied by MEM ether cleavage (Scheme 4). Employing the unprotected alcohol **16** as substrate also resulted in the same product in 32% yield.

^{(24) (}a) Cowden, C. J.; Paterson, I. *Org. React.* **1997**, *51*, 1. (b) Evans, D. A. *Aldrichimica Acta* **1982**, *15*, 23. (c) Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. *Pure Appl. Chem.* **1981**, *53*, 1109.

^{(25) (}a) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc.
1988, 110, 2506. (b) Evans, D. A.; Bender, S. L. Tetrahedron Lett. 1986, 27, 799. (c) Cane, D. E.; Tan, W.; Ott, W. R. . J. Am. Chem. Soc. 1993, 115, 527.

SCHEME 4. Transamination of Acyloxazolidones 16 and 17

 TABLE 1. Metal Carbene Cyclization-Cycloaddition of

 Diazo Ketone 4

A two-step protocol was then attempted for the synthesis of Weinreb amide **19**. Hydrolysis of the acyloxazolidone **17** using lithium hydroperoxide produced acid **18**, which was activated by DCC for amidation. However, the conversion was extremely inefficient; reaction over 3 days produced amide **19** in only 44% yield. Similarly, coupling with BOP also resulted in a low yield of amide **19** (Scheme 3).

After some experimentation, a thioester was found to be a viable alternative electrophilic substrate for chain extension. Thus acid **18** was converted in high yield to thioester **21**, which was then homologated by the addition of the cuprate derived from Normant's Grignard reagent **9** to produce alcohol **22** in good yield.²⁶ Oxidation of the alcohol to acid **23**, followed by activation and treatment with diazomethane, generated the requisite chiral diazo ketone **4**.

Tandem Carbene Cyclization-Cycloaddition of 4.

Diazo ketone **4** was subjected to treatment with a variety of rhodium catalysts. The results are summarized in Table 1. Diazo decomposition with a catalytic amount of dirhodium acetate produced, in one step, the oxatricyclic adduct **3** in 61% yield as two diastereomers **3a** and **3b** in a ratio of 1:1.3 (entry 1).

Elucidation of the structures of isomers **3a** and **3b** was initially hampered because the key proton signals belonging to H3 were superimposed on other upfield peaks in the ¹H NMR spectrum. Thus the cycloadducts **3a** and **3b** were converted to their ketone derivatives **24a** and **24b**, respectively, whose H3 were expected to absorb at more downfield chemical shifts. Compounds **3a** and **3b** obtained from the tandem cyclization-cycloaddition reaction were treated with acidic methanol to remove the MEM group, then the secondary alcohols were oxidized

with the Dess-Martin periodinane to afford ketones **24a** and **24b** (Scheme 5). The signal of H3 in ketone **24b** now appeared at δ 2.60 ppm, and its 2D-NOESY spectrum clearly showed an NOE between H3 and the benzy-loxymethylene protons (δ 4.48 ppm). The structure of the minor compound **3a** was similarly determined by the analysis of its derivative **24a**, whose 2-D NOESY spectrum showed the absence of a cross-peak between H3 (δ 3.30 ppm) and the benzyloxymethylene protons at δ 4.49 ppm, confirming that the benzyloxymethylene substituent was in a cis relationship with the methyl ketone. Therefore, the major isomer possessed the structure as shown for **3b**, while the minor isomer **3a** was the desired diastereomer with the correct absolute stereochemistry for elaboration into the pseudolaric acids.

Other commercially available rhodium compounds were also tried as catalysts. Reaction of diazo ketone **4** with the less active dirhodium caprolactam was capricious but generally led to inferior yields of products (Table 1, entry 4). The more reactive dirhodium trifluoroacetate catalyst gave good yields of products, but the preference was even greater for the undesired isomer (Table 1, entry 5).

A solvent effect on the yield and the ratio of cycloadducts was observed. The decomposition of the diazo ketone and the subsequent tandem cyclization cycloaddition reaction proceeded rapidly in dichloromethane. Benzene was also an acceptable solvent, although with a more reactive catalyst such as dirhodium trifluoroacetate, the addition of the carbene to the aromatic ring was a major side reaction.²⁷ The use of benzotrifluoride²⁸ as a solvent generally gave similar yields of the cycloadducts compared to dichloromethane, but the formation of the desired isomer **3a** was more favored. Thus in the case of dirhodium trifluoroacetate, the reaction in benzotrifluoride improved to 1:1.2 from a ratio of 1:1.9 in dichloromethane (entry 6). However, in all these cases, the desired compound 3a remained as the minor diastereomer.

Although our preliminary results in the tandem cyclization-cycloaddition of substrate **12b** gave the desired diastereomer **14a** with the C3 substituent being cis with respect to the bridgehead substituent, it is not clear why the analogous reaction of substrate **4** generated the

⁽²⁷⁾ Padwa, A.; Austin, D. J.; Hornbuckle, S. F. J. Org. Chem. 1996, 61, 63.

⁽²⁶⁾ Anderson, R. J.; Henrick, C. A.; Rosenblum L. D. *J. Am. Chem. Soc.* **1974**, *96*, 3654.

^{(28) (}a) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda,
C.; Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417.
(b) Ogawa, A.; Curran, D. P. J. Org. Chem. 1997, 62, 450.

 TABLE 2.
 Carbene Cyclization-Cycloaddition of Diazo

 Ketone 4 Using Chiral Catalysts
 Catalysts

$OBn \xrightarrow{N_2} OBn \xrightarrow{OBn} OBn OBn$				
́томем		ОМЕМ	OMEM	
4		3a	3b	
entry	catalyst	solvent	product % yield	3a:3b
1	$Rh_2(R-MEPY)_4$	CH ₂ Cl ₂	17	1:1.5
2	Rh ₂ (S-MEPY) ₄	CH_2Cl_2	13	1:1.3
3	Rh ₂ (S-MEOX) ₄	CH_2Cl_2	0	
4	$Rh_2(R-DOSP)_4$	CH_2Cl_2	53	1:1.3
5	Rh ₂ (S-DOSP) ₄	CH_2Cl_2	62	1:1.7
6	Rh ₂ (S-DOSP) ₄	CF ₃ Ph	35	1:1.3
7	Rh ₂ (S-DDBNP) ₄	CH_2Cl_2	54	1:1.6
8	Rh ₂ (S-BPTV) ₄	CH_2Cl_2	67	1.3:1
9	Rh ₂ (S-BPTV) ₄	CF ₃ Ph	51	1.4:1

opposite diastereomer as the major product. In fact, the increase in the steric demand of the C3 substituent in compound 4 over 12b was initially expected to further enhance the factors that led to the predominance of 14a over 14b. It was surmised that perhaps the MEM ether at C11 was providing a chelating element that was not present in substrate 12b and this resulted in an electrondonating perturbation of the original transition state. If this were the case, the use of a different protective group should restore the previously observed stereoselectivity. To see whether the MEM group was responsible for the reversal in the diastereoselectivity, a structurally similar diazo ketone 25, whose hydroxyl group was protected as a noncoordinating triethylsilyl ether, was synthesized and subjected to treatment with catalytic rhodium (Scheme 6). The results of the tandem reaction was almost 5:1 in favor of the undesired diastereomer (\pm) -**26b**. Thus it appears that the change in the diastereoselectivity from the case of model compound 12b was mainly due to an increase in the steric demands of the substituent at C3 in substrate 4, which led to an undesirable steric interaction that was alleviated by cycloaddition in the opposite sense.

Tandem Carbene Cyclization-Cycloaddition of 4 Using Chiral Catalysts.

The recent results in highly enantioselective tandem carbene cyclization–cycloaddition reactions strongly suggest that the rhodium complex remains associated with the carbonyl ylide during the cycloaddition.^{17,28a} Therefore, chiral rhodium catalysts were examined to see if reagent control could be exerted to overcome the substrate bias and direct the formation of the desired isomer **3a**. These results are summarized in Table 2. Commercially available chiral rhodium catalysts were inves-

tigated first. Catalysts based on chiral carboxamides²⁹ (entries 1-3) resulted in poor yields of the cycloadducts. The catalysts based on *N*-arylsulfonylprolinate ligands Rh₂(DOSP)₄ led to good yields of the cycloadducts,³⁰ but the stereochemical results of both the (R)- and (S)enantiomeric catalysts remained in favor of the undesired diastereomer 3b (entries 4-6). Although Hodgson's catalyst Rh₂(*R*-DDBNP)₄ was extremely successful in the enantioselective intramolecular cyclization-cycloaddition of a stabilized carbene, the diastereoselectivity of the reaction with our substrate was low (entry 7).¹⁷ Finally, Hashimoto's catalyst Rh₂(S-BPTV)₄, which induced highly enantioselective carbene cyclization in tandem with intermolecular cycloadditions, was tried.^{28a} To our relief, the ratio of cycloadducts was reversed in favor the desired isomer **3a** for the first time (entry 8). Switching the solvent from dichloromethane to benzotrifluoride further improved the ratio in favor of **3a** to 1.4:1 (entry 9).

Ring-Opening Studies Using Model Substrate 27. While further optimization of the diastereoselectivity of the cyclization-cycloaddition of diazo ketone **4** was being pursued, reductive ring-opening strategies that would cleave the oxygen bridge of oxatricyclic compound **3a** toward intermediate **2** were also explored. This transformation was studied in the context of a simpler and more readily accessible oxatricyclic model compound **27**,^{14b} which contains the essential elements of the oxatricyclic framework found in compound **3**.

Ring-opening at the oxygen bridge of oxabicyclo[2.2.1] ketones using single-electron reductants such as lithium or samarium iodide generated hydroxy ketones as products, and this transformation of oxapolycyclic substrates has been exploited in several syntheses.^{16a,31} However, under the same reaction conditions, the reductive opening of oxabicyclo[3.2.1] systems with the carbonyl group in the two-carbon bridge was inefficient and apparently plagued by side reactions.³² The facility of the ring opening in the [2.2.1] oxabicyclic series may be attributed in part to the greater strain in these systems.

In our synthesis, the carbonyl group of the oxatricyclic compound **3a** is situated in the three-carbon bridge. This should render flexibility to the ketyl anion to adopt an antiperiplanar position, leading to ring opening. Indeed, when model compound **27** was treated with samarium iodide, reduction with concomitant ring opening of the oxygen bridge occurred to give hydroxy ketone **29** as a 1:6 mixture with its hemiacetal form in 69% yield (Scheme 7). Alcohol **30**, obtained in single diastereomeric form as a minor product from the reduction, could in theory be reoxidized to ketone **27** and resubjected to reduction to improve the overall yield of the ring-opening reaction.

(32) Lautens, M.; Ma, S. Tetrahedron Lett. 1996, 37, 1727.

^{(29) (}a) Doyle, M. P.; Winchester, W. R.; Hoorn, J. A. A.; Lynch, V.; Simonsen, S. H.; Ghosh, R. *J. Am. Chem. Soc.* **1993**, *115*, 9968. (b) Doyle, M. P.; Dyatkin, A. B.; Protopopova, M. N.; Yang, C. I. Miertschin, C. S.; Winchester, W. R.; Simonsen, S. H.; Lynch, V.; Ghosh, R. *Recl. Trav. Chim. Pays-Bas* **1995**, *114*, 163.

^{(30) (}a) Davies, H. M. L. *Current Org. Chem.* **1998**, *2*, 463. (b) Davies, H. M. L. *Aldrichimica Acta* **1997**, *30*, 107.

^{(31) (}a) De Schrijver, J.; De Clercq, P. J. *Tetrahedron Lett.* **1993**, *34*, 4369. Alternative photoreductive methods: (b) Cossy, J.; Ranaivosata, J. L.; Bellosta, V.; Ancerewicz, J.; Ferritto, R.; Vogel, P. *J. Org. Chem.* **1995**, *60*, 0, 8351.(c) Cossy, J.; Aclinou, P.; Bellosta, V.; Furet, N.; Baranne-Lafont, J.; Sparfel, D.; Souchaud, C. *Tetrahedron Lett.* **1991**, *32*, 1315.

SCHEME 8. An Alternative Strategy for Oxygen-Bridge Cleavage^a

 a Reagents and Conditions: (a) MeMgI, Et_2O, 0 °C to room temperature, 2 h, 92%; (b) SOCl_2, DMAP, THF, 0 °C to room temperature; (c) Na, Et_2O reflux 5 h, 71% over two steps.

Since the reductive ring opening was successful in cleaving the oxygen bridge, efforts were then made to trap the intermediate enolate 28 formed en route to ketone 29 to retain the olefinic bond at C7 and C8. However, attempts to trap enolate 28 using a variety of reagents, including triflic anhydride, Comins' reagent,³³ TMSCl, or TMSOTf, were all unsuccessful. This might be attributed to the samarium-oxygen bond being very strong, and enolate 28 was thus resistant to transmetalation at the oxyanion. Although Motherwell et al. have reported the trapping of a samarium enolate, the product yields were consistently low.³⁴ Samarium enolate 28, however, was reactive as an ambident nucleophile at carbon. When enolate 28 was treated with iodine, reaction rapidly occurred to regenerate the oxatricyclic substrate 27, presumably via iodination of the enolate (Scheme 7). Ring opening using other reducing agents such as Zn and Zn/TMSCl were uniformly unsuccessful.

Thus an alternative strategy was used for the ring opening of ketone **27**, which also accomplished the synthesis of the trisubstituted double bond found in pseudolaric acid A (Scheme 8).³⁵ Treatment of substrate **27** with methyl Grignard reagent generated tertiary alcohol **31** as a single diastereomer.³⁶ The alcohol was converted to the volatile chloride **32**, which was reductively cleaved using sodium to yield ring-opened product **33** containing the requisite olefinic bond. Additional reductive ring-opening methodologies and strategies are being investigated.

Conclusion

The synthesis of the key chiral intermediate 3a containing three out of the four required stereocenters in the pseudolaric acids has been achieved in 12 steps from commercially available 6a in an overall yield of 5.1%. The absolute stereochemistry at C3 was set by an asymmetric aldol reaction using Evan's chiral auxiliary. Chain elongation to obtain diazo ketone 4 was accomplished via thioester 21. The optically pure tricyclic intermediate 3a was obtained as the major diastereromer resulting from the tandem carbene cyclization-cycloaddition cascade reaction of diazo ketone 4, using Hashimoto's chiral rhodium catalyst Rh₂(S-BPTV)₄. Further investigations to improve the diastereoselectivity for 3a are being conducted. Ring opening of the oxatricyclic core has been achieved in a model substrate 27 and these results will be applied to the actual intermediate. Elaborations of **3a** toward the completion of the total synthesis of the pseudolaric acids and their analogues are being actively pursued in our laboratory.

Experimental Section

General. All anhydrous reactions were performed in ovendried glassware under a positive pressure of dry argon. Airor moisture-sensitive reagents and anhydrous solvents were transferred with oven-dried syringes or cannulae using standard inert atmosphere techniques. All chemicals and solvents for reactions were used as received, unless otherwise mentioned. Tetrahydrofuran (THF) and diethyl ether were distilled from Na/Ph₂CO ketyl under argon. Dichloromethane, benzene, triethylamine, and diisopropylethylamine were distilled from calcium hydride. Methanol was distilled from magnesium methoxide. Dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) were distilled from barium oxide under reduced pressure. Benzotrifluoride was refluxed and distilled from phosphorus pentoxide. Flash column chromatography was performed on E. Merck silica gel 60 (230-400 mesh ASTM) using EtOAc/n-hexane as eluents.

(2-Bromomethylallyloxymethyl)benzene (6b). To (2chloromethylallyloxymethyl)benzene $6a^{20}$ (7.20 g, 36.64 mmol) and Aliquat 336 (0.70 g, 1.73 mmol) was added anhydrous LiBr (6.38 g, 73.47 mmol). The mixture was heated to 60 °C for 2 h. After cooling, the mixture was filtered on Florisil and washed with Et₂O. The volatiles were removed in vacuo to afford compound **6b** (8.53 g, 97% yield) as a pale yellow oil, which was used without further purification: R_f 0.75 (15% Et₂O/hexane); IR (film) 2935, 2858, 1612, 1513, 1468, 1252, 1174, 1093, 921, 819 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38– 7.28 (m, 5H), 5.37 (s, 1H), 5.29 (s, 1H), 4.55 (s, 2H), 4.17 (s, 2H), 4.07 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 138.0, 128.5, 127.7 (2C), 117.3 72.4, 70.3, 33.1; LRMS (EI) *m*/*z* 161 (M⁺ – Br, 23), 91 (100), 81 (56), 79 (61); HRMS (EI) *m*/*z* calcd for C₁₁H₁₃O (M⁺ – Br) 161.0966, found 161.0965.

5-Benzyloxymethyl-5-hexenoic Acid Ethyl Ester (7a). 3-Iodopropionic acid ethyl ester (ICH₂CH₂COOEt) was prepared from the corresponding bromide (BrCH₂CH₂COOEt) by a Finkelstein reaction.³⁷ 3-Iodopropionic acid ethyl ester (9.65 g, 43.86 mmol) and Zn(Cu)³⁸ (3.41 g, 52.46 mmol) in DMA (5.64 mL, 62.04 mmol) and THF (50 mL) were stirred at room temperature under argon for 2 h and then at 60 °C for 1 h to form homoenolate **5a.** This reaction mixture was filtered and transferred by cannula to bromide **6b** (8.24 g, 34.19 mmol) and CuCN (0.51 g, 5.70 mmol) in THF (30 mL). After stirring

⁽³³⁾ Comins, D. L.; Dehghani, A.; Foti, C. J.; Joseph, S. P. Org. Synth. 1996, 74, 165.

⁽³⁴⁾ Batey, R. A.; Motherwell, W. B. Tetrahedron Lett. 1991, 32, 6211.

⁽³⁵⁾ Bromidge, S. M.; Sammes, P G.; Street, L. J. J. Chem. Soc., Perkin Trans. 1 1985, 1725.

⁽³⁶⁾ Although the stereochemistry of **31** was not rigorously established, it was presumed to be the α -alcohol on the basis of the characteristic reactivity patterns of oxabicyclic compounds; see: Chiu, P.; Lautens, M. *Top. Curr. Chem.* **1997**, *190*, 1.

⁽³⁷⁾ Sondheimer, F.; Rosenkranz, G.; Mancera, O.; Djerassi, C. J. Am. Chem. Soc. **1953**, 75, 2601.

⁽³⁸⁾ Smith, R. D.; Simmons, H. E. *Organic Syntheses;* Wiley: New York, 1973; Collect. Vol. V, p 855.

overnight at room temperature, the mixture was quenched with saturated NH₄Cl. The organic phase was separated, washed sequentially with saturated NaHCO₃ and brine, dried (MgSO₄), and concentrated in vacuo. Flash chromatography of the residue afforded compound **7a** (7.84 g, 88% yield) as a colorless oil: R_f 0.35 (15% Et₂O/hexane); IR (film) 2930, 2856, 1732, 1454, 1373, 1097, 1074, 1029 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.27 (m, 5H), 5.08 (s, 1H), 4.95 (s, 1H), 4.49 (s, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.96 (s, 2H), 2.31 (t, *J* = 7.5 Hz, 2H), 2.13 (t, *J* = 7.7 Hz, 2H), 1.80 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 145.1, 138.3, 128.4, 127.7, 127.6, 112.4, 73.0, 72.0, 60.3, 33.9, 32.4, 22.8, 14.3; LRMS (EI) *m/z* 262 (M⁺, 5), 231 (11), 171 (19), 156 (41), 91 (100); HRMS (EI) *m/z* calcd for C₁₆H₂₄O₄ 262.1569, found 262.1567.

5-Benzyloxymethyl-5-hexenoic Acid Methyl Ester (7b). Following the procedure for the preparation of compound **7a**, ester **7b** was prepared in a similar manner in 86% yield from ICH₂CH₂COOMe (69.5 g, 0.325 mol), Zn(Cu)³⁸ (24.56 g), DMA (38 mL, 0.464 mol), THF (320 mL), bromide **6b** (59.0 g, 0.245 mol), and CuCN (3.65 g, 0.041 mol). **7b**: a colorless oil; R_f (20% EtOAc in hexane) 0.67; IR (CH₂Cl₂) 3020, 2954, 2862, 1731, 1654, 1454, 1438, 1211, 1072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.27 (m, 5H), 5.08 (s, 1H), 4.95 (s, 2H), 4.49 (s, 2H), 3.96 (s, 2H), 3.66 (s, 3H), 2.33 (t, *J* = 7.5 Hz, 2H), 2.13 (t, *J* = 7.7 Hz, 2H), 1.81 (quintet, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 145.1, 138.4, 128.4, 127.7, 127.6, 112.4, 73.0, 72.0, 33.6, 32.5, 22.8; LRMS (EI) *m/z* calcd for C₈H₁₃O₃ (M⁺-Bn) 157.0865, found 157.0858.

Methyl 5-Benzyloxymethyl-2-methyl-5-hexenoate (7c). To a solution of ester 7b (8.0 g, 32 mmol) in THF was added LDA (0.38 L, 0.1 M, 38.4 mmol) dropwise at -78 °C. After stirring for 30 min, MeI (6.0 mL, 96 mmol) was added. The reaction mixture was stirred for a further 30 min at -78 °C, quenched with saturated NH4Cl solution, and extracted with EtOAc. The combined organics were dried (MgSO₄) and concentrated in vacuo. Flash chromatography of the residue afforded **7c** (7.4 g, 88%) as a pale yellow oil: $R_f 0.63$ (20%) EtOAc/hexane); IR (film) 2953, 2862, 1729, 1454, 1365, 1168, 1072, 1029 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.33–7.22 (m, 5H), 5.06 (s, 1H), 4.93 (s, 1H), 4.49 (s, 2H), 3.94 (s, 2H), 3.63 (s, 3H), 2.63–2.39 (m, 1H), 2.10 (t, J=7.7 Hz, 2H), 1.90–1.78 (m, 1H), 1.62–1.50 (m, 1H), 1.15 (d, J = 7 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) & 176.7, 145.1, 138.2, 128.1, 127.4, 127.3, 111.9, 72.8, 71.7, 51.2, 38.8, 31.4, 30.5, 16.8; LRMS (EI) m/z 262(17), 171 (18), 156 (30), 139 (21), 124 (8); HRMS (EI) m/z calcd for C₁₆H₂₄O₄ 262.1569, found 262.1572.

5-Benzyloxymethyl-5-hexenoic Acid N,N-Methoxymethylamide (8a). To a suspension of MeONHMe·HCl (1.50 g, 15.10 mmol) in anhydrous CH₂Cl₂ (15 mL) was added Me₃Al (7.60 mL, 15.20 mmol, 2 M in toluene) at 0 °C. After 1 h at room temperature, a solution of ester 7a (1.31 g, 5.0 mmol) in CH₂Cl₂ (5 mL) was added at 0 °C. After 12 h, the reaction was quenched by saturated NH₄Cl solution. The mixture was acidified by 0.5 N HCl to pH 4 and extracted with CH_2Cl_2 (4 \times 15 mL). The combined organics were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography of the residue afforded Weinreb amide 8a (1.28 g, 92% yield) as a colorless oil: Rf 0.50 (40% EtOAc/hexane); IR (film) 2937, 2855, 1662, 1454, 1385, 1100, 997 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.27 (m, 5H), 5.08 (s, 1H), 4.97 (s, 1H), 4.49 (s, 2H), 3.97 (s, 2H), 3.66 (s, 3H), 3.17 (s, 3H), 2.44 (t, J = 7.5 Hz, 2H), 2.15 (t, J = 7.6 Hz, 2H), 1.84 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.4 (br), 145.4, 138.4, 128.4, 127.7, 127.5, 112.1, 73.0, 72.0, 61.2, 32.7, 32.2, 31.4, 22.4; LRMS (EI) m/z 277 (M⁺, 2), 217 (4), 186 (9), 92 (7), 91 (100); HRMS (EI) C₁₆H₂₃NO₃ 277.1678, found 277.1680.

5-Benzyloxymethyl-2-methyl-5-hexenoic Acid *N,N*-**Methoxymethylamide (8b).** Following the procedure for the preparation of compound **8a**, amide **8b** was prepared in a similar manner in 75% yield from ester **7c** (3.0 g, 11.5 mmol),

MeONHMe·HCl (3.35 g, 34.4 mmol), and Me₃Al (17.2 mL, 34.4 mmol). **8b**: a colorless oil; R_f 0.16 (20% EtOAc/hexane); IR (film) 2939, 2898, 1648, 1457, 1389, 1074, 1029, 998 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.34–7.25 (m, 5H), 5.06 (s, 1H), 4.95 (s, 1H), 4.48 (s, 2H), 3.95 (s, 2H), 3.64 (s, 3H), 3.16 (s, 3H), 2.88–2.87 (m, 1H), 2.11–1.93 (m, 2H), 1.91–1.82 (m, 1H), 1.59–1.49 (m, 1H), 1.12 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 177.4, 145.4, 138.2, 128.2, 127.9, 127.5, 127.3, 111.6, 72.8, 71.7, 61.2, 34.6, 31.2, 30.7, 29.5, 17.2; LRMS (EI) m/z 200 (M⁺ – Bn, 11), 153 (11), 139 (11), 127 (13), 113 (16); HRMS (EI) m/z calcd for C₁₆H₂₄O₄ 200.1287, found 200.1287.

8-Benzyloxymethyl-1-hydroxy-8-nonen-4-one (10a). The Grignard reagent ClMg(CH₂)₃OMgCl 9²³ (10 mL, ~0.5 M) was added to Weinreb amide 8a (0.60 g, 2.17 mmol) in THF (5 mL) at 0 °C under argon. The reaction mixture was stirred overnight at room temperature. The reaction was quenched with saturated NH₄Cl (10 mL) and extracted with EtOAc (4 \times 10 mL). The combined organics were washed with brine, dried (MgSO₄), and concentrated in vacuo. Flash chromatography of the residue afforded compound 10a (0.556 g, 92% yield) as a colorless oil: $R_f 0.20$ (40% EtOAc/hexane); IR (film) 3618, 2932, 2860, 1710, 1454, 1097, 1072 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.27 (m, 5H), 5.07 (s, 1H), 4.94 (s, 1H), 4.48 (s, 2H), 3.95 (s, 2H), 3.61 (t, J = 5.6 Hz, 2H), 2.53 (t, J = 6.9 Hz, 2H), 2.44 (t, J = 7.4 Hz, 2H), 2.09 (t, J = 7.4 Hz, 2H), 1.88–1.73 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 211.5, 145.2, 138.3, 127.7, 127.6, 112.4, 72.9, 72.0, 42.2, 39.5, 32.4, 26.4, 21.5; LRMS (EI) m/z 276 (M⁺, 3), 259 (7), 191 (17), 168 (28), 127 (100), 91 (36), 89 (23); HRMS (EI) m/z calcd for C17H21O3 273.1491, found 273.1489.

8-Benzyloxymethyl-1-hydroxy-5-methyl-8-nonen-4one (10b). Following the procedure for the preparation of compound **10a**, alcohol **10b** was similarly prepared in 96% yield from ester **8b** (3.63 g, 1.25 mmol) and **9** (25 mL, ~1.1M). **10b**: a colorless oil; R_f 0.26 (35% EtOAc/hexane); IR (film) 3610, 2938, 2884, 1708, 1454, 1370, 1102, 1061 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.32–7.23 (m, 5H), 5.05 (s, 1H), 4.92 (s, 1H), 4.46 (s, 2H), 3.93 (s, 2H), 3.65 (s, br, 1H), 3.53 (t, J = 6.2Hz, 2H), 2.59–2.45 (m, 2H), 2.06–2.0 (m, 2H), 1.97–1.72 (m, 3H), 1.51–1.39 (m, 1H), 1.06 (d, J = 7 Hz, 3H); ¹³C NMR (CDCl₃, 300 MHz) δ 214.7, 145.0, 137.8, 128.0, 127.4, 127.2, 111.9, 72.5, 71.5, 61.3, 45.5, 40.4, 37.3, 30.3, 30.2, 26.3, 26.0, 16.2, 16.0, 11.3; LRMS (EI) m/z 272 (M⁺ – H₂O, 5), 181 (10), 153 (13); HRMS (EI) m/z calcd for C₁₆H₂₄O₄ (M⁺ – H₂O) 272.1776, found 272.1785.

8-Benzyloxymethyl-4-oxo-8-nonenoic Acid (11a). Alcohol 10a (156 mg, 0.565 mmol) in 2.0 mL of DMF and 0.05 mL of H₂O was treated with PDC (1.28 g, 3.40 mmol) at room temperature for 8 h. Water (20 mL) was added and the mixture was extracted with EtOAc (5 \times 10 mL). The combined organics were dried (MgSO₄) and concentrated in vacuo. Flash chromatography of the residue afforded acid 11a (110 mg, 71% yield) as a pale yellow oil. $R_f 0.75$ (75% EtOAc/hexane); IR (film) 3685, 3499, 2936, 1714, 1454, 1399, 1091, 1074, 908 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.35-7.27 (m, 5H), 5.07 (s, 1H), 4.93 (s, 1H), 4.48 (s, 2H), 3.94 (s, 2H), 2.68 (m, 2H), 2,61 (m, 2H), 2.45 (t, J = 7.3 Hz, 2H), 2.08 (t, J = 7.3 Hz, 2H), 1.75 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 208.7, 178.3, 145.1, 138.2, 128.4, 127.7, 127.6, 112.5, 72.9, 72.0, 42.0, 36.8, 32.4, 27.7, 21.5; LRMS (EI) m/z 290 (M+, 5), 245 (16), 199 (27), 154 (31), 91 (100); HRMS (EI) m/z calcd for C17H22O4 290.1518, found 290.1525.

8-Benzyloxymethyl-5-methyl-4-oxo-8-nonenoic Acid (**11b**). Following the procedure for the preparation of compound **11a**, acid **11b** was similarly prepared in 45% yield from alcohol **10b** (3.18 g, 10.9 mmol) and PDC (65.7 mmol, 24.7 g). **11b**: pale yellow oil; R_f 0.12 (20% EtOAc/hexane); IR (film) 3672, 3488, 2929, 1702, 1454, 1073, 1028 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 10.71 (s, br, 1H), 7.35–7.23 (m, 5H), 5.05 (s, 1H), 4.92 (s, 1H), 4.46 (s, 2H), 3.93 (s, 2H), 2.78–2.75 (m, 2H), 2.72–2.63 (m, 3H), 2.07–1.98 (m, 2H), 1.90–1.87 (m, 1H), 1.86–1.53 (m, 1H), 1.07 (d, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz), δ 212.1, 178.0, 144.9, 137.9, 128.1, 127.4, 127.3, 112.1, 72.5, 71.5, 45.3, 35.1, 30.3, 27.4, 16.2; LRMS (EI) *m/z* 198 (M⁺ - Bn - CH₃, 50), 180 (21), 167 (26), 153 (15), 139 (6); HRMS (ESI) *m/z* calcd for C₁₆H₂₄O₄Na (M⁺ + Na) 327.1572, found 327.1575.

9-Benzyloxymethyl-1-diazo-9-decene-2,5-dione (12a). To acid 11a (121 mg, 0.417 mmol) in dry ether (2 mL) and THF (2 mL) at -20 °C was added Et₃N (0.097 mL, 0.698 mmol), followed by isobutyl chloroformate (0.090 mL, 0.694 mmol). The solution was stirred for 30 min and then warmed to 0 °C. Ethereal diazomethane³⁹ (3 mL, about 1.0 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature, stirred for 3 h, and then reduced to onethird of its original volume. The residue was diluted with ether (10 mL); washed with water, saturated aqueous NaHCO₃, and brine; dried (Na₂SO₄); and concentrated in vacuo. Flash chromatography of the residue afforded diazo ketone 12a (97 mg, 74% yield) as a yellow oil: $R_f 0.40$ (67% EtOAc/hexane); IR (film) 2930, 2896, 2108, 1734, 1717, 1645, 1385, 1099, 1037 cm^-1; ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.27 (m, 5H), 5.30 (br s, 1H), 5.07 (s, 1H), 4.94 (s, 1H), 4.48 (s, 2H), 3.95 (s, 2H), 2.75 (t, J = 6.2 Hz, 2H), 2.59 (br s, 2H), 2.47 (t, J = 7.4 Hz, 2H), 2.09 (t, J = 7.7 Hz, 2H), 1.76 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) & 209.1, 193.4, 145.2, 138.3, 128.4, 127.7, 127.6, 112.3, 72.9, 72.0, 54.5, 42.1, 39.6, 33.9, 32.4, 21.5.

9-Benzyloxymethyl-1-diazo-6-methyl-9-decene-2,5-dione (12b). Following the procedure for the preparation of substrate 12a, diazo ketone 12b was similarly prepared in 68% yield from acid 11b (667 mg, 2.19 mmol), isobutyl chloroformate (0.284 mL, 2.19 mmol), and diazomethane (13 mL, about 4 mmol). **12b**: a yellow oil; $R_f = 0.17$ (20% EtOAc/hexane); IR (film) 2938, 2855, 2109, 1711, 1647, 1379, 1113, 1072 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.30-7.19 (m, 5H), 5.22 (br s, 1H), 4.99 (s, 1H), 4.87 (s, 1H), 4.41 (s, 2H), 3.88 (s, 2H), 2.82-2.67 (m, 2H), 2.56-2.45 (m, 3H), 2.02-1.95 (m, 2H), 1.85-1.74 (m, 1H), 1.48–1.33 (m, 1H), 1.03 (d, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 212.7, 193.5,145.3, 138.3, 128.3, 127.6, 127.5, 112.2, 72.9, 71.9, 53.4, 45.7, 385.3, 33.9, 30.6, 16.4; LRMS (EI) m/z 300 (M⁺ - N₂, 27), 209 (91), 194 (23), 181 (23), 165 (22), 149 (30), 137 (20); HRMS (EI) m/z calcd for C19H24O3 $(M^+ - N_2)$ 300.1725, found 300.1719.

(1*R**,5*S**,7*R**)-5-Benzyloxymethyl-11-oxatricyclo-[5.3.1.0^{1,5}]undecan-8-one (13). Diazo ketone 12a (72 mg, 0.229 mmol) in dry benzene (5 mL) was treated with Rh₂(OAc)₄ (1 mg, 0.00226 mmol) and stirred for 6 h at room temperature. The reaction mixture was filtered and concentrated in vacuo. Chromatography of the residue afforded cycloadduct 13 (40 mg, 61% yield) as a colorless oil: $R_f = 0.72$ (33% EtOAc/ hexane); IR (film) 2955, 2867, 1725, 1444, 1420, 1236 1085, 1042 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38–7.27 (m, 5H), 4.49 (s, 2H), 4.31 (dd, J = 6.0, 3.5 Hz, 1H), 3.30 (q-AB, 2H), 2.53–1.59 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 212.1, 137.9, 128.4, 127.7, 127.6, 92.9, 82.2, 74.0, 73.5, 53.9, 42.4, 39.1, 37.5, 33.7, 26.1, 22.6; LRMS (EI) *m*/*z* 286 (M⁺, 8), 195 (17), 150 (25), 137 (13), 123 (10), 119 (12), 95 (19), 91 (100), 79 (12); HRMS (EI) *m*/*z* calcd for C₁₈H₂₂O₃ 286.1569, found 286.1565.

(1*S**,2*R**,5*S**,7*R**)-5-Benzyloxymethyl-2-methyl-11-oxatricyclo[5.3.1.0^{1.5}]undecan-8-one (14a) and (1*R**,2*R**,5*R**,-7*S**)-5-Benzyloxymethyl-2-methyl-11-oxatricyclo[5.3.1.0^{1.5}]undecan-8-one (14b). Diazo ketone 12b (28.7 mg, 0.0874 mmol) in dry CH₂Cl₂ (1.0 mL) was treated with Rh₂(OAc)₄ (0.5 mg, 0.0011 mmol) for 2 h at 0 °C. The reaction mixture was filtered and concentrated in vacuo. Chromatography of the residue afforded cycloadduct 14a (13.1 mg, 50% yield) as a colorless oil and cycloadduct 14b (3.4 mg, 13% yield) as a colorless oil. 14a: $R_f = 0.48$ (20% EtOAc/hexane); IR (film) 2956, 2919, 2871, 1721, 1462, 1105 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.27 (m, 5H), 4.49 (d, J = 12.1 Hz, 1H), 4.46 (d, J = 12.1 Hz, 1H), 4.27 (dd, J = 8.1, 0.5 Hz, 1H), 3.32 (d, J= 9.4 Hz, 1H), 3.29 (d, J = 9.4 Hz, 1H), 2.46 (ddd, J = 18.0, 11.3, 4.5 Hz, 1H), 2.36 (ddd, J = 18.1, 9.1, 4.5 Hz, 1H), 2.17 (m, 3H), 2.01 (dd, J = 12.9, 8.2 Hz, 1H), 1.89 (m, 2H), 1.59 (ddd, J = 13.1, 7.6, 2.4 Hz, 1H), 1.38 (m, 1H), 0.90 (d, J = 7.4Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.2, 137.8, 128.4, 127.76, 127.74, 94.5, 82.1, 74.5, 73.6, 54.4, 43.5, 42.9, 36.7, 33.9, 30.3, 23.8, 14.3; LRMS (EI) m/z 300 (M+, 33), 257 (10), 209 (18), 191 (24), 164 (66), 151 (83), 147 (100), 133 (42); HRMS (EI) m/z calcd for C₁₉H₂₄O₃ (M⁺) 300.1725, found 300.1726. 14b: R_f 0.55 (20% EtOAc/hexane); IR (film) 2959, 2870, 1723, 1456, 1364, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 4.47 (s, 2H), 4.29 (d, J = 8.2 Hz, 1H), 3.30 (d, J = 9.4 Hz, 1H), 3.25 (d, J = 9.4 Hz, 1H), 2.48 (ddd, J = 18.0, 11.3, 4.6 Hz, 1H), 2.37 (ddd, J = 18.0, 9.2, 4.9 Hz, 1H), 2.19 (ddd, J = 13.8, 11.3, 4.9 Hz, 1H), 2.10 (dd, J = 13.0, 1.0 Hz, 1H), 1.99 (dd, J = 13.0, 8.3 Hz, 1H), 1.71 (m, 3H), 1.59 (m, 3H), 1.05 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.9, 137.9, 128.4, 127.72, 127.65, 93.0, 82.0, 74.4, 73.5, 54.7, 43.2, 41.9, 36.8, 33.9, 30.7, 23.2, 12.6; LRMS (EI) m/z 300 (M⁺, 34), 209 (20), 194 (15), 176 (19), 164 (71); HRMS (EI) *m*/*z* calcd for C₁₉H₂₄O₃ (M⁺) 300.1725, found 300.1728.

(S)-Benzyl-3-(5-benzyloxymethyl-5-hexenoyl)oxazolidin-2-one (15). A solution of ester 7a (7.80 g, 29.77 mmol) in MeOH (60 mL) was stirred vigorously with 10% NaOH (30 mL) at room temperature for 4 h. The methanol was removed in vacuo, and the residue was acidified with 10% HCl to pH 3 and extracted with EtOAc (3 \times 50 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo to give acid 7d (6.76 g, 97%) as colorless oil, which was pure and used without further purification. **7d:** $R_f 0.15$ (40% EtOAc in hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.27 (m, 5H), 5.10 (s, 1H), 4.96 (s, 1H), 4.49 (s, 2H), 3.96 (s, 2H), 2.38 (t, J = 7.4 Hz, 2H), 2.15 (t, J = 7.5 Hz, 2H), 1.82 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 179.4, 144.8, 138.2, 128.4, 127.7, 127.6, 112.6, 72.9, 72.0, 33.4, 32.3, 22.5; IR (film, cm⁻¹) 3444 (br), 2940, 2867, 1709, 1454, 1274, 1096, 1072, 910; LRMS (EI) m/z 234 (M⁺, 2), 143 (9), 128 (25), 125 (18), 107 (60), 91 (100); HRMS (EI) *m*/*z* calcd for C₁₄H₁₈O₃ 234.1256, found 234.1259.

To acid 7d (10.38 g, 44.36 mmol) and Et₃N (6.78 mL, 48.87 mmol) in THF (100 mL) was added pivaloyl chloride (6.08 mL, 48.87 mmol) slowly at -78 °C under argon. The thick white paste was allowed to stir at 0 °C for 1 h. A solution of (S)-4benzyl-2-oxazolidinone⁴⁰ (7.80 g, 44.07 mmol), DMAP (0.70 g, 5.738 mmol), and Et₃N (6.12 mL) in THF (100 mL) was added to the mixed anhydride at -78 °C over 5 min. The mixture was stirred for 5 days at room temperature. The volatiles were removed in vacuo, and the resultant white paste was redissolved in CH₂Cl₂ (200 mL) and 1 M NaOH (100 mL). The aqueous phase was separated, the organic phase was washed with brine and dried (Na₂SO₄), and volatiles were removed in vacuo. The residue was purified by flash chromatography to give compound 15 (13.90 g, 80% yield) as a colorless oil. The basic aqueous phase was acidified and extracted to recover acid **7d** (1.40 g, 18% yield). **15:** $R_f = 0.75$ (50% EtOAc in hexane); IR (film) 2922, 2852, 1782, 1702, 1455, 1386, 1352, 1212, 1110, 1078 cm $^{-1};\,^{1}\text{H}$ NMR (300 MHz, CDCl3) δ 7.35–7.19 (m, 10H), 5.10 (s, 1H), 4.99 (s, 1H), 4.66 (m, 1H), 4.50 (s, 2H), 4.16 (m, 2H), 3.99 (s, 2H), 3.29 (dd, J = 13.3, 3.2 Hz, 1H), 2.96 (m, 2H), 2.75 (dd, J = 13.3, 9.6 Hz, 1H), 2.20 (t, J = 7.6 Hz, 2H), 1.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) & 173.1, 153.5, 145.2, 138.4, $135.4,\,129.5,\,129.0,\,128.4,\,127.7,\,127.6,\,127.4,\,112.4,\,73.0,\,72.0,$ 66.2, 55.2, 37.9, 35.1, 32.4, 22.1; LRMS (EI) m/z 393 (M+, 2), 302 (33), 287 (94), 232 (64), 219 (29), 178 (77), 91 (100); HRMS (EI) m/z calcd for C₂₄H₂₇NO₄ 393.1940, found 393.1943; $[\alpha]^{20}$ _D $= +20.6^{\circ}$ (c 0.63, CHCl₃).

(1'*R*,2'*S*,4*S*)-4-Benzyl-3-[5-benzyloxymethyl-2'-(1'-hydroxyethyl)-5-hexenoyl]oxazolidin-2-one (16). To a solution of acylated oxazolidinone 15 (1.362 g, 3.466 mmol) in anhydrous CH_2Cl_2 (10 mL) at 0 °C was added dibutylboron

^{(39) (}a) De Boer, Th. J.; Backer, H. J. *Organic Syntheses*, Wiley: New York, 1963; Collect. Vol. IV; p 250. (b) Hudlicky, M. *J. Org. Chem.* **1980**, *45*, 5377.

⁽⁴⁰⁾ Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77.

triflate (4.16 mL, 4.16 mmol), followed by Et₃N (0.69 mL, 4.973 mmol) dropwise, keeping the internal temperature below 3 °C. The mixture was cooled to -78 °C and acetaldehyde (0.22 mL, 3.936 mmol) was added slowly. The solution was stirred at -78 °C for 20 min and then at 0 °C for 1 h. The reaction mixture was quenched by the addition of 12 mL of 2:1 methanol-30% aqueous hydrogen peroxide at such a rate as to keep the internal temperature below 10 °C. After the solution was stirred for 1 h, the volatiles were removed, and the resulting slurry was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃ and brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by flash chromatography to give recovered substrate **15** (0.367 g, 27% yield) and aldol adduct **16** (1.018 g, 67% yield) as a pale yellow oil. **16:** $R_c = 0.40$ (50% EtOAc in hexane): IR (film) 3442, 2923.

16: $R_f = 0.40$ (50% EtOAc in hexane); IR (film) 3442, 2923, 2852, 1780, 1705, 1444, 1385, 1352, 1211, 1079 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.19 (m, 10H), 5.07 (s, 1H), 4.98 (s, 1H), 4.70 (m, 1H), 4.47 (s, 2H), 4.12 (m, 4H), 3.98 (s, 2H), 3.35 (dd, J = 13.2, 3.1 Hz, 1H), 2.62 (dd, J = 13.2, 10.1 Hz, 1H), 2.52 (br s, 1H), 2.20–2.01 (m, 3H), 1.80 (m, 1H), 1.24 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.0, 153.9, 145.2, 138.2, 135.3, 129.4, 129.0, 128.4, 127.7, 127.6, 127.4, 112.7, 72.9, 72.0, 68.9, 66.1, 55.7, 48.4, 38.0, 31.0, 25.5, 19.5; LRMS (EI) m/z 393 [M⁺] (4), 302 [M – Bn]⁺ (28), 287 (84), 232 (71), 219 (36), 178 (100); HRMS (EI) m/z calcd for C₂₄H₂₇NO₄ 393.1940, found 393.1939; [α]²⁰_D = +23.1° (c 0.36, CHCl₃).

(1'R,2'S,4S)-4-Benzyl-3-{5-benzyloxymethyl-2'-[1'-(2methoxyethoxy)ethyl]-5-hexenoyl}oxazolidin-2-one (17). A solution of compound **16** (2.07 g, 4.74 mmol) in CH_2Cl_2 (10 mL) was treated with *i*-Pr₂NEt (1.75 mL, 10.07 mmol) and MEMCl (1.10 mL, 9.64 mmol) at room temperature. After stirring for 4 h, water (10 mL) was added and the resultant mixture was extracted with ether (3 \times 30 mL). The combined organics were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash chromatography to afford compound 17 (2.31 g, 93% yield) as a colorless oil. 17: $R_f =$ 0.48 (50% EtOAc in hexane); IR (film) 2928, 2887, 1779, 1701, 1454, 1385, 1198, 1108, 1042 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.19 (m, 10H), 5.07 (s, 1H), 4.98 (s, 1H), 4.69 (s, 2H), 4.67 (m, 1H), 4.48 (s, 2H), 4.14 (m, 3H), 4.02 (t, J = 5.9 Hz 1H), 3.97 (s, 2H), 3.67 (m, 2H), 3.54 (m, 2H), 3.36 (s, 3H), 3.35 (dd, J = 13.2, 3.1 Hz, 1H), 2.64 (dd, J = 13.2, 10.2 Hz, 1H), 2.17–2.02 (m, 3H), 1.75 (m, 1H), 1.22 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 153.3, 145.3, 138.3, 135.5, 129.4, 128.9, 128.4, 127.7, 127.6, 127.4, 112.4, 93.9, 73.6, 72.9, 72.0, 71.8, 67.1, 65.9, 59.0, 55.9, 47.1, 37.9, 31.0, 25.9, 17.3; LRMS (EI) m/z 525 (M⁺, 1), 450 (5), 358 (15), 330 (100), 304 (17), 178 (29), 91 (53), 89 (35); HRMS (EI) m/z calcd for C₃₀H₃₉-NO₇ 525.2727, found 525.2726; $[\alpha]^{20}_{D} = +18.3^{\circ}$ (*c* 0.81, CHCl₃).

(1'R,2S)-5-Benzyloxymethyl-2-[1'-(2-methoxyethoxymethoxy)ethyl]-5-hexenoic Acid (18). To a solution of oxazolidone 17 (2.0055 g, 3.82 mmol) in 25 mL of 4:1 THFdistilled water was added 0.91 mL of 50% aqueous H₂O₂ at 0 °C, followed by LiOH·H₂O (273.5 mg, 6.51 mmol) in distilled water (18 mL). After stirring for 3 h, sodium sulfite (1.204 g, 9.55 mmol) in 16 mL of distilled water was added. The bulk of the THF was removed in vacuo and the residue (pH 12-13) was extracted with CH_2Cl_2 (3 \times 30 mL). The aqueous layer was cooled in an ice bath and acidified to pH 4. The resultant cloudy solution was extracted with EtOAc (3 \times 30 mL). The combined organics were dried (MgSO₄) and concentrated in vacuo to afford the desired acid 18 (1.1604 g, 83% yield) as a pale yellow oil. **18**: $R_f = 0.21$ (50% EtOAc in hexane); IR (film) 3475 (br), 2975, 2932, 2867,1712, 1455, 1383, 1107, 1039 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.27 (m, 5H), 5.08 (s, 1H), 4.97 (s, 1H), 4.78 (d, J = 7.2 Hz, 1H), 4.73 (d, J = 7.2 Hz, 1H), 4.49 (s, 2H), 3.98 (m, 1H), 3.96 (s, 2H), 3.70 (m, 2H), 3.54 (m, 2H), 3.38 (s, 3H), 2.58 (m, 1H), 2.15 (m, 2H), 1.82 (m, 2H), 1.24 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 178.7, 145.0, 138.2, 128.4, 127.7, 127.6, 112.6, 94.1, 73.9, 72.9, 71.9 71.7, 67.1, 59.0, 50.8, 31.1, 25.9, 17.6; LRMS (EI) m/z 366 (M⁺,

1), 291 (8), 247 (19), 232 (36), 170 (23), 141 (39), 91 (100), 89 (45); HRMS (EI) m/z calcd for $C_{20}H_{30}O_6$ 366.2042, found 366.2044; $[\alpha]^{20}{}_D=+29.8^\circ$ (c 1.72, CHCl_3).

(1'R,2S)-5-Benzyloxymethyl-2-[1'-(2-methoxyethoxymethoxy)ethyl]-5-hexenoic Acid S-Ethyl Ester (21). To a solution of acid 18 (0.770 g, 2.104 mmol) in anhydrous CH2-Cl₂ (5 mL) was added DMAP (0.016 g, 0.130 mmol), ethanethiol (0.31 mL, 4.145 mmol), and DCC (0.530 g, 2.573 mmol) at 0 °C. The reaction mixture was stirred for 3 h at room temperature. Precipitated DCU was filtered off, and the filtrate was concentrated. The residue was taken up in CH₂Cl₂ and washed twice with 0.5 N HCl and then with saturated NaHCO₃ and brine. The solution was dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash chromatography to afford thioester 21 (0.790 g, 91% yield) as a colorless oil. 21: *R*_f= 0.82 (33% EtOAc in hexane); IR (film) 2973, 2930, 2882, 1682, 1454, 1458, 1248, 1078, 1036, 906, 820 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.35-7.27 (m, 5H), 5.08 (s, 1H), 4.96 (s, 1H), 4.77 (d, J = 7.2 Hz, 1H), 4.71 (d, J = 7.2 Hz, 1H), 4.48 (s, 2H), 3.95 (s, 2H), 3.88 (m, 1H), 3.70 (m, 2H), 3.54 (m, 2H), 3.38 (s, 3H), 2.88 (q, J = 7.4 Hz, 2H), 2.70 (m, 1H), 2.10 (m, 2H), 1.86 (m, 2H), 1.82 (m, 3H), 1.24 (t, J = 7.4 Hz, 3H), 1.20 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.0, 145.2, 138.4, 128.3, 127.7, 127.5, 112.3, 94.2, 74.3, 73.0, 71.9, 71.7, 67.1, 59.7, 59.0, 30.7, 27.0, 23.4, 18.2, 14.7; LRMS (EI) m/z 321 (M $^+$ – MEM, 5), 273 (15), 215 (24), 153 (22), 91 (100), 89 (36); HRMS (EI) m/z calcd for $C_{22}H_{34}O_5S$ (M⁺ – MEM) 321.1534, found 321.1528; $[\alpha]^{20}_{D} = +36.7^{\circ}$ (*c* 1.32, CHCl₃).

(1'R,5S)-8-Benzyloxymethyl-1-hydroxy-5-[1'-(2-methoxyethoxymethoxy)ethyl]-8-nonen-4-one (22). Grignard reagent 9 (10 mL, 5 mmol) was added into thioester 21 (0.680 g, 1.659 mmol), Me₂S (1.20 mL), and CuI (1.43 g, 7.5 mmol) suspended in THF (10 mL) at 0 °C. The resultant mixture was stirred at room temperature overnight and quenched with saturated NH₄Cl. The organic layer was separated and the aqueous layer was extracted with EtOAc (3×20 mL). The combined organics were washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by flash chromatography to give alcohol 22 (0.52 g, 77% yield), as a colorless oil, and unreacted thioester **21** (116 mg, 17%). **22:** R_f = 0.25 (67% EtOAc in hexane); IR (film) 3480 (br), 1708, 1454, 1375, 1245, 1097, 1042 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.25 (m, 5H), 5.06 (s, 1H), 4.93 (s, 1H), 4.76 (d, J = 7.1Hz, 1H), 4.71 (d, J = 7.1 Hz, 1H), 4.47 (s, 2H), 3.93 (s, 2H), 3.90 (m, 1H), 3.69 (m, 2H), 3.56 (m, 4H), 3.39 (s, 3H), 2.78 (m, 2H), 2.52 (dt, J = 18.3, 6.6 Hz, 1H), 2.26 (br s, 1H), 2.00 (m, 2H), 1.82 (m, 3H), 1.62 (m, 1H), 1.11 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 212.9, 145.3, 138.2, 128.4, 127.7, 127.6, 112.5, 93.9, 74.1, 72.9, 72.0, 71.7, 67.2, 61.9, 59.0, 56.7, 41.5, 31.1, 26.0, 25.9, 17.3; LRMS (EI) m/z 302 (M⁺ - MEM -OH, 4), 375 (2), 301 (4), 284 (18), 257 (15), 195 (37), 193 (70), 174 (40), 91 (100), 89 (64); HRMS (EI) m/z calcd for C19H26O3 $(M^+ - MEM - OH)$ 302.1882, found 302.1880; $[\alpha]_D = +17.5^\circ$ (c 0.76, CHCl₃).

(1'R,5S)-8-Benzyloxymethyl-5-[1'-(2-methoxyethoxymethoxy)ethyl]4-oxo-8-nonenoic Acid (23). Following the procedure for the preparation of acid 11a, acid 23 was similarly prepared in 75% yield from alcohol 22 (88 mg, 0.216 mmol) and PDC (0.49 g, 1.293 mmol). **23:** a colorless oil; $R_f = 0.18$ (75% EtOAc in hexane); IR (film) 3502, 2930, 1712, 1456, 1384, 1112, 1040 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.77 (br s, 1H), 7.37–7.25 (m, 5H), 5.06 (s, 1H), 4.93 (s, 1H), 4.76 (d, J = 7.1Hz, 1H), 4.71 (d, J = 7.1 Hz, 1H), 4.47 (s, 2H), 3.93 (s, 2H), 3.88 (m, 1H), 3.68 (m, 2H), 3.54 (m, 2H), 3.38 (s, 3H), 2.88 (m, 1H), 2.72 (m, 2H), 2.57 (m, 2H), 2.02 (m, 2H), 1.90 (m, 1H), 1.62 (m, 1H), 1.11 (d, J = 6.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.3, 177.9, 145.2, 138.2, 128.3, 127.7, 127.5, 112.4, 93.9, 74.0, 72.8, 71.9, 71.7, 67.1, 59.0, 56.4, 39.3, 31.0, 27.5, 25.9, 17.1; LRMS (EI) m/z 333 (M⁺ – MEM, 6), 391 (5), 347 (9), 242 (28), 197 (31), 91 (100); HRMS (EI) m/z calcd for $C_{19}H_{25}O_5$ (M⁺ – MEM) 333.1702, found 333.1699; $[\alpha]^{20}D_ =$ +24.1° (c 0.69, CHCl₃).

(1'R,6S)-9-Benzyloxymethyl-1-diazo-6-[1'-(2-methoxyethoxymethoxy)ethyl]-9-decene-2,5-dione (4). Following the procedure for the preparation of diazo ketone 12a, diazo ketone 4 was prepared in a similar fashion in 72% yield from acid 23 (120 mg, 0.294 mmol), Et₃N (0.061 mL, 0.439 mmol), isobutyl chloroformate (0.057 mL, 0.440 mmol), and ethereal diazomethane (3 mL, about 1.0 mmol). 4: a yellow oil; $R_f =$ 0.23 (40% EtOAc in hexane); IR (film) 2929, 2896, 2108, 1711, 1644, 1380, 1100, 1039 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 5.28 (br s, 1H), 5.07 (s, 1H), 4.94 (s, 1H), 4.76 (d, J = 7.1 Hz, 1H), 4.71 (d, J = 7.1 Hz, 1H), 4.48 (s, 2H), 3.94 (s, 2H), 3.88 (m, 1H), 3.68 (m, 2H), 3.54 (m, 2H), 3.38 (s, 3H), 2.95 (dt, J = 18.9, 6.4 Hz, 1H), 2.78 (m, 2H), 2.55 (br m, 2H), 2.01 (m, 2H), 1.86 (m, 1H), 1.60 (m, 1H), 1.11 (d, J = 6.3 Hz, 3H); 13 C NMR (75 MHz, CDCl₃) δ 210.9, 193.4, 145.3, 138.4, 128.4, 127.7, 127.6, 112.4, 94.0, 74.1, 72.9, 72.0, 71.7, 67.2, 59.1, 56.5, 54.5 (br), 39.4 (br), 33.9 (br), 31.1, 26.1, 17.2; LRMS (EI) m/z 418 (M⁺ – N₂, 18), 342 (66), 312 (22), 299 (30), 285 (32), 251 (28), 233 (17); HRMS (EI) m/z calcd for C24H34O6 $(M^+ - N_2)$ 418.2355, found 418.2361; $[\alpha]^{20}_D = +19.9^\circ$ (*c* 5.85, CHCl₃).

(1*S*,1′*R*,2*S*,5*S*,7*R*)-5-Benzyloxymethyl-2-[1′-(2-methoxyethoxymethoxy)ethyl]-11-oxatricyclo[5.3.1.0^{1,5}]-8-undecanone (3a) and (1*R*,1′*R*,2*S*,5*R*,7*S*)-5-Benzyloxymethyl-2 - [1′-(2-methoxyethoxymethoxy)ethyl]-11oxatricyclo[5.3.1.0^{1,5}]-8-undecanone (3b). A solution of diazo ketone 4 (10.1 mg, 0.0226 mmol) in dry benzotrifluoride (1.0 mL) was treated with Rh₂(*S*-BPTV)₄ (0.3 mg, 2.26 × 10⁻⁴ mmol) at 0 °C for 2.5 h. The reaction mixture was filtered and concentrated in vacuo. The residue was purified by flash chromatography to give product 3 (5.7 mg, 51% yield, 3a:3b = 1.4:1).

HPLC separation of the mixture of 3a and 3b gave analytically pure samples of **3a** and **3b**. **3a**: a colorless oil; $R_f = 0.48$ (40% EtOAc in hexane); IR (CH₂Cl₂) 2935, 2874, 1728, 1456, 1362, 1103, 1035 cm $^{-1}$; $^1\mathrm{H}$ NMR (300 MHz, CDCl_3) δ 7.37 – 7.27 (m, 5H), 4.60 (d, J = 7.0 Hz, 1H), 4.57 (d, J = 7.1 Hz, 1H), 4.50 (s, 2H), 4.32 (br d, J = 6.6 Hz, 1H), 3.87 (dq, J = 6.3, 2.2 Hz, 1H), 3.62 (m, 1H), 3.53 (q, J = 4.1 Hz, 1H), 3.50 (s, 2H), 3.48 (d, J = 9.2 Hz, 1H), 3.46 (d, J = 9.2 Hz, 1H), 3.38 (s, 3H), 2.61 (dt, J = 17.7, 8.9 Hz, 1H), 2.36 (m, 1H), 2.22 (m, 1H), 2.18 (m, 2H), 2.12 (m, 1H), 2.01 (m, 1H), 1.91 (m, 3H), 1.66 (m, 1H), 1.19 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.6, 138.2, 128,4, 127.7, 127.7, 94.7, 94.2, 82.4, 73.5, 73.1, 71.8, 71.4, 67.5, 59.1, 56.2, 53.8, 40.6, 37.7, 33.1, 25.9, 24.3, 19.3; LRMS (EI) m/z 418 (M⁺, 2), 342 (16), 329 (11) 299 (15), 221 (36),111 (49), 89 (100); HRMS (EI) m/z calcd for $C_{24}H_{34}O_6$ 418.2355, found 418.2360; $[\alpha]^{20}_{D} = -26.3^{\circ}$ (c 0.11, CHCl₃). **3b:** a colorless oil; $R_f = 0.43$ (40% EtOAc in hexane); IR (CH₂Cl₂) 2934, 2874, 1728, 1455, 1364, 1103, 1037 cm⁻¹;¹H NMR (600 MHz, CDCl₃) δ 7.36-7.25 (m, 5H), 4.76 (q-AB, 2H), 4.48 (s, 2H), 4.31 (t, J = 4.8 Hz, 1H), 4.05-4.04 (m, 1H), 3.78-3.75 (m, 1H), 3.73-3.69 (m, 1H), 3.54 (t, J = 4.7 Hz, 2H), 3.38 (s, 2H), 3.30 (q-AB, 2H), 2.47–2.35 (m, 3H), 2.01 (d, J = 4.8Hz, 2H), 1.91-1.84 (m, 1H), 1.83-1.74 (m, 4H), 1.63-1.60 (m, 2H), 1.29 (d, J = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 212.1, 137.8, 128.4, 127.8, 127.6, 94.2, 92.4, 82.4, 77.5, 74.2, 73.5, 72.1, 71.9, 67.0, 59.1, 56.2, 52.6, 42.1, 36.4, 33.7, 24.9, 24.7, 20.6; LRMS (EI) m/z 418 (M⁺, 2), 342 (20), 329 (9) 299 (12), 221 (45), 111 (44), 89 (100); HRMS (EI) m/z calcd for $C_{24}H_{34}O_6$ 418.2355, found 418.2360; $[\alpha]^{20}D = +16.3^{\circ}$ (c 0.11, CHCl₃).

(1*S*,2*R*,5*S*,7*R*)-2-Acetyl-5-benzyloxymethyl-11-oxatricyclo[5.3.1.0^{1,5}]-8-undecanone (24a) and (1*R*,2*R*,5*R*,7*S*)-2-Acetyl-5-benzyloxymethyl-11-oxatricyclo[5.3.1.0^{1,5}]-8-undecanone (24b). A mixture of 3a and 3b (3a:3b = 1:1.25, 40 mg, 0.096 mmol) and TsOH (37 mg, 0.20 mmol) in MeOH (3 mL) was heated to reflux for 1 h. MeOH was removed in vacuo. The residue was taken up in 5 mL of EtOAc, washed with saturated NaHCO₃ and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash chromatography to afford a mixture of alcohols (25 mg. 80%) as a colorless oil.

To the alcohols (25 mg, 0.076 mmol) in dry CH_2Cl_2 (1 mL) was added the Dess-Martin reagent⁴¹ (50 mg, 0.12 mmol) at room temperature. After stirring for 6 h, saturated Na₂S₂O₃ solution was added dropwise until the reaction mixture cleared up. Saturated NaHCO₃ was added and the solution was extracted with EtOAc (3 × 5 mL). The combined organics were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash chromatography to afford a mixture of **24a** and **24b** (**24a**:**24b** = 1.25:1, 23 mg, 93%) as a colorless oil.

Careful separation of the mixture of 24a and 24b by column chromatography gave pure samples of 24a and 24b for analytical purposes. **24a:** $R_f = 0.65$ (40% EtOAc in hexane); IR (CH₂Cl₂) 2958, 2938, 2869, 1726, 1709, 1455, 1364, 1104, 1088, 1028 cm $^{-1};$ 1H NMR (300 MHz, CDCl_3) δ 7.38–7.27 (m, 5H), 4.52 (d, J = 12.1 Hz, 1H), 4.46 (d, J = 12.1 Hz, 1H), 4.30 (d, J = 7.4 Hz, 1H), 3.62 (d, J = 9.2 Hz, 1H), 3.44 (d, J = 9.2Hz, 1H), 3.33 (dd, J = 8.3, 2.2 Hz, 1H), 2.38 (m, 3H), 2.25 (m, 1H), 2.21 (s, 3H), 2.15 (q, J = 6.9 Hz, 1H), 2.03 (dd, J = 8.8, 6.9 Hz, 1H), 1.98 (dd, J = 12.8, 8.3 Hz, 1H), 1.83 (ddd, J =6.6, 3.7, 2.5 Hz, 1H), 1.72 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) $\delta\ {\tt 211.7,\ 209.5,\ 137.9,\ 128.4,\ 127.8,\ 127.6,\ 93.3,\ 82.4,\ 73.4,\ 72.5,}$ 61.5, 54.9, 42.0, 37.9, 33.8, 31.2, 27.2, 24.6; LRMS (EI) m/z 328 (M⁺, 19), 237 (26), 194 (100), 179 (53), 149 (67); HRMS (EI) m/z calcd for C₂₀H₂₄O₄ 328.1675, found 328.1672; $[\alpha]^{20}_{D} =$ -22.9° (*c* 0.18, CHCl₃). **24b**: $R_f = 0.65$ (40% EtOAc in hexane); IR (CH₂Cl₂) 2960, 2929, 2865, 1726, 1695, 1455, 1358, 1104, 1076, 1030 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.38-7.27 (m, 5H), 4.48 (s, 2H), 4.37 (dd, J = 5.3, 4.2 Hz, 1H), 3.33 (d, J =9.5 Hz, 1H), 3.27 (d, J = 9.5 Hz, 1H), 2.60 (dd, J = 11.8, 6.4 Hz, 1H), 2.47–2.29 (m, 4H), 2.25 (s, 3H), 2.042 (d, J = 5.5 Hz, 1H), 2.039 (d, J = 4.0 Hz, 1H), 1.90 (m, 3H), 1.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 211.4, 209.2, 137.5, 128.5, 127.9, 127.6, 92.7, 82.7, 73.6, 73.5, 60.1, 55.3, 42.0, 36.6, 33.6, 30.3, 26.3, 23.9; LRMS (EI) m/z 328 (M⁺, 23), 237 (33), 194 (100), 179 (45), 149 (60); HRMS (EI) *m*/*z* calcd for C₂₀H₂₄O₄ 328.1675, found 328.1670; $[\alpha]^{20}_{D} = +13.6^{\circ}$ (*c* 0.13, CHCl₃).

(1*S**,2*R**,5*S**,7*R**)-5-Benzyloxymethyl-2-(1-methyl-1triethylsiloxyethyl)-11-oxatricyclo[5.3.1.0^{1,5}]undecan-8one (26a) and (1*R**,2*R**,5*R**,7*S**)-5-Benzyloxymethyl-2-(1-methyl-1-triethylsiloxyethyl)-11-oxatricyclo[5.3.1.0^{1,5}]undecan-8-one (26b). A solution of diazo ketone 25 (20.7 mg, 0.0425 mmol) in dry CH_2Cl_2 (1 mL) was treated with $Rh_2(OAc)_4$ (0.18 mg, 4.25 \times 10⁻⁴ mmol) for 3.5 h at 0 °C. Workup and chromatography afforded a mixture of cycloadducts 26a and **26b** (11.5 mg, 59%, **26a**:**26b** = 1:4.9). **26a**: a colorless oil; *R*_f = 0.61 (20% EtOAc in hexane); IR (film) 2959, 2877, 1726, 1456, 1366, 1105, 1012 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.29 (m, 5H), 4.52 (q-AB, 2H), 4.35 (br d, J = 8.4 Hz, 1H), 3.47 (d, J = 9.1 Hz, 1H), 3.39 (d, J = 9.2 Hz, 1H), 2.91-2.84 (m, 1H), 2.50-2.43 (m, 1H), 2.38-2.33 (m, 1H), 2.24 (dd, J = 7.8 Hz, 11.0 Hz, 1H), 2.17–2.12 (m, 1H), 2.05–1.96 (m, 2H), 1.93–1.88 (m, 1H), 1.73–1.65 (m, 1H), 1.61–1.55 (m, 1H), 1.34 (s, 3H), 1.18 (s, 3H), 0.94 (t, J = 8.0 Hz, 9H), 0.56 (q, J =8.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 210.0, 139.1, 128.5, 127.8, 127.7, 95.1, 83.4, 75.0, 73.6, 71.9, 60.5, 57.3, 40.4, 36.4, 33.3, 31.6, 29.9, 29.3, 26.2, 7.2, 6.9; LRMS (EI) m/z 427 (M⁺ -C₂H₅, 93), 411 (12), 305 (44), 291 (15), 235 (40), 217 (36); HRMS (EI) m/z calcd for C₂₅H₃₇O₄ Si (M⁺ - C₂H₅) 429.2461, found 429.2462. **26b**: a colorless oil; $R_f = 0.68$ (20% EtOAc in hexane); IR (film) 2957, 2876, 1724, 1456, 1365, 1130, 1103, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.27 (m, 5H), 4.50 (s, 2H), 4.29 (dd, J = 7.4, 2.3 Hz, 1H), 3.36 (d, J = 9.3Hz, 1H), 3.30 (d, J = 9.3 Hz, 1H), 3.10-3.04 (m, 1H), 2.40-2.36 (m, 2H), 2.01-1.91 (m, 3H), 1.82-1.64 (m, 4H), 1.56-1.51 (m, 1H) 1.36 (s, 3H), 1.25 (s, 3H), 0.94 (t, J = 7.9 Hz, 9H), 0.59 (q, J = 8.1 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ

⁽⁴¹⁾ Boeckman Jr., R. K.; Shao, P.; Mullins, J. J. Org. Synth. 1999, 77, 141.

212.1, 138.0, 128.4, 127.7, 127.6, 93.3, 82.3, 76.4, 74.3, 73.5, 57.3, 56.3, 42.1, 36.4, 33.7, 32.1, 27.3, 26.2, 25.7, 7.2, 6.9; LRMS (EI) m/z 429 (M⁺⁻ C₂H₅, 51), 265 (93), 218 (8), 205 (20), 191 (34), 173 (49); HRMS (EI) m/z calcd for C₂₅H₃₇O₄Si (M⁺ - C₂H₅) 429.2461, found 429.2460.

Reductive Cleavage of Compound 27. To a solution of ketone 2714 (110 mg, 0.663 mmol) in THF (2 mL) was added SmI₂ (0.1 M in THF, 14.6 mL, 1.460 mmol) at 0 °C under Ar. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with pH = 7 phosphate buffer (2 mL). The organic layer was separated and the aqueous layer was extracted with ether (3 \times 5 mL). The combined organic phases were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by flash chromatography to give compounds 29 [76 mg, 69% yield, **29a** (keto form):**29b** (hemiacetal) = 0.14: 0.86] and **30** (16 mg, 14% yield), both as colorless oils. **29**: R_f 0.40 (33% EtOAc/hexane); IR (film) 3347 (br), 2959, 2877, 1721, 1454, 1236, 1090, 1040, 938 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.58 (s, 0.86 × 1H), 2.94 (dt, J = 14.1, 3.8 Hz, 0.14 × 1H), 2.50 (m, 0.14 \times 2H), 2.32 (m, 0.14 \times H) 2.16–1.48 (m, 0.86 \times 15H + 0.14 \times 12H); 13 C NMR (75 MHz, CDCl₃) **29a**: δ 214.8, 79.9, 50.6, 43.5, 41.7, 38.2, 34.8, 30.7, 21.9, 19.7. **29b**: δ 103.8, 90.5, 50.6, 34.9, 34.4, 32.6, 30.9, 27.9, 21.6, 21.2; LRMS (EI) m/z 168 (M⁺, 11), 151 (100), 123 (35), 95 (29); HRMS (EI) m/z calcd for $C_{10}H_{16}O_2$ 168.1150, found 168.1146. **30**: $R_f = 0.25$ (33% EtOAc/hexane); IR (film) 3400 (br), 2944, 2869, 1464, 1456, 1351, 1149, 1128, 1066, 1010, 913 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.26 (dd, J = 6.4, 4.5 Hz, 1H), 3.82 (m, 1H), 2.33-2.22 (m, 2H), 1.97-1.81 (m, 5H), 1.66-1.35 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) & 92.5, 80.4, 68.1, 45.7, 36.2, 34.8, 34.0, 32.8, 28.0, 26.0; LRMS (EI) m/z 168 (M⁺, 16), 124 (100), 97 (43); HRMS (EI) m/z calcd for C18H22O3 168.1150, found 168.1153. The $J_{ax-ax} = 6.4$ Hz of the downfield signal at 4.26 ppm implies an axial proton, and thus, the hydroxyl group in **30** is α.

8-Methyl-11-oxatricyclo[5.3.1.0^{1.5}]undecan-8-ol (31). To a solution of ketone 27 (83 mg, 0.50 mmol) in Et₂O (2 mL) was added MeMgI at 0 °C under argon. The reaction mixture was stirred for 2 h at room temperature and then quenched using saturated NH₄Cl (2 mL). The organic layer was separated and the aqueous layer was extracted with ether (3 × 5 mL). The combined organics were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by flash chromatography to give alcohol **31** (84 mg, 92% yield, one diastereoisomer) as a colorless oil: R_{f} 0.35 (33% EtOAc in hexane); IR (film, cm⁻¹) 3391 (br), 2943, 2869, 1694, 1454, 1334, 1265, 1167, 1093, 1039, 1009, 948; ¹H NMR (300 MHz, CDCl₃) δ 3.91 (d, J = 7.1 Hz, 1H), 2.39 (m, 1H), 2.25 (m, 1H), 1.91–1.40 (m, 12H), 1.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 93.0, 84.8, 69.7, 45.1, 36.2, 35.1, 34.7, 33.6, 32.4, 29.7, 26.3, 25.8; LRMS (EI) m/z 182 (M⁺, 17), 139 (47), 138 (100), 111 (48), 95 (46); HRMS (EI) m/z calcd for $C_{11}H_{18}O_2$ 182.1307, found 182.1305.

(3a R^* ,8a S^*)-6-Methyl-2,3,4,5,8,8a-hexahydro-1H-azulen-3a-ol (33). To a solution of alcohol 31 (90 mg, 0.495 mmol) in DMPU (0.54 mL) was added SOCl₂ (0.090 mL, 0.617 mmol) at 0 °C under Ar. The reaction mixture was stirred overnight then quenched with water (2 mL). The resulting mixture was extracted with ether (3 × 5 mL). The combined organics were washed with water, dried over MgSO₄, and removed of solvent carefully under reduced pressure (0 °C bath, 50 mmHg) to give the volatile chloride 32, which was taken up in 2.0 mL of Et₂O and used in the next step without further purification.

Sodium (50 mg, 2.174 mmol) was added to the ethereal solution of chloride 32 under argon. The reaction mixture was stirred under reflux for 5 h. The reaction was quenched carefully by the addition of ethanol (0.20 mL) and then water (2 mL). The resulting mixture was extracted with ether (3 \times 5 mL), and the combined organics were washed with saturated NH₄Cl and brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by flash chromatography to give alcohol 33 (64 mg, 71% yield from 31) as a colorless oil: R_f 0.50 (33% Et₂O in hexane); IR (film) 3410 (br), 2947, 2871, 1451, 1336, 1089, 950 cm $^{-1};$ $^1\rm H$ NMR (300 MHz, CDCl_3) δ 5.54 (m, 1H), 2.48 (br t, J = 14.0 Hz, 1H), 2.06 (m, 1H), 1.94–1.35 (m, 12H), 1.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 124.6, 81.2, 47.2, 41.9, 37.1, 30.4, 27.5, 27.2, 26.2, 19.6; LRMS (EI) m/z 166 (M⁺, 13), 149 (23), 148 (100), 133 (75), 119 (74), 105 (79), 91 (60); HRMS (EI) *m*/*z* calcd for C₁₁H₁₈O 166.1358, found 166.1363.

Acknowledgment. The work described in this paper was supported by a grant from the Research Grants Council of Hong Kong Special Administrative Region, China (Project No. HKU 7081/01P), The University of Hong Kong Hung Hing Ying Physical Sciences Research Fund, and the Areas of Excellence Scheme established under the University Grants Committee of the Hong Kong Special Administrative Region, China (Project No. AoE/P-10/01). B.C. thanks the University of Hong Kong for an exchange scholarship. R.Y.Y.K. thanks the University of Hong Kong for a Swire Fellowship. We thank Dr. Yunhong Zheng for technical assistance.

Supporting Information Available: Experimental procedures and characterization for compounds **19**, **20**, and **25**; ¹H and ¹³C NMR spectra for compounds **3a,b**, **4**, **7**, **8**, **10–18**, **21–26**, **29–31**, **33**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO026399M