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Single-, double-, and even triple-helical structures play
important roles for biological and synthetic macromolecules;
however, for relatively small organic compounds helical
arrangements are not common.[1] In most biological macro-
molecules such a helical structure is favored and maintained
by hydrogen bonds. Helical conformations of saturated
compounds without functional substituents is observed less
frequently. Aliphatic perfluorocarbon chains are known to
adopt a helical structure in the crystalline state and in solution
as a result of electrostatic repulsion of the fluorine substitu-
ents in the 1- and 3-positions,[2] poly(ethyleneglycol) adopts a
helical conformation in isobutyric acid solution,[3] and per-
methyldecasilane forms a helix in a helical schizophyllan
matrix.[4] As formally saturated hydrocarbons have no driving
forces to adopt helical conformations (apart from van der
Waals interactions), their conformations range from “zig-zag”
for linear hydrocarbons on one hand to helical for certain
enantiomerically pure [n]triangulanes (1)[5,6] on the other.
Helicity of the latter, however, is predetermined by their rigid
helical shape.

[1,1’;2’,1’’;2’’,1’’’;…;2n�2,1n�1]Oligocyclopropanes (2),
which have been discovered as substructures in two natural
products from different sources,[7] exhibit quite interesting
conformational properties depending on their substituents.

Thus, helical conformations were demonstrated for
[1,1’;2’,1’’]tercyclopropanedimethanol (2, n= 3, R1=R2=

CH2OH) and for [1,1’;2’,1’’;2’’,1’’’;2’’’,1’’’’]quinquecyclopro-
panedimethanol (2, n= 5, R1=R2=CH2OH) in solution as
well as in the solid state, while other compounds of this type
adopted different conformations, at least in the crystals.[8]

Based on an earlier observation that bicyclopropyl (3) in
the gaseous and the liquid state preferentially adopts a
synclinal (gauche) conformation,[9] one is intuitively led to
conceive that the higher 1,1’-linked oligocyclopropanes 4 (n�
3) would prefer helical arrangements in which all bicyclo-
propyl subunits have either (+)- or (�)-gauche conforma-
tions. This notion is indeed supported by density functional
theory (DFT) computations at the B3LYP/6-31G(d) level of
theory. Since the only known higher 1,1’-linked oligocyclo-
propanes 4, the 1,1-dicyclopropylcyclopropane 4a (n= 3,
R1=R2=H),[10] its derivatives 4b–d (n= 3, R1=R2=OH,[11]

OSiMe3,
[11c,d] and OMs[11d]), and 1,1’’’-dimethyl-

[1,1’;1’,1’’;1’’,1’’’]quatercyclopropane 4e (n= 4, R1=R2=

Me),[12] had not been structurally characterized at all, we set
out to prepare such [1,1’;1’,1’’;…;1n�2,1n�1]oligocyclopropanes
endowed with polar functionalities, in order to investigate
their structural features.

The Matteson homologation methodology[13] was consid-
ered to be employable as the key step. In this, an organyl
substituent migrates from the negatively charged boron to an
adjacent carbon in a borate complex with inversion of
configuration.[14] For example, intermediate 7, which is
formed upon treatment of a lithium halocarbenoid like 6
(prepared from dibromocyclopropane (5) and n-butylli-
thium)with a borane, is converted into the corresponding 1-
organocyclopropylborane 8 (Scheme 1). The latter can then
undergo the same transformation repeatedly upon treatment
with the in situ generated carbenoid 6, eventually leading to
1,1n-disubstituted oligocyclopropanes 4 (n� 2). Indeed, lith-
ium halocyclopropylidenoids upon treatment with organo-
boronates have been found to produce cyclopropaneboro-
nates in good yields.[13] Thus, when trimethylene methylbor-
onate (9) was treated with a solution of dibromocyclopropane
(5)[15] in tetrahydrofuran, to which n-butyllithium had been

Scheme 1. Example of a Matteson-type homologation.
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added at �110 8C, and this treatment was iterated four more
times, a mixture of cyclopropylcyclopropaneboronates was
formed. Subsequent oxidation with hydrogen peroxide in the
presence of sodium hydroxide gave a mixture of the cyclo-
propylcyclopropanols 10–12 in good overall yield (Scheme 2).

These products could be separated by column chroma-
tography, and each cyclopropanol was individually trans-
formed to the corresponding 3,5-dinitrobenzoate—10-DNB
(81% yield), 11-DNB (70%), and 12-DNB (72%)—by
reaction with 3,5-dinitrobenzoyl chloride (13). Crystals of all
three dinitrobenzoates were grown and subjected to X-ray
diffraction analysis.[16]

In order to obtain an even higher 1,1’-linked oligocyclo-
propanol than 12, the same iterative homologation was
performed with cyclopropaneboronates 14[17] and 15
(Scheme 3).[18,19] Indeed, the [1,1’;1’,1’’;1’’,1’’’;1’’’,1’’’’]quinque-
cyclopropan-1-ol (18) was isolated in 32% (from 14) and 22%
yield (from 15) along with tercyclopropanol 16 (22% from 14,
6% from 15) and quatercyclopropanol 17 (28% from 14, 14%
from 15). The quinquecyclopropanol 18 was also converted to
its dinitrobenzoate 18-DNB, and the latter was analyzed by X-
ray diffraction.[16]

The DFT computations[20–25] for [1,1’;1’,1’’;1’’,1’’’;1’’’,1’’’’;
1’’’’,1’’’’’]sexicyclopropane (19) in the gas phase predicted
dihedral angles of �55.0, + 60.6, + 62.5, + 59.4, and �52.58
(see the Supporting Information) along the chain for the
lowest energy conformer; in other words, the inner quatercy-
clopropane fragment in this molecule has an all-(+)-gauche
conformation, while the two outer cyclopropyl groups are
(�)-gauche oriented. In the crystal, the quinquecyclopropane
moiety of 18-DNB, on going from the cyclopropanol to the

terminal cyclopropane moiety, has dihedral angles between
each two neighboring cyclopropanes of 52.9, 64.5, 60.3, and
�68.68, respectively (averages for the two independent
molecules in the asymmetric unit); this orientation is com-
pletely analogous to that calculated for the inner section of
the sexicyclopropane. In the crystals of the other three
dinitrobenzoates 10-DNB, 11-DNB, and 12-DNB the 1,1’-
linked cyclopropane moieties adopt analogous helical all-
gauche conformations.

The chemical behavior of the 1,1’-oligocyclopropylcyclo-
propanols 16–18 is also noteworthy as it differs from that
commonly observed for 1-cyclopropyl-substituted cyclopro-
panols. Thus, an attempted conversion of the alcohols 17 and
18 to the corresponding bromides—which were desired for
reduction to the unsubstituted quatercyclopropane 4 f (n= 4,
R1=R2=H) and quinquecyclopropane 4g (n= 5, R1=R2=

H)—did neither occur with complete retention of their
cyclopropane moieties (cf. Ref. [26]) nor with iterative ring
enlargement by way of cascade rearrangements involving all
their cyclopropane moieties.[11c,d,27] Instead, in each case only
the cyclopropanol moiety itself underwent ring opening to a
b-bromoketone fragment (cf. Ref. [28]) to give the 3-bromo-
propionyl-1,1’-oligocyclopropanes 20 and 21 in 64 and 92%
yield, respectively, with retention of the other three-mem-
bered rings (Scheme 4).

Scheme 2. Facile synthesis of bis-, ter-, and quatercyclopropane deriv-
atives by a Matteson-type homologation of 1,1-dibromocyclopropane.

Scheme 3. Synthesis of quinquecyclopropanol 18 and computed con-
formation of sexicyclopropane 19.

Scheme 4. Ring opening of [1,1’;1’,1’’;1’’,1’’’]quatercyclopropan-1-ol
(17) and [1,1’;1’,1’’;1’’,1’’’;1’’’,1’’’’]quinquecyclopropan-1-ol (18) upon
attempted conversion into the corresponding bromides.
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Thus, both the 1,1-linkage and the 1,2-linkage of oligocy-
clopropanes lead to helical structures of relatively small
molecules. The consequences of this preferred arrangement
of [1,1’;1’,1’’;…;1n�2,1n�1]oligocyclopropane units are currently
being studied.

Experimental Section
Representative procedure: Synthesis of 18 : n-Butyllithium in hexane
(2.2 mmol, 0.91 mL of a 2.42m solution in hexane) was added
dropwise under argon to a solution of 1,1-dibromocyclopropane (5)[15]

(440 mg, 2.2 mmol) in anhydrous THF (20 mL) at �110 8C, and the
mixture was stirred at �110 8C for 5 min. The mixture was then
treated with trimethylene cyclopropaneboronate (14) (252 mg,
2.0 mmol), and the resulting mixture was gradually warmed to room
temperature within approximately 12 h. After that, dibromide 5
(440 mg, 2.2 mmol) was added at 25 8C, and the mixture was cooled to
�110 8C again. n-Butyllithium (2.2 mmol, 0.91 mL of a 2.42m solution
in hexane) was added at �110 8C, and the mixture was gradually
warmed to room temperature again. This procedure was repeated
another three times. Finally, hydrogen peroxide (8 mmol, 908 mg,
820 mL of 30% aq. solution) and sodium hydroxide (5 mmol, 5 mL of
1n aq. solution) were added at 0 8C, and the reaction mixture was
stirred at 25 8C for 6 h. The resulting mixture was extracted
thoroughly with diethyl ether (6 H 50 mL), and the combined organic
extracts were dried (MgSO4). The solution was concentrated under
reduced pressure, and the residue was separated and purified by
column chromatography (80 g of flash silica gel, 2 H 60 cm column,
hexane/ether 10:1!4:1, Rf= 0.25 in hexane/ether 4:1) to yield
quinquecyclopropan-1-ol 18 (139 mg, 32%) as a colorless oil.
1H NMR (250 MHz, CDCl3): d= 2.55 (br s, 1H; OH), 1.66–1.57 (m,
1H; CH), 0.71–0.66 (m, 2H; CH2), 0.56–0.51 (m, 2H; CH2), 0.49–0.44
(m, 2H; CH2), 0.39–0.31 (m, 2H; CH2), 0.29–0.21 (m, 6H; CH2), 0.12–
0.06 (m, 4H; CH2), �0.02 to �0.09 ppm (m, 2H; CH2);

13C NMR
(62.9 MHz, CDCl3): d= 59.9 (C-OH), 25.7 (C), 25.2 (C), 23.6 (C), 14.8
(CH), 12.4 (2CH2), 9.7 (2CH2), 8.0 (2CH2), 7.5 (2CH2), 1.9 ppm
(2CH2). The structure of 18 was proved by X-ray crystal structure
analysis of its 3,5-dinitrobenzoate 18-DNB.[16]
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