

Carbohydrate Research 337 (2002) 983-989

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Convenient use of non-malodorous thioglycosyl donors for the assembly of multivalent globo- and isoglobosyl trisaccharides

Hirofumi Dohi,^a Yoshihiro Nishida,^{a,*} Tae Takeda,^b Kazukiyo Kobayashi^{a,*}

^aDepartment of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^bDepartment of Infectious Disease Research, National Children's Medical Research Center, Taishido, Setagaya, Tokyo 154, Japan

Received 28 December 2001; accepted 25 March 2002

Abstract

New thioglycosyl donors (*o*-methoxycarbonylphenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- β -D-galactopyranoside and its 6-*O*-acetyl analogue) were designed and used for the synthesis of glycoconjugate polymers carrying Gb₃ [Gal($\alpha 1 \rightarrow 4$)Gal($\beta 1 \rightarrow 4$)Glc] and isoGb₃ [Gal($\alpha 1 \rightarrow 3$)Gal($\beta 1 \rightarrow 4$)Glc] clusters as side chains. These donors scarcely evolved the unpleasant odor of thiophenols and showed a high α -anomeric selectivity in the galactosylation of *p*-nitrophenyl β -lactoside derivatives, although in moderate yields. The derived trisaccharides were converted to multivalent carbohydrate ligands and were subjected to a biological assay with Shiga toxins. The multivalent Gb₃ ligand was highly active in inhibiting the toxicity, while the isoGb₃ ligand showed no activity, indicating that Stx-I discriminates between the carbohydrate structures. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Multivalent oligosaccharides; Stereo- and regioselective glycosylations; Glycoconjugate polymers; Gal($\alpha 1 \rightarrow 3$)Gal epitope; P^k antigenic trisaccharide; Shiga toxins

1. Introduction

Cell surface oligosaccharides with a terminal Gal($\alpha 1 \rightarrow 3$)Gal or Gal($\alpha 1 \rightarrow 4$)Gal linkage are known as ligands of various bacterial toxins (Scheme 1).¹ For example, a P^k antigenic globotrioside [Gb₃: Gal($\alpha 1 \rightarrow 4$)Gal($\beta 1 \rightarrow 4$)Glc] is recognized by Shiga toxins (Stx-I and Stx-II) produced by *Escherichia. coli* O-157:H-7, which cause a serious hemolytic uremic syndrome in humans.² The isomeric isoglobotrioside [isoGb₃: Gal($\alpha 1 \rightarrow 3$)Gal($\beta 1 \rightarrow 4$)Glc] is the ligand of Toxin A produced by *Clostridium difficile*, and the toxin plays a major role in causing antibiotic-associated diarrhea.³ It is also well known that the analogous Gal($\alpha 1 \rightarrow 3$)Gal($\beta 1 \rightarrow 4$)GlcNAc linkage is the key determinant of animal antigens responsible for hyperacute rejection upon xenotransplantation.⁴

Because of their biological significance, Gb_3 and isoGb₃ trisaccharides and other related α -galactoside epitopes have resulted in a number of synthetic^{5,6} and biomedical⁷ studies. We already reported the synthesis of Gb₃ and a multivalent model and showed that these ligands displayed an inhibitory activity against Shiga

Scheme 1. Structures of P^k antigenic trisaccharide and $Gal(\alpha 1 \rightarrow 3)Gal$ epitope.

^{*} Corresponding authors. Tel.: +81-52-7892553/2488; fax: +81-52-7892528.

E-mail addresses: nishida@mol.nagoya-u.ac.jp (Y. Nishida), kobayash@mol.nagoya-u.ac.jp (K. Kobayashi).

Scheme 2. Structures of the target molecules 1 and 2, and novel thiogalactosyl donors 3 and 4.

Scheme 3. Synthesis of target molecules 1 and 2. Reaction conditions: (a) (i) NaOMe, MeOH, rt, 6 h, 93%; (ii) $Pd(OH)_2/C$, HCl, H₂, MeOH, rt, 6 h, 92%; (b) NaOMe, MeOH, rt, 6 h, 97%; (ii) $Pd(OH)_2/C$, HCl, H₂, MeOH, rt, 6 h, 97%.

toxin-I (CD₅₀ $10^{-8} \sim 10^{-9}$ M).⁸ A variety of multivalent Gb₃ structures have been also designed by other groups which showed a potent activity against Shiga toxins.⁹ These studies clearly demonstrate the significance of carbohydrate clusters as effective ligands of bacterial toxins and other binding proteins and let

Table 1Glycosylation of 5 and 6 with various glycosyl donors

expect possible applications in the biomedical field. This paper reports a convenient synthesis of p-aminophenyl (pAP) Gb₃ glycoside 1 and isoGb₃ glycoside 2 as precursors of multivalent Gb₃ and isoGb₃ ligands (Scheme 2). The synthesis was conducted efficiently by using the novel thiogalactosyl donors 3 and 4, which were designed as non-malodorous thioglycosyl donors.

2. Results and discussion

Design of non-malodorous thiogalactosyl donors and its application to α -anomeric selective galactosylation.— The synthetic methods,^{5,6} already reported for glycosyl ceramides, could not be applied conveniently to the synthesis of glycoconjugate polymers because of their lack of a suitable functional group for the grafting and polymerization step. Thus, we adopted our previous pathway⁸ starting from *p*-nitrophenyl β -lactoside leading to glycosyl acceptors 5 and 6 for the synthesis of 1 and 2 (Scheme 3). At first, a conventional glycosylation step between 5 and glycosyl fluoride 7 was examined⁸ (Table 1). Since glycosyl donors with an electron-withdrawing group at O-6 have been reported to promote an α -anomeric specificity,¹⁰ donor 7 was derivatized with a 6-O-acetyl group. Glycosylation of fluoride 7 with glycosyl acceptor 5 using tin(II) chloride and silver perchlorate as activators¹¹ proceeded with the expected α -anomeric selectivity to give the desired product 8 (38% isolated yield, $\alpha/\beta \ge 19:1$, ¹H NMR analysis). Despite the fact that the yield of this reaction could be increased by further optimization, we decided to try another route towards the desired trisaccharide 8.

Next, we designed thioglycosyl donors 3^{12} and 4 for the construction of the α - $(1 \rightarrow 3)$ galactosyl linkages and tested their reactivity. It was expected that the electronwithdrawing *o*-methoxycarbonyl group might decrease the reactivity of thiophenyl donors to improve the stereo- and regioselectivity. The donors were obtained from an $S_N 2$ reaction of methyl thiosalicylate with

Run	Acceptor	Donor equiv ^a	Activator equiv ^b	Temp (°C)	Time (h)	Yield ^c (%)
1	5	7, 1.5	AgClO ₄ (1.5), SnCl ₂ (1.5)	$0 \rightarrow rt$	12	8 , 38
2	5	3, 1.5	NIS (2.0), TfOH (ca.)	-10	2	9 , 60 ^d
3	5	4, 1.5	NIS (2.0), TfOH (ca.)	-10	1	8, 65
4	6	3, 2.0	NIS (2.0), TfOH (ca.)	-10	3	10, 79

^a Against acceptor.

^b Against donor.

^c Isolated yield.

^d 4'-O-Galactosylated by product was generated (17% isolated yield, α/β 82:18).

d 11: R = Ac

Scheme 4. Synthesis of novel thioglycosyl donors **3** and **4**. Reaction conditions: (c) methyl thiosalicylate, K_2CO_3 , DMF, rt, 2 h, 90%; (d) NaOMe, MeOH, rt, 3 h, 99%; (e) NaH, BnBr, DMF, 16 h, 91%; (f) TBDPSCl, Et₃N, DMAP, Py, rt, 8 h, 85%; (g) BnBr, NaH, DMF, rt, 12 h, 92%; (h) TBAF, THF, rt, 12 h; (i) Ac₂O, Py, rt, 7 h, 94% (2 steps).

Scheme 5. Synthesis of glycoconjugate polymers 17 and 19. Reaction conditions: (j) acryloyl chloride, Et_3N , CH_2Cl_2 , MeOH, 0 °C \rightarrow rt, 1.5 h, 92%; (k) acrylamide, 2,2-azobis(2-amidinopropane) dihydrochloride, H₂O, 60 °C, 12 h, 70%; (l) acryloyl chloride, Et₃N, CH₂Cl₂, MeOH, 0 °C \rightarrow rt, 1.5 h, 93%; (m) acrylamide, 2,2-azobis(2-amidinopropane) dihydrochloride, H₂O, 60 °C, 12 h, 76%.

per-O-acetyl galactosyl bromide and isolated as crystalline solids (Scheme 4). Though the thiosalicylate smells weakly like a blend of methyl salicylate and thiophenol, the reaction does not emit the unpleasant odor of mercapto alcohol and phenol. Glycosylation between 5 and 4 gave the desired product 8 in satisfactory yield and α -anomeric selectivity (65% isolated yield, α/β ratio $\geq 19:1$, ¹H NMR analysis), while the donor **3** without the 6-*O*-acetyl group tended to show higher reactivity but lower regioselectivity (**9** 60%, $\alpha(1 \rightarrow 4)$ isomer in 17% yield). The utility of these new donors could be verified in the reactions with the less reactive acceptor **6** carrying a bulky pivaloyl group in the vicinity. The reaction between **3** and **6** gave the desired globotrioside **10** in high yield (79%, $\alpha/\beta \geq 19:1$) by using a mixture of ethyl ether and dichloromethane as solvent.

The Gb₃ and isoGb₃ derivatives 10 and 8, thus derived, were quantitatively converted to the target compounds 1 and 2, respectively, via *O*-deacetylation with sodium methoxide in methanol followed by catalytic hydrogenation (palladium hydroxide in methanol) to reduce the pNP group and cleave the benzyl groups.

Syntheses of multivalent Gb_3 and $isoGb_3$ ligands and their inhibiting activity towards Shiga toxins.—Globosyl- and isoglobosyl amines 1 and 2 were converted to the artificial glycoconjugate polymers 17 and 19 via *N*-acryloylation at the terminal amino group¹³ followed by radical copolymerization with acrylamide (feed molar ratio 1:4) in the presence of 2,2-azobis(2amidinopropane) dihydrochloride (AAPD)¹⁴ (Scheme 5). After dialysis in water (M_w 8000 cut-off) and freezedrying, 17 and 19 bearing respective Gb₃ and isoGb₃ clusters at the side chain were obtained as water-soluble colorless powders (molar ratio carbohydrate–acrylamide ca. 1:8 as determined by ¹H NMR spectroscopy).

The polymeric ligands were subjected to a biological assay involving neutralization of the toxicity of Shiga

Fig. 1. Neutralization effect of copolymer 17 and 19 against Stx-I and Stx-II. Each symbol indicates as follow: \blacksquare , Gb₃ copolymer 17 and Stx-I assay; \bigcirc , copolymer 17 and Stx-II assay; \bigcirc , isoGb₃ copolymer 19 and Stx-I assay; \bigcirc , copolymer 19 and Stx-II assay.

toxins against human ACHN cells (Fig. 1). Under the conditions that each of Stx-I and Stx-II gave fatal damage to the cells, the Gb₃ multivalent model **17** showed a highly neutralizing activity against Stx-I ($CD_{50} \ 10^{-8} \sim 10^{-9}$ M), but no activity against Stx-II. This result accorded with our previous results, which showed a critical difference in the carbohydrate recognition between the two toxins. On the other hand, the isoGb₃ multivalent model **19** did not show any activity against both toxins. This means that the strong activity of **17** against Stx-I can be ascribed to a highly specific interaction between the Gb₃ cluster and the toxin. The toxin strictly discriminates between Gb₃ and isoGb₃ structures.

Until recently, most conventional oligosaccharide syntheses have targeted an oligosaccharide of its repetitive sequence. It is now recognized that biological activities of cell surface oligosaccharides are associated with multivalent binding to receptor proteins that are composed of multiple binding subunits. For example, the Shiga toxins are composed of five B-subunits for the tight binding to the Gb₃ cluster on the cell surface.¹⁵ Anthrax toxins consist of heptameric structures for internalization into the host cells, though the contribution of carbohydrate-protein interactions is not clear.¹⁶ This means that a single oligosaccharide sequence cannot bind these toxins effectively, while the multivalent model can. The potential use of these glycosides has been demonstrated by synthesis and biological evaluation of multivalent Gb₃ and isoGb₃ models.

In summary, we have accomplished an efficient synthesis of p-aminophenyl Gb₃ and isoGb₃ glycosides using novel thioglycosyl donors. These glycosides could be easily converted into their multivalent models via radical copolymerization. The synthetic pathway, as well as the biological data presented in this paper, may extend the scope for a practical use of cell surface oligosaccharides.

3. Experimental

General methods.—Reagents of the highest commercial quality were purchased and used without further purification. Anhydrous solvents were purchased from Kanto Chemical Co., Inc. All reactions, except polymerization, were carried out under a dry nitrogen atmosphere, and monitored by thin-layer chromatography (TLC) on E. Merck aluminium roll Silica Gel 60-F₂₅₄ with visualization with UV light and ethanoic phosphomolybdic acid or *p*-anisaldehyde solution. E. Merck Silica Gel 60 (particle size 0.040–0.063 mm) was employed for column chromatography using toluene– EtOAc and CHCl₃–MeOH as eluents.

¹H NMR (500 MHz) spectra were recorded with a Varian Inova 500 spectrometer equipped with Sun

workstation. Unless otherwise stated, ¹H NMR spectra were recorded at 25 °C in CDCl₃ using an internal Me₄Si standard at 0 ppm. Optical rotations were determined with JASCO DIP-1000 digital polarimeter using a water-jacketed 100-mm cell at 25 °C. IR spectra were recorded on a JASCO FT/IR-230 Fourier transform infrared spectrometer in the form of a KBr disc. Sizeexclusion chromatography was performed with a JASCO 800 high-performance liquid chromatograph on Shodex B804 + B805 columns using PBS as eluent.

o-Methoxycarbonylphenyl 6-O-(tert-butyldiphenylsilyl)-1-thio- β -D-galactopyranoside (13).—To a solution of alcohol 12 (2.00 g, 6.05 mmol), Et₃N (2.48 mL, 18.2 mmol), and DMAP (79 mg, 0.650 mmol) in pyridine (50 mL) was added tert-butylchlorodiphenylsilane (2.33 mL, 9.08 mmol) gradually at 0 °C, and the reaction mixture was stirred at rt for 8 h. The reaction mixture was quenched by addition of 1 N HCl and extracted with CHCl₃. The combined organic layer was washed with 1 N HCl, satd NaHCO₃, and water, dried over MgSO₄, and concentrated under diminished pressure. The residue was purified by chromatography (silica gel, 1:1 toluene-EtOAc) to give silvl ether 13 (2.92 g, 85%) as a colorless crystals: mp 112–114 °C; $[\alpha]_{D}^{24}$ – 13.2° (*c* 1.0, CHCl₃); IR (disc); v 3412 (OH), 1723 and 1251 cm⁻¹ (CO₂Me); ¹H NMR (CDCl₃): δ 7.13–7.86 (m, 14 H, ArH), 5.02 (d, 1 H, J_{1,2} 8.0 Hz, H-1), 4.05 (dd, 1 H, J_{1.2} 8.0, J_{2.3} 9.0 Hz, H-2), 4.07 (d, 1 H, J_{3.4} 2.6 Hz, H-4), 3.90 (s, 3 H, CO₂Me), 3.63-3.75 (m, 4 H, H-3, H-5, and H-6_{R.S}), 1.03 (s, 9 H, t-Bu); FAB⁻MS: m/z567 $[M-1]^-$: Anal. Calcd for $C_{30}H_{36}O_7SSi$: C, 63.35; H, 6.38. Found: C, 63.36; H, 6.36.

o-*Methoxycarbonylphenyl* 2,3,4-tri-O-benzyl-6-O- $(tert - butyldiphenylsilyl) - 1 - thio - \beta - D - galactopyranoside$ (14).—To a solution of the silvl ether 13 (2.50 g, 4.40 mmol) in DMF (100 mL) was added NaH (475 mg, 19.8 mmol) and BnBr (2.35 mL, 19.8 mmol) slowly at 0 °C, and the reaction mixture was stirred at rt for 12 h. The reaction mixture was quenched by addition of MeOH, and to the mixture was added EtOAc. The organic layer was washed with brine, dried over MgSO₄, and concentrated under diminished pressure. The residue was purified by chromatography (silica gel, 10:1 toluene-EtOAc) to afford the benzyl ether 14 (3.40 g, 92%) as a white powder: $[\alpha]_{D}^{24} - 24.7^{\circ}$ (c 1.0, CHCl₃); IR (disc); v 1722 and 1250 (CO₂Me), 1294 and 1132 cm⁻¹ (OBn); ¹H NMR (CDCl₃): δ 7.08–7.83 (m, 29 H, ArH), 4.66 (d, 1 H, J_{1,2} 9.5 Hz, H-1), 4.63-4.99 (m, 6 H, ArCH₂O), 4.03 (dd, 1 H, J_{1.2} 9.5, J_{2.3} 9.0 Hz H-2), 3.99 (bd, J_{3.4} 2.5 Hz, H-4), 3.84 (s, 3 H, CO₂Me), 3.85 (dd, 1 H, H-6_s), 3.78 (dd, 1 H, H-6_R), 3.59 (dd, 1 H, J_{2,3} 9.0, J_{3,4} 2.5 Hz, H-3), 3.48 (dd, 1 H, H-5), 1.05 (s, 9 H, *t*-Bu); FAB⁻MS: m/z 838 [M – 1]⁻: Anal. Calcd for C₅₁H₅₄O₇SSi: C, 73.00; H, 6.49. Found: C, 73.10; H, 6.47.

o-*Methoxycarbonylphenyl* 6-O-acetyl-2,3,4-tri-Obenzyl-1-thio- β -D-galactopyranoside (4).—To a solution of benzyl ether 14 (3.00 g, 3.58 mmol) in THF (100 mL) was added TBAF (7.15 mL, 7.15 mmol, 1 M in THF) and the reaction mixture was stirred at rt for 12 h. The reaction mixture was concentrated under diminished pressure, and the residue was diluted with CHCl₃. The organic layer was washed with brine, dried over MgSO₄, and concentrated under diminished pressure. The residue containing alcohol 15 was dissolved in pyridine (50 mL), and to the stirred mixture was added Ac₂O (25 mL). After 7 h, the reaction mixture was quenched by addition of EtOH, and the mixture was azeotropically repeatedly dried with toluene. The residue was dissolved in CHCl₃, and the organic layer was washed with 1 N HCl, satd NaHCO₃, and brine, dried over MgSO₄, and concentrated under diminished pressure. The residue was purified by chromatography (silica gel, 5:1 toluene-EtOAc) to give acetate 4 (2.16 g, 94%, 2 steps) as a white powder; $[\alpha]_{D}^{24} - 39.6^{\circ}$ (c 1.0, CHCl₃); IR (film); v 1743 and 1230 (Ac), 1720 and 1250 (CO_2Me) , 1301 and 1136 cm⁻¹ (OBn); ¹H NMR (CDCl₃): δ 7.18-7.87 (m, 19 H, ArH), 4.65-5.01 (m, 6 H, ArCH₂O), 4.74 (d, 1 H, J_{1.2} 8.0 Hz, H-1), 4.26 (dd, 1 H, H-6_s), 4.10 (dd, 1 H, H-6_s), 4.06 (dd, 1 H, J_{1,2} 8.0, J_{2.3} 9.0 Hz, H-2), 3.88 (bs, 1 H, H-4), 3.87 (s, 3 H, CO₂Me), 3.67 (ddd, 1 H, H-5), 3.64 (dd, 1 H, J_{2,3} 9.0, $J_{3,4}$ 3.0 Hz, H-3), 2.01 (s, 3 H, Ac); FAB⁻MS: m/z 641 $[M-1]^-$: Anal. Calcd for $C_{37}H_{38}O_8S$: C, 69.14; H, 5.96. Found: C, 69.01; H, 5.95.

p-Nitrophenyl (6-O-acetyl-2,3,4-tri-O-benzyl- α -Dgalactopyranosyl)- $(1 \rightarrow 3)$ -(2,6-di-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (**8**)

Method A. A suspension of flame-dried MS 4 Å, AgClO₄ (218 mg, 1.05 mmol), and SnCl₂ (199 mg, 1.05 mmol) in dry CH₂Cl₂ (6 mL) was stirred at rt for 16 h. The stirred mixture was added to a solution of diol 5 (215 mg, 0.350 mmol) in dry CH₂Cl₂ (2 mL) at 0 °C, and the mixture was stirred at rt for 6 h. The mixture was added to a solution of fluoride 7 (400 mg, 0.702 mmol) in dry CH₂Cl₂ (2 mL) gradually at 0 °C, and the reaction mixture was stirred at the same temperature for 12 h. The reaction mixture was filtered through a pad of Celite, and the filtrate was washed with satd NaHCO3 and water, dried over MgSO4, and concentrated under diminished pressure. The residue was purified by chromatography (silica gel, 5:1 toluene-EtOAc) to furnish trisaccharide 8 (124 mg, 38%) as a white powder.

Method B. A suspension of flame-dried MS 4 Å and NIS (322 mg, 1.43 mmol) in dry CH_2Cl_2 (6 mL) was stirred for 16 h. The stirred mixture was added to a solution of diol 5 (292 mg, 0.476 mmol) and acetate 4 (459 mg, 0.714 mmol) in dry CH_2Cl_2 (4 mL), and the

mixture was stirred at rt for 6 h. To the mixture was added TfOH (10 μ L) at -10 °C, and the reaction mixture was stirred at the same temperature for 2 h. The reaction mixture was filtered through a pad of Celite, and the filtrate was washed with 5% aq $Na_2S_2O_3$, satd NaHCO₃ and water, dried over MgSO₄, and concentrated under diminished pressure. The residue was purified by chromatography (silica gel, 5:1 toluene-EtOAc) to furnish the trisaccharide 8 as a white powder (533 mg, 65%): $[\alpha]_D^{24} - 62.6^\circ$ (*c* 1.0, CHCl₃); IR (film); v 1747 and 1228 (Ac), 1519 cm⁻¹ (NO₂); ¹H NMR (CDCl₃): δ 8.20 and 7.04 (2 × d, 4 H, *p*NP), 7.15–7.44 (m, 15 H, ArH), 5.15 (d, 1 H, J_{1.2} 7.5 Hz, H-1Glc), 4.60–4.94 (d × 6, 6 H, ArCH₂O), 4.72 (d, 1 H, $J_{1',2'}$ 1.6 Hz, H-1'Gal), 4.32 (d, 1 H, J_{1,2} 8.5 Hz, H-1Gal), 3.75 (bs, 1 H, GalH-4), 3.61 (dd, 1 H, J_{2,3} 9.5, J_{3,4} 3.5 Hz, GalH-3), 1.97–2.14 (6 × s, 18 H, Ac); FAB⁻MS: m/z1147 $[M-1]^-$: Anal. Calcd for C₅₇H₆₅NO₂₄: C, 59.63; H, 5.71; N, 1.22. Found: C, 59.57; H, 5.72; N, 1.22.

p-Aminophenyl (α -D-galactopyranosyl)-($1 \rightarrow 3$)-(β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ - β -D-glucopyranoside (2).—To a solution of trisaccharide 8 (60 mg, 50 mmol) in MeOH (3 mL) was added NaOMe (10 mg), and the reaction mixture was stirred at rt for 6 h. The reaction mixture was quenched by addition of Amberlyst 15Eion exchange resin, filtered, and concentrated under diminished pressure. The residue was purified by chromatography (silica gel, 30:1 CHCl₃-MeOH) to afford a deacetylated compound as a white powder (29 mg, 97%). The powder (60 mg, 50 mmol) was dissolved in MeOH (5 mL), and the mixture was added to 10 N HCl (10 μ L, 0.10 mmol) and 10% Pd(OH)₂/C. The reaction mixture was stirred vigorously under H₂ atmosphere at rt for 6 h. The reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated under diminished pressure to give amine 2 (29 mg) as a brown amorphous solid which was used for the next step without further purification: $[\alpha]_D^{24} - 16.9^\circ$ (c 1.0, water); IR (film); v 3419 (OH), 1228 and 1076 cm⁻¹ (NH₂); ¹H NMR (D₂O): δ 6.83 and 6.64 (2 × d, 4 H, pAP), 4.82 (d, 1 H, J_{1,2} 8.1 Hz, H-1Glc), 4.77 (d, 1 H, $J_{1',2'}$ 3.2 Hz, H-1'Gal), 4.35 (d, 1 H, $J_{1,2}$ 7.7 Hz, H-1Gal).

p-N-Acryloylamidophenyl (α -D-galactopyranosyl)-($1 \rightarrow 3$)-(β -D-galactopyranosyl)-($1 \rightarrow 4$)- β -D-glucopyranoside (**18**).—To a solution of amine **2** (25 mg, 0.04 mmol) and Et₃N (22 µL, 0.120 mmol) in MeOH (3 mL) was added a solution of acryloyl chloride (4 µL, 0.05 mmol) in CH₂Cl₂ (0.5 mL) slowly at 0 °C, and the reaction mixture was stirred at rt for 1.5 h. The reaction mixture was concentrated under diminished pressure and the residue was purified by chromatography (TSKgel HW-40S, water) to furnish monomer **18** (31 mg, 93%) as a white powder: [α]_D²⁴ – 5.8° (*c* 1.0, water); IR (disc); *v* 3298 (OH), 1660 (amide), 1033 and 827 cm⁻¹ (olefin); ¹H NMR (D₂O): δ 7.32 and 7.02 (2 × d, 4 H, *p*AP), 6.28 (dd, 1 H, H-olefin), 6.20 (dd, 1 H, H-trans), 5.75 (dd, 1 H, H-cis), 5.01 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1Glc), 4.99 (d, 1 H, $J_{1',2'}$ 3.6 Hz, H-1'Gal), 4.42 (d, 1 H, $J_{1,2}$ 7.7 Hz, H-1Gal), 4.07 (bt, 1 H, H-5Gal); FAB⁻MS: m/z 648 [M – 1]⁻: Anal. Calcd for C₂₇H₃₉NO₁₇: C, 49.92; H, 6.05; N, 2.16. Found: C, 49.90; H, 6.05; N, 2.16.

Glycoconjugate polymer (19).-To a solution of monomer 18 (30 mg, 0.046 mmol) and acrylamide (13 mg, 0.184 mmol) in degassed water (0.1 mL) was added 2,2-azobis(2-amidinopropane) dihydrochloride (1 mol% of monomers, 2.3 µmol in degassed water). The reaction mixture was frozen and degassed repeatedly under reduced pressure. The polymerization tube was sealed under reduced pressure, and incubated at 60 °C for 12 h. The reaction mixture was dialyzed in water ($M_{\rm w}$ 8000 cut off) for 3 days, and lyophilized to give 19 (34 mg, 76%) as a white powder: $M_{\rm n}$ 3.2 × 10⁵ (SEC analysis, pullulan standard); mol fraction of sugar unit = 0.12 (as determined by ¹H NMR spectrum); IR (disc); v 3248 (OH), 1662 cm⁻¹ (amide); ¹H NMR (D₂O, 80 °C): δ 7.02–7.50 (br, ArH), 5.10 (bs, H-1Glc), 4.92 (bs, H-1'Gal), 4.31 (bs, H-1Gal), 3.61-4.23 (m, sugar-H), 2.39-2.61 (br, methyne of main chain), 1.66–2.03 (br, methylene of main chain). In the same manner as described above, polymer 17 was prepared from monomer 16. 17: $M_{\rm n}$ 4.3 × 10⁵ (SEC analysis, pullulan standard); mol fraction of sugar unit = 0.13 as determined by ¹H NMR spectrum); IR (disc); v 3225 (OH), 1661 cm⁻¹ (amide); ¹H NMR (D₂O, 80 °C): δ 7.05–7.48 (br, ArH), 5.22 (bs, H-1Glc), 5.05 (bs, H-1'Gal), 4.40 (bs, H-1Gal), 3.56-4.31 (m, sugar-H), 2.32-2.65 (br, methyne of main chain), 1.72–1.93 (br, methylene of main chain). Inhibitory activity of polymers against Stx-I and

Stx-II.—A mixture of each Stx (250 pg/mL in PBS) and the diluted polymer solution $(10^{-2} \sim 10^{-14} \text{ µg/} \text{mL})$ was preincubated in a well at 37 °C for 1 h. To the well were added ACHN cells (65 µL of 8 × (10⁵ × cells/mL) in Eagle's medium containing 10% FCS), and the mixture was incubated for 3 days at 37 °C. The mixture was treated with 0.014% neutral red solution (100 µL) for 1 h at 37 °C, washed with PBS (2 × 200 µL), and then mixed with 0.5 N HCl– 35% EtOH (100 µL). The absorbance at 540 nm was measured at different concentrations.

Acknowledgements

This work was carried out with the support of the Japan Society for the Promotion of Science Research for a research fellowship for young scientists (DC for H. Dohi).

References

- Vaughan H. A.; Loveland B. E.; Sandrin M. S. Transplantation 1994, 58, 879–882.
- (a) Lingwood C. A.; Law H.; Richardson S.; Petric M.; Brunton J. L.; Graandis S. D.; Karmali M. J. Biol. Chem. 1987, 262, 8834–8839;
 (b) Lindberg A. A.; Brown J. E.; Strömberg N.; Westling-Ryd M.; Schultz J. E.; Karlsson K. A. J. Biol. Chem. 1987, 262, 1779–1785;
 (c) Arab S.; Lingwood C. A. Glycoconjugate J. 1996, 13, 159–166;
 (d) Karlsson K. A. Annu. Bay. Biochem. 1989, 58, 309

(d) Karlsson K. A. Annu. Rev. Biochem. 1989, 58, 309-350.

- 3. (a) Teneberg S.; Lonnroth I.; Torres Lopez J. F.; Galili U.; Halvarsson M. O.; Angstrom J.; Karlsson K. A. *Glycobiology* 1996, *6*, 599–609;
 (b) Clark G. F.; Krivan H. C.; Wilkins T. D.; Smith D. F. *Arch. Biochem. Biophys.* 1987, 257, 217–229.
- 4. (a) Lin S. S.; Hanaway M. J.; Gonzalez-Stawinski G. V.; Lau C. L.; Parker W.; Davis R. D.; Byrne G. W.; Diamond L. E.; Logan J. S.; Platt J. L. *Transplantation* 2000, 70, 1667–1674;
 (b) Cairns T.; Lee J.; Goldberg L.; Cook T.; Simpson P.; Spackman D.; Palmer A.; Taube D. *Transplantation* 1995, 60, 1202–1207;

(c) Cooper D. K.; Koren E.; Oriol R. *Immunol. Rev.* **1994**, *141*, 31–58.

- 5. (a) Nicolaou K. C.; Caulfield T.; Kataoka H.; Kumazawa T. J. Am. Chem. Soc. 1988, 110, 7910-7912;
 (b) Hashimoto S.-I.; Sakamoto H.; Honda T.; Abe H.; Nakamura S.-I.; Ikegami S. Tetrahedron Lett. 1997, 38, 8969-8972;
 (c) Koike K.; Sugimoto M.; Sato S.; Ito Y.; Nakahara Y.; Ogawa T. Carbohydr. Res. 1987, 163, 189-208;
 (d) Qiu D.; Schmidt R. R. Liebigs Ann. Chem. 1992, 217-224;
 (e) Nishida Y.; Dohi H.; Uzawa H.; Kobayashi K. Tetra-
- (c) Homan 1, Dom 11, Olawa 11, Hoodyashi 11, Febra hedron Lett. 1998, 39, 8681–8684.
 (a) Gege C.; Kinzy W.; Schmidt R. R. Carbohydr. Res. 2000, 328, 459–466;
- (b) Vic G.; Tran C.-T.; Scigelova M.; Crout D. H. G. *Chem. Commun.* 1997, *2*, 169–170;
 (c) Fang J. W.; Li J.; Chen X.; Zhang Y. N.; Wang J. Q.; Guo Z. M.; Zhang W.; Yu L. B.; Brew K.; Wang P. G. *J. Am. Chem. Soc.* 1998, *120*, 6635–6638;
 (d) Ohlsson J.; Magnusson G. *Carbohydr. Res.* 2000, *329*, 49–55.
- 7. (a) Liaigre J.; Dubreuil D.; Pradére J.-P.; Bouhours J.-F. *Carbohydr. Res.* 2000, *325*, 265–277;
 (b) Nilsson U. J.; Heerze L. D.; Liu Y.-C.; Armstrong G. D.; Palcic M. M.; Hindsgaul O. *Bioconjugate Chem.* 1997, *8*, 466–471;
 (c) Lundquist J. J.; Debenham S. D.; Toone E. J. J. Org. *Chem.* 2000, *65*, 8245–8250.
- Dohi H.; Nishida Y.; Mizuno M.; Shinkai M.; Kobayashi T.; Takeda T.; Uzawa H.; Kobayashi K. *Bioorg. Med. Chem.* 1999, 7, 2053–2062.
- 9. (a) Matsuoka K.; Terabatake M.; Esumi Y.; Terunuma D.; Kuzuhara H. *Tetrahedron Lett.* **1999**, 40, 7839–7842;
 - (b) Kitov P. I.; Sadowska J. M.; Mulvey G.; Armstrong G. D.; Ling H.; Pannu N. S.; Read R. J.; Bundle D. R. *Nature* **2000**, *403*, 669–672.

- 10. (a) van Boeckel C. A. A.; Beetz T.; van Aelst S. F. *Tetrahedron* 1984, 40, 4097–4107;
 (b) Fukase K.; Yoshimura T.; Kotani S.; Kusomoto S. *Bull. Chem. Soc. Jpn.* 1994, 67, 473–482.
- 11. Mukaiyama T.; Murai Y.; Shouda T. Chem. Lett. 1981, 431-432.
- 12. Dohi H.; Nishida Y.; Tanaka H.; Kobayashi K. Synlett 2001, 9, 1446–1448.
- 13. Roy R.; Tropper F. D.; Romanoeska A. *Bioconjugate Chem.* **1992**, *3*, 256–261.
- 14. Nishida Y.; Uzawa H.; Toba T.; Sasaki K.; Kondo H.; Kobayashi K. *Biomacromolecules* **2000**, *1*, 68-74.
- 15. St. Hilaire P. M.; Boyd M. K.; Toone E. J. *Biochemistry* **1994**, *33*, 14452–14463.
- Bradley K. A.; Mogridge J.; Mourez M.; Collier R. J.; Young J. A. T. *Nature* 2001, 414, 225–229.