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Structural modification of a series of dual LXRa/b agonists led to the identification of a new class of LXRb
partial agonists. An X-ray co-crystal structure shows that a representative member of this series, pyrrole
5, binds to LXRb with a reversed orientation compared to 1.

� 2012 Elsevier Ltd. All rights reserved.
Table 1
Binding affinities of early LXR agonists 1–2

Compound R SPA binding, IC50 (lM)
Liver X receptors (LXRs) are nuclear receptors that function as
ligand-activated transcription factors and are present in two highly
similar isoforms, LXRa (NR1H3) and LXRb (NR1H2). Heterodimer-
ization of LXRs with retinoid X receptors (RXRs) is required to
achieve DNA binding. LXRs have been implicated in cholesterol
homeostasis by regulating ABCA1, a key gene involved in managing
cellular HDL cholesterol transport.1 LXRs also play a critical role in
fatty acid metabolism and lipid biosynthesis by regulating sterol
regulatory element-binding protein-1c (SREBP-1c) production;
SREBP-1c is a transcription factor which regulates the expression
of a number of key genes implicated in lipogenesis including fatty
acid synthase (FAS) and stearoyl CoA desaturases (SCDs).2

Several reports on the viability and lipid profile of LXRa/b null
mice raised our interest in developing a dual-LXRa/b antagonist
for the treatment of hypertriglyceridemia, a risk factor for athero-
sclerotic cardiovascular disease.3 Two observations in particular
were noteworthy. First, LXRa/b null mice exhibited significantly
reduced levels of VLDL plasma triglycerides relative to wild type.3b

Second, basal expression of ABCA1 was elevated and intestinal
absorption of cholesterol was unaffected in LXRa/b null mice.1a

Taken together, these data suggest that a potent LXRa/b dual
antagonist could down-regulate the SREBP-1c pathway to reduce
triglyceride levels in hypertriglyceridemic patients without affect-
ing cholesterol homeostasis. To date, several reports of synthetic
LXR antagonists have been documented in the literature.4
ll rights reserved.

ky).
A series of dual LXRab agonists, which include N-methylsulf-
onamide 1 and N-trifluoroethylsulfonamide 2 (also known as
T0901317), was identified at Tularik Inc. (now Amgen) and was de-
scribed previously.5 These compounds exhibit potent affinities for
both LXRa and LXRb in a scintillation proximity ligand binding as-
say (SPA) using tritium-labeled 1 as the competitive binder
(Table 1).5 Compounds 1 and 2 were also shown to activate LXRa
in a luciferase reporter gene assay performed in HEK293 cells.6 An
X-ray co-crystal structure of 2 bound to the LXRa has been re-
ported and establishes the presence of a strong hydrogen bond be-
tween His421 and the acidic hydroxyl group of the 1,1,1,3,3,3-
hexafluoroisopropanol moiety of 2.7 Further, helix 12 of the LBD
of LXRa effectively seals off the exposed face of the ligand binding
pocket.
LXRa LXRb

1 CH3 0.04 0.02
2 CH2CF3 0.1 0.1
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We postulated that replacement of one of the trifluoromethyl
groups of 1 with a bulky aromatic moiety might force helix 12 to
point away from the binding site and thus prevent the ligand-
bound receptor from adopting a transcriptionally active conforma-
tion. There is precedent for this type of agonist to antagonist con-
version in the nuclear receptor field. For example, the estrogen
receptor (ER) agonist diethylstilbestrol was converted into the
antagonist 4-hydroxytamoxifen by the attachment of a suitable
bulky side chain to the agonist core structure. This structural
change prevented helix 12 from adopting an agonist-bound confor-
mation upon 4-hydroxytamoxifen binding.8

In our case, the replacement of one of the trifluoromethyl
groups of compound 1 with a variety of aryl and heterocyclic moi-
eties failed to generate compounds displaying appreciable levels of
LXR antagonism.9 During the course of this study, however, a sur-
prising SAR trend for a series of racemic N-substituted pyrrole
derivatives was identified (Table 2). As expected, removal of the
hydrogen bond donating capability of N-benzylpyrrole 3 signifi-
cantly reduced both LXRa and LXRb binding affinities for methyl
Table 2
Binding affinities of pyrrole derivatives 3–9

Compound R1 R2 SPA binding, IC50 (lM)

LXRa LXRb

3 OH Bn 0.8 0.8
4 OCH3 Bn >10 >10
5 OH CH2CH2OCH3 1.5 1.8
6 OCH3 CH2CH2OCH3 0.4 0.9
7 H CH2CH2OCH3 0.2 0.8
8 OH CH2CH2OCH2CH3 0.5 1.5
9 H CH2CH2OCH2CH3 0.2 0.7

Scheme 1. Reagents and conditions: (a) NaH, RBr, DMF, rt (for R = Bn) or 60 �C, 75–
80%; (b) (i) t-BuLi, N-(4-bromophenyl)-N-methylbenzene-sulfonamide, Et2O,
�100 �C, 10 min; (ii) add ketone, Et2O, �100 �C to rt, 65–70%; (c) NaH, MeI, DMF,
45–60%; (d) BF3�OEt2, Et3SiH, CH2Cl2, 33–34%.
ether analog 4 relative to 3. On the other hand, N-methoxyethyl-
pyrrole 5 unexpectedly becomes a more potent binder upon
O-alkylation (compound 6) or deoxygenation (compound 7). A
similar trend is observed for N-ethoxyethylpyrrole 8 and its corre-
sponding deoxygenated analog 9.

Pyrroles 3–9 were synthesized from commercially available
2-(trifluoroacetyl)pyrrole (10) (Scheme 1). N-alkylation of 10 with
an appropriate bromide followed by a tert-butyllithium-mediated
condensation with N-(4-bromophenyl)-N-methylbenzenesulfona-
Figure 1. (A) Compounds 1 and 5 increase transcriptional activation by LXRb in a
cell-based reporter gene assay. HEK-293 cells were transfected with a plasmid
containing a gene encoding a fusion of the GAL4 DNA-binding domain and the LXRb
ligand-binding domain, a luciferase reporter gene, and a b-galactosidase gene to
control for transfection efficiency. (B) Compounds 2 and 5 reduce the basal
interaction of LXRb and the nuclear receptor co-repressor NCoR in a homogeneous
time-resolved fluorescence (HTRF) assay. The emission intensity ratio has been
expressed as a percentage relative to the control (DMSO) emission ratio. (C)
Compounds 2 and 5 increase endogenous ABCA1 gene expression in Caco-2 cells.
Expression level is normalized by expression of the housekeeping gene GAPDH.



Figure 2. Pyrrole N-alkyl and N-hydroxyalkyl derivatives.

Figure 3. Pyrrole derivatives with modified central linkers.

D. J. Kopecky et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2407–2410 2409
mide10 generated alcohols 3, 5, and 8. From these alcohol interme-
diates, methyl ether formation was accomplished with methyl io-
dide to afford 4 and 6. Alternatively, deoxygenation with
triethylsilane in the presence of boron trifluoride etherate led to
7 and 9.

We were initially surprised that despite the presence of a bulky
pyrrole side chain, several compounds in this series behave as par-
tial agonists. For example, compound 5 exhibits approximately 33%
of the maximal response of 1 in an LXRb cell-based reporter gene
assay (Fig. 1).6 Compounds 6 and 8 also act as partial agonists,
while 3 is a very weak antagonist (data not shown). Moreover, 5
displays partial agonism (as compared to 2) in a biochemical assay
measuring LXRb co-repressor recruitment, and in a cell-based as-
say measuring endogenous expression of ABCA1 (Fig. 1).

Further structural modification of LXR agonist 5 was examined
in an effort to identify pyrrole-based agonists with enhanced bind-
ing affinities and cellular potencies. To this end, the pyrrole nitro-
gen was functionalized with a number of flexible, non-bulky alkyl
Figure 4. X-ray co-crystal structure of full agonist 1 bound to LXRb (left picture, resolu
between 1 with His435. The X-ray co-crystal structure of partial agonist 5 bound to LXRb
orientation with no hydrogen bond interactions. The electron density map indicates
conformation that seals off the ligand binding site.
and hydroxyalkyl chains (compounds 11–19, Fig. 2).11 Also, a series
of analogs 20–31 with modified aryl-heteroaryl linkers was made
(Fig. 3).12 Unfortunately, no significant improvements in binding
were observed for either set of derivatives.

Co-crystal structures of compounds 1 and 5 bound to LXRb have
been determined and provide a rational explanation for these
unanticipated results (Fig. 4). For compound 1, the usual agonist
binding conformation is observed, including a strong hydrogen
bond between the hydroxyl group of 1 and His435 (analogous to
His421 in LXRa). On the other hand, compound 5 adopts a novel
reversed agonist binding mode in the ligand binding site of LXRb,
presumably due to the large steric size of the functionalized pyr-
role. In this structure, the sulfonamide region of the molecule
points toward helix 12, and no hydrogen bond interaction is pres-
ent between 5 and the protein. The lack of a hydrogen bond be-
tween compound 5 and the ligand binding site in this reversed
agonist binding mode could account for the reduced LXRb binding
affinity of 5 relative to 1. This weakened interaction with helix 12
might also explain why compound 5 behaves as a partial agonist in
comparison to 1. Note that while compound 5 is racemic, only the
(S)-epimer of 5 is observed in the co-crystal structure.

In conclusion, an attempt to transform dual-LXRa/b agonists 1
and 2 into an antagonists via structural modification of the
1,1,1,3,3,3-hexafluoroisopropanol moiety led to the unexpected
discovery of a new series of LXR agonists. An X-ray co-crystal struc-
ture of 5 bound to LXRb displayed a novel, reversed agonist binding
mode characterized by the lack of a hydrogen bond anchoring the
substrate into the binding site. This new binding mode accommo-
dates for the bulky substituted pyrrole side chain of 5 without sig-
nificant reorientation of helix 12 relative to its position when
bound to 1.
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