Bioorganic & Medicinal Chemistry 19 (2011) 6356-6374

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

1,1-Diarylalkenes as anticancer agents: Dual inhibitors of tubulin polymerization and phosphodiesterase 4

Alexander L. Ruchelman^{a,*}, Hon-Wah Man^a, Roger Chen^a, Wei Liu^a, Ling Lu^a, Dorota Cedzik^a, Ling Zhang^a, Jim Leisten^b, Alice Collette^b, Rama Krishna Narla^b, Heather K. Raymon^b, George W. Muller^a

^a Drug Discovery Department, Celgene Corporation, 86 Morris Avenue, Summit, NJ 07901, USA
^b Department of Pharmacology, Celgene Signal Research, 4550 Towne Centre Court, San Diego, CA 92121, USA

ARTICLE INFO

Article history: Received 27 June 2011 Revised 24 August 2011 Accepted 30 August 2011 Available online 5 September 2011

Keywords: Anticancer Antitubulin Combretastatin A-4 (CA-4) Phosphodiesterase 4 (PDE4) Tumor necrosis factor-α (TNF-α) HCT-116

ABSTRACT

A series of 1,1-diarylalkene derivatives were prepared to optimize the properties of CC-5079 (1), a dual inhibitor of tubulin polymerization and phosphodiesterase 4 (PDE4). By using the 3-ethoxy-4-methoxy-phenyl PDE4 pharmacophore as one of the aromatic rings, a significant improvement in PDE4 inhibition was achieved. Compound **28** was identified as a dual inhibitor with potent PDE4 ($IC_{50} = 54$ nM) and antitubulin activity (HCT-116 $IC_{50} = 34$ nM and tubulin polymerization $IC_{50} \sim 1 \mu$ M). While the nitrile group at the alkene terminus was generally required for potent antiproliferative activity, its replacement was tolerated if there was a hydroxyl or amino group on one of the aryl rings. Conveniently, this group could also serve as a handle for amino acid derivatization to improve the compounds' solubility. The glycinamide analog **45** showed significant efficacy in the HCT-116 xenograft model, with 64% inhibition of tumor growth upon dosing at 20 mg/kg qd.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Microtubules are a crucial component of the intracellular machinery responsible for mitosis and cell division. They consist of polymerized chains of α -tubulin and β -tubulin heterodimers: compounds that perturb the polymerization dynamics of α . B-tubulin dimers cause mitotic arrest and can trigger cell death.^{1,2} For this reason, microtubules are an important target in cancer therapy.³⁻⁵ Moreover, recent literature reports indicate that by disruption of the endothelial cytoskeleton, certain tubulin-binding agents can block the blood supply to tumors.⁶⁻⁹ Combretastatin A-4 (CA-4) (Fig. 1) is a *cis* stilbene natural product that binds at the colchicine site of tubulin and exhibits potent antineoplastic and antivascular activity by virtue of its microtubule destabilizing activity. Its phosphate derivative is currently undergoing clinical trials.^{10–12} Since the initial reports describing CA-4's isolation¹³⁻¹⁵ and biological activity,^{16,17} extensive structure-activity studies have investigated related stilbenes as well as modifications of the double bond.¹⁸⁻²⁷ For example, phenstatin is an analog wherein the double bond of CA-4 is replaced by a carbonyl.^{28,29} Previously, we have disclosed the structure and biological activity of CC-5079 (1, Fig. 1).^{30,31} The diarylacrylonitrile 1 has significant cytotoxic effects on fast-proliferating cells but not on quiescent cells, and was shown to inhibit tubulin polymerization by binding to the colchicine-binding site.

Unlike colchicine, vinblastine, and paclitaxel, **1** was equipotent in parental cancer cells and their multi-drug resistant variants, indicating that this novel analog can evade P-gp-mediated drug resistance seen with other chemotherapeutic agents in tested cell lines.

In addition to its activity as a tubulin inhibitor, **1** also potently inhibits phosphodiesterase 4 (PDE4) enzymatic activity. PDE4 inhibitors are commonly known for their general anti-inflammatory and bronchodilatory properties.³²⁻³⁴ Inhibition of PDE4 results in accumulation of the second messenger cAMP, which attenuates multiple pro-inflammatory processes in neutrophils, eosinophils, mast cells, basophils, lymphocytes, monocytes, and macrophages.³⁵ Notably, inhibition of PDE4 results in decreased production of the inflammatory cytokine tumor necrosis factor- α (TNF- α) in monocytes.³⁶ Inhibitors of PDE4 have most frequently been investigated within the context of respiratory and inflammatory diseases such as asthma and chronic obstructive pulmonary disease, but there is evidence indicating that it might also be an useful target in oncology. PDE4 is the principal enzyme responsible for cAMP hydrolysis in 41 of 60 human tumor cell lines evaluated, and lymphoid tumors such as chronic lymphocytic leukemia cells appear to be susceptible to PDE4 inhibitor-induced apoptosis.^{37–39} PDE4 has also been identified as a target for brain tumor therapy.^{40,41} In addition, there have been reports of PDE4 inhibitors having anti-angiogenic activity.⁴² PDE4 inhibitors have direct apoptotic effects on CLL, ALL, and some NHL cells, and while the direct antiproliferative properties of PDE4 inhibitors against solid tumors is very modest, they could have

^{*} Corresponding author. Tel.: +1 908 673 9587; fax: +1 908 673 2792. *E-mail address:* aruchelman@celgene.com (A.L. Ruchelman).

^{0968-0896/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2011.08.068

Figure 1. Structures of colchicine, combretastatin A-4 and its phosphate prodrug, phenstatin, and 1.

antitumor effects by virtue of their antiinflammatory activity. For these reasons, we hypothesize that dual inhibitors of PDE4 and tubulin polymerization might have superior therapeutic value in the treatment of some forms of cancer. The combination of these two independent pharmacological activities into a single small molecule is a new concept in anticancer therapy. The additional biological target also serves to differentiate **1** from other known tubulin interactive agents, such as CA-4 and paclitaxel.

In common with CA-4, the diarylalkene **1** has a simple structure and impressive antineoplastic potency. Unfortunately, **1** also possesses poor aqueous solubility and metabolic stability, detriments also observed for CA-4.⁴³ In order to both optimize PDE4 and tubulin inhibitory activities as well as improve upon physicochemical properties, we have undertaken a detailed study of the structure–activity relationships (SAR). In this report, we describe results of an exploratory project to study the SAR of this novel series of anti-tumor agents, which were discovered as an offshoot of our Apremilast PDE4 inhibitor program.⁴⁴ A full description of chemical synthesis and SAR is provided. The results of xenograft studies for selected analogs are also presented.

2. Results and discussion

2.1. Chemistry

The general method for the synthesis of 1 and related 3,3-diarylacrylonitrile analogs, as well as the 3,3-diarylacrylamide 14 is outlined in Scheme 1. Friedel-Crafts reaction of commercially available acid chlorides with veratrole provided benzophenone intermediates, which were then subjected to Horner-Wadsworth-Emmons (HWE) alkenylation with diethyl cyanomethylphosphonate. The products were typically obtained as a \sim 1:1 mixture of geometric isomers. The *E*- and *Z*isomers of 1, compounds 1E and 1Z, were separated by preparative HPLC. The stereochemical assignment was made based on NOE, as shown in Figure 2. Compound 1E, with the nitrile trans to the 3,5dimethoxyphenyl ring, displays NOE between the alkene proton and the ortho protons of the 3.5-dimethoxyphenyl ring, while compound 1Z, which has the nitrile cis to the 3,5-dimethoxyphenyl ring, shows NOE between the alkene proton and the ortho protons on the 3,4dimethoxyphenyl ring. Compound 1 could be converted to acrylamide 14 upon treatment with potassium trimethylsilanolate in toluene. Commercially available benzophenones were also converted to diarylacrylonitriles 3-9 using HWE conditions. Related procedures were used to prepare analogs possessing a 3-ethoxy-4-methoxyphenyl ring, depicted in Scheme 2. 4-Bromo-2-ethoxy-1-methoxybenzene was converted to the corresponding aryllithium and then allowed to react with various benzaldehydes. The resultant alcohol intermediates **52a**-**d** were oxidized (MnO₂) to benzophenones and then HWE olefination provided the targeted analogs. The benzophenone intermediates could be accessed directly by reaction of 2-ethoxy-4-lithio-1-methoxybenzene with the appropriate Weinreb amide.⁴⁵

The synthesis of analogs bearing other alkene terminus substitutions was performed as outlined in Scheme 3. Methyl acrylate 13 was prepared by HWE olefination of the benzophenone 49a with methyl diethylphosphonoacetate, and saponification provided acrylic acid 14. Methyl ketone 15 was obtained by a two-step sequence involving Wittig olefination of 3,5-dimethoxybenzaldehyde to provide the benzalacetone 55, followed by Heck coupling under Jeffery's ligand-free conditions.^{46,47} Intermediate **51a** reacted with phosphorus ylides to provide alkyl-, aminoalkyl-, and methoxy-substituted alkenes 18-21, as well the unsubstituted analog 13. Intermediate 51a was also converted to envne 22 using the Peterson olefination reaction with 1,3-bis(trimethylsilyl)propyne.^{48,49} The synthesis of phenol-containing analogs started with TBS protection of 4-bromo-2-hydroxyphenol and by way of the analogous synthetic route, the targeted analogs were obtained upon TBS deprotection (Scheme 4). For the synthesis of anilines, 4-methoxy-3-nitrobenzaldehyde was added to a solution of the appropriate Grignard reagent (Scheme 5). Subsequent synthetic manipulation provided nitro intermediates, which were then reduced using either stannous chloride or catalytic hydrogenation. Aniline 35 was treated with 2,5-dimethoxytetrahydrofuran in refluxing THF to provide the corresponding pyrrole **39**. For the synthesis of dimethylamino analog **38**, 4dimethylaminobenzaldehyde was added to a solution of 3-ethoxy-4methoxyphenyllithium. Surprisingly, treating the resultant benzyl alcohol 63 with excess manganese dioxide resulted in partial demethylation of the aniline; a separable mixture of mono- and dimethylamino benzophenones was obtained in 23% and 17% yields, respectively, after flash column chromatographic purification. The individual products were subsequently carried forward to diarylacrylonitrile analogs 37 and 38. The anilines 11 and 36 were converted to amide derivatives as shown in Scheme 6. Treatment of 11 with acetyl chloride in refluxing THF provided 44. Aniline 36 was coupled with Boc-protected glycine and alanine (DCC, HOBt) prior to acidic deprotection. Scheme 7 depicts the synthesis of carbamate- and ester-containing analogs. Reaction of 35 with N,N-dimethylcarbamyl chloride provided dimethyl carbamate 47. The phenol 35 was also converted to amino acid esters by DCC coupling with Boc-protected glycine, alanine, and valine, followed by deprotection of the Boc group.

Scheme 1. Synthesis of 3,3-diarylacrylonitriles and 3,3-diarylacrylamide 14. Reagents and conditions: (a) AlCl₃, CH₂Cl₂; (b) (EtO)₂P(O)CH₂CN, LiHMDS or NaH, THF; (c) KOSi(CH₃)₃, PhCH₃.

Figure 2. Key NOE correlations for 1E and 1Z.

2.2. Biological evaluation

All analogs were evaluated for in vitro cell growth inhibition against the human colon carcinoma cell line HCT-116 to evaluate antitumor activity. Additionally, PDE4 enzyme inhibition was measured in a cell-free cAMP hydrolysis assay.⁵⁰ To quantify the downstream effect of PDE4 inhibition, TNF- α inhibition was measured in lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (hPBMC).⁵¹ Since this is a phenotypic assay using human cells, it may have greater clinical relevance than inhibition of purified PDE4. However, care should be taken in interpreting the results of the TNF- α data, as other cellular phenomena can also result in the inhibition of TNF- α release. For example, a compound which is toxic to hPBMC would probably interfere with the measurable physiological response (release of TNF- α), without inhibiting the PDE4 enzyme.

Table 1 summarizes the biological data for inhibition of HCT-116 cell growth and inhibition of PDE4 and TNF-α. Data obtained with CA-4 are also presented for reference. The lead analog 1 potently inhibited the growth of HCT-116 cells, with an IC₅₀ of 18 nM. It also inhibited PDE4 and TNF- α , albeit with \sim 10-fold decrease in potency (IC₅₀ values for PDE4 and TNF- α were 350 and 270 nM, respectively). When the individual isomers were tested, 12 was about 10-fold more potent in the HCT-116 assay, and about five-fold more potent in the PDE4 and TNF- α assays. The greater activity of the $\mathbf{1Z}$ isomer is in accord with results reported for a previous series of analogs.⁵² To facilitate rapid synthesis and screening, subsequent analogs were tested as the $\sim 1:1 E/Z$ mixtures obtained in the HWE reactions. The 3,5-dimethoxyphenyl moiety was found to be important for potent antiproliferative activity; its replacement with a 3,4-dimethoxyphenyl group (i.e., 2) resulted in a nearly 10-fold loss of antiproliferative potency in the HCT-116 assay, but had no effect on PDE4 inhibitory activity. On the other hand, if this ring was replaced with the 3,4,5-trimethoxyphenyl ring found in CA-4 (i.e., 3), then good antiproliferative potency was maintained, but PDE4 inhibitory potency dropped sixfold. Substitution of both phenyl rings with 3.4.5-trimethoxyl (4) resulted in reduced activity in all assays. Analogs 5-8 are trimethoxy analogs, and among them 6-8 result from deletion of a single methoxyl from the structure of 1. Data from this series indicates that the 3,5-dimethoxyphenyl moiety is required for potent antiproliferative activity and so is at least one methoxyl on the other ring. The 3,4-dialkoxyphenyl motif, a well-known PDE4 pharmacophore,^{53,54} was essential for PDE4 inhibitory activity.

Scheme 2. Synthesis of diarylacrylonitriles with a 4-ethoxy-3-methoxyphenyl ring. Reagents and conditions: (a) *n*-BuLi or Mg, THF; (b) MnO₂, CH₂Cl₂; (c) (EtO)₂P(O)CH₂CN, LiHMDS, THF.

Compound **10**, which possesses the 3-hydroxy-4-methoxyphenyl ring found in CA-4, was very potent in the HCT-116 assay (IC₅₀ ~2 nM), as were the amino-substituted analogs **11** and **12**. These analogs suffered substantial loss of PDE4 inhibitory activity; nevertheless, they did inhibit the release of TNF- α from hPBMC. This may be a result of toxicity to hPBMC or it may be due to effects on another signaling pathway. Combretastatin A-4 was extremely potent in the HCT-116 assay (IC₅₀ of 0.7 nM), but was not active as a PDE4 inhibitor. Although CA-4 did inhibit the release of TNF- α from hPBMC, it evidently did so by a mechanism other than inhibition of PDE4.

The role of the group at the alkene terminus was explored in a series of analogs shown in Table 2. In general, the nitrile proved to be critical for potent antiproliferative and PDE4 inhibitory activity. Its removal provided **13**, which showed a 5-fold and 20-fold drop in potency in the PDE4 and TNF- α assays, and was entirely inactive against HCT-116 cells. Replacement of the nitrile with amide (14), methyl ester (15), or carboxylic acid (16) resulted in a loss of both antiproliferative activity (IC_{50} >10 $\mu M)$ and PDE4 inhibition (IC_{50} >1 μ M). Compound **17**, which possesses a methyl ketone at this site, retained activity in the PDE4 and TNF- α assays, but was not active against HCT-116 cells. Analogs 18-22, variously substituted with alkyl, aminoalkyl, methoxyl, and ethyne groups, all showed reduced activity relative to 1. The only one of these analogs to display any activity against HCT-116 was the methyl analog 18, with an IC₅₀ of 480 nM. Interestingly, when the 3-hydroxy-4-methoxyphenyl ring found in CA-4 was used instead of 3,4-dimethoxyphenyl, antiproliferative activity was restored. Compound 23, which is unsubstituted at the alkene terminus, and compound 24, which possesses a methyl group at this site, both displayed similar activity against HCT-116 as 1. These analogs are structurally reminiscent of the recently reported isocombretastatins.^{55,56} Like the other hydroxyl-substituted diarylacrylonitrile **10** without a 3,4-alkoxyphenyl moiety, these analogs were not active against PDE4. When the alkene was disubstituted (**25**) or substituted with a phenyl ring (**26**), activity dropped substantially. Use of an amino group in lieu of the hydroxyl (e.g., **27**) was also found to restore activity in the HCT-116 assay. It is unclear why the presence of polar functionality on the aromatic ring seems to compensate for the loss of the nitrile group, but its requirement is in accord with previously disclosed SAR for the structurally related phenstatins^{28,29} and isocombretastatins.^{55,56}

The 3,4-dialkoxyphenyl moiety is a key known pharmacophore for PDE4 inhibitors. Generally, a methoxy group at the 4-position is optimal, and a bulky group such as cyclopentoxy at the 3-position leads to more potent analogs in a majority of reported series of PDE4 inhibitors which contain the 3,4-dialkoxyphenyl group.^{53,54} Previously, we have shown that an ethoxy group is sufficient to confer the same potency boost as a cyclopentoxy at the 3-position in some series of PDE4 inhibitors.⁴⁴ In order to enhance potency for PDE4 inhibition, therefore, diarylacrylonitrile analogs bearing a 3ethoxy-4-methoxyphenyl ring were prepared and evaluated for activity (Table 3). Use of this ring system in conjunction with a 3,5-dimethyoxyphenyl ring provided 28, and resulted in potent activity in all three assays, with all three IC_{50} values ${\sim}50$ nM. In this case, substitution of ethoxy for methoxy (i.e., 28 vs 1) provided a sevenfold improvement in PDE4 activity, with no loss of HCT-116 antiproliferative potency. Use of the 3-ethoxy-4-methoxy substitution motif on both phenyl rings (29) resulted in a 10-fold drop-off in HCT-116 antiproliferative activity while PDE4 activity remained unchanged relative to 28. Analogs 29-34, with various mono- or 3,4-disubstitutions, displayed reduced antiproliferative activity

Scheme 3. Synthesis of analogs featuring nitrile replacements. Reagents and conditions: (a) (EtO)₂P(O)CH₂CO₂CH₃, LiHMDS, THF; (b) KOH, H₂O, CH₃OH;(c) Ph₃P=CHCOCH₃, CH₃CN; (d) Pd(OAc)₂, NaOAc, Bu₄NBr, DMF; (e) Ph₃P=CHCO, THF; (f) THF.

Scheme 4. Synthesis of hydroxy-substituted 3,3-diarylacrylonitriles. Reagents and conditions: (a) TBSCI, DIEA, DMF; (b) *n*-BuLi, THF; (c) MnO₂, CH₂Cl₂; (d) (EtO)₂P(O) CHR₄R₅ or XPh₃PCHR₄R₅, LiHMDS, THF (X = Br or I); (e) TBAF, THF.

Scheme 5. Synthesis of pyrrole- and amino-substituted 3,3-diarylacrylonitriles. Reagents and conditions: (a) Mg, cat. I₂, THF; (b) MnO₂, CH₂Cl₂ or PCC, CH₂Cl₂; (c) (EtO)₂P(O) CH₂CN or BrPh₃PCH₂R₄, LiHMDS, THF; (d) SnCl₂, EtOH, EtOAc or H₂, Pd/C, EtOAc; (e) 2,5-dimethoxytetrahydrofuran, AcOH; (f) *n*-BuLi, THF; (g) MnO₂, CH₂Cl₂

but similar PDE4 activity to **28**. However, the inclusion of a small polar group such as hydroxyl or amino was again found to have a beneficial effect on antiproliferative potency. Use of the 3-hydroxy-4-methoxyphenyl ring found in CA-4 resulted in **35**, which had similar activity as **28**. The corresponding amino analog **26** exhibited comparable activity, with IC₅₀ values in the range of 10– 50 nM across the three different assays. Use of a mono- or dimethylamino group at the *para*-position provided compounds **37–38**, which also had IC_{50} values ~50 nM in all three assays. Incorporation of the amino group into a pyrrole provided **39**, and had no significant impact upon activity. Since these data indicate that the 3ethoxy-4-methoxyphenyl group is compatible with the 3-hydroxy-4-methoxyphenyl, compounds des-nitrile analogs **40–43** were prepared. Unlike des-nitrile analogs **23–25** and **27**, which retained antiproliferative activity but not PDE4 inhibitory activity, these des-nitrile analogs inhibited PDE4 as well as HCT-116, although

Scheme 6. Synthesis of amide-containing 3,3-diarylacrylonitriles. Reagents and conditions: (a) AcCl, THF; (b) BocHNCH(R)CO₂H, DCC, HOBt, DMF; (c) HCl, CH₂Cl₂.

Scheme 7. Synthesis of carbamate- and ester-containing 3,3-diarylacrylonitriles. Reagents and conditions: (a) CICON(Me)₂, THF; (b) BocHNCH(R)CO₂H, DCC, 4-pyrrolidin-1yl-pyridine, CH₂Cl₂; (c) HCl, CH₂Cl₂.

they still were ~10-fold more potent in the HCT-116 assay. Removal of the nitrile from **35** provided **40**, which had similar activity to the lead compound **1**. Difluorination at the alkene terminus provided **41**, and had no effect on activity. The des-nitrile aniline **42** had very similar activity to phenol analog **40**, while addition of a methyl to the alkene terminus of **42** provided **43**, which had similar activity against HCT-116 and PDE4.

In order to improve on physicochemical properties, some of the more potent agents were derivatized as amides and esters (Table 4). The effect of acylation upon activity was first examined by acetylation of **11**. Disappointingly, acetamide **44** was ~50-fold less active against HCT-116, though the IC₅₀ was still a reasonable 92 nM. Neither **11** nor **44** inhibited PDE4 at submicromolar concentrations, although both inhibited TNF- α release. For the preparation of more water-soluble analogs, **36** was derivatized with small amino acids. These analogs **45–46** displayed a modest

decrease in HCT-116 and PDE4 activity, with a 2-3-fold decline in activity for alanine derivative 46, and a slightly greater dropoff for glycine analog 45. Among derivatives of phenol 35, the carbamate 47 was inactive against HCT-116 but retained good inhibitory activity against PDE4, while the amino acid esters (48-50) had no noticeable loss of activity, with very similar potency to the parent compound. Considering that many of the analogs in Table 4 exhibit similar activity to their respective parent compounds, it is possible that some hydrolysis of these analogs may occur during the assays to release the parent active agents **35** or **36**; no efforts were made to detect 35 or 36 in the assay media. It is therefore not possible to say whether the activity observed in these assays is intrinsic to the analogs themselves or if it is due to hydrolysis to active agents. However, the stability of 45-50 was tested in human plasma to determine whether they can function as prodrugs of 35 and 36. The ester analogs **48–50** were highly unstable in human plasma,

Table 1

Inhibitory effect of 1 and related 3,3-diarylacrylonitrile analogs on the growth of HCT-116 cells, PDE4 activity, and TNF- α release from hPBMC

Compd	R_1	R ₂	R ₃	R4	R5	R ₆	HCT-116 ^a (µM)	PDE4 ^a (μ M)	TNF- α^{a} (μ M)
1 ³⁰	OCH ₃	Н	OCH ₃	OCH ₃	OCH ₃	Н	0.018 ± 0.001	0.35 ± 0.20	0.27 ± 0.036
1 <i>E</i>							0.11 ± 0.012	0.73 ± 0.24	0.65 ± 0.23
1 <i>Z</i>							0.011 ± 0.0003	0.15 ± 0.032	0.093 ± 0.0006
2	Н	OCH ₃	OCH ₃	OCH ₃	OCH ₃	Н	0.14 ± 0.0085	0.31 ± 0.0088	0.6
3	OCH ₃	Н	0.041 ± 0.0044	1.8 ± 0.26	0.54 ± 0.15				
4	OCH ₃	>10	2.4 ± 0.61	0.87 ± 0.093					
5	Н	OCH ₃	Н	OCH ₃	OCH ₃	Н	0.024 ± 0.0016	0.19 ± 0.042	0.35 ± 0.010
6	OCH ₃	Н	Н	OCH ₃	OCH ₃	Н	0.31 ± 0.080	0.16 ± 0.037	0.66 ± 0.13
7	OCH ₃	Н	OCH ₃	OCH ₃	Н	Н	0.015 ± 0.0005	3.4 ± 0.55	0.29 ± 0.14
8	OCH ₃	Н	OCH ₃	Н	OCH ₃	Н	0.0012 ± 0.0005	3.8 ± 1.2	0.44 ± 0.11
9	OCH ₃	Н	OCH ₃	Н	Н	Н	0.97 ± 0.14	1.9 ± 0.56	2.4 ± 0.81
10	OCH ₃	Н	OCH ₃	OH	OCH ₃	Н	0.0025 ± 0.0013	2.4 ± 0.87	0.0012 ± 0.001
11	OCH ₃	Н	OCH ₃	NH ₂	OCH ₃	Н	0.0014 ± 0.0005	9.8 ± 1.73	0.011 ± 0.024
12	OCH ₃	OCH ₃	OCH ₃	NH ₂	OCH ₃	Н	0.0018 ± 0.0003	>10	0.2 ± 0.007
CA-4							0.00074 ± 0.0002	>10	0.011 ± 0.004

^a IC₅₀ values are the means of at least three independent determinations.

Table 2

Inhibitory effect of analogs bearing nitrile replacements on the growth of HCT-116 cells, PDE4 activity, and TNF-a release from hPBMC

			/-	3		
Compd	R ₁	R ₂	R ₃	HCT-116 ^a (µM)	PDE4 ^a (µM)	TNF- α^a (μM)
1 ³⁰	CN	Н	OCH ₃	0.018 ± 0.001	0.35 ± 0.20	0.27 ± 0.036
13	Н	Н	OCH ₃	>10	2.2 ± 0.55	4.8 ± 0.63
14	CONH ₂	Н	OCH ₃	>10	6.7 ± 0.67	5.5 ± 2.2
15	CO ₂ CH ₃	Н	OCH ₃	>10	1.3 ± 0.22	5.4 ± 0.62
16	CO ₂ H	Н	OCH ₃	>10	>10	>10
17	COCH ₃	Н	OCH ₃	>10	0.14 ± 0.025	0.75 ± 0.16
18	CH ₃	Н	OCH ₃	0.48 ± 0.12	1.5 ± 0.34	2.6 ± 0.29
19	CH ₂ CH ₃	Н	OCH ₃	>10	2.0 ± 0.30	>10
20	$CH_2CH_2N(CH_3)_2$	Н	OCH ₃	>10	>10	>10
21	OCH ₃	Н	OCH ₃	>10	3.6 ± 3.1	6.3 ± 1.8
22	C=CH	Н	OCH ₃	>10	3.5	7.2 ± 3.1
23	Н	Н	OH	0.021	>10	3.0 ± 1.2
24	CH ₃	Н	OH	0.030 ± 0.002	>10	0.15 ± 0.15
25	CH ₃	CH ₃	OH	0.97 ± 0.15	>10	7.0 ± 1.6
26	Ph	Н	OH	>10	>10	>10
27	Н	Н	NH ₂	0.013 ± 0.0002	>10	0.33 ± 0.046

^a IC₅₀ values are the means of at least three independent determinations.

completely falling apart to the parent phenol **35** in under 20 min. On the other hand, amide analogs **45** and **46** were quite stable in human plasma, with half-lives of 56 h and 27 h, respectively, and the formation of aniline **36** was not observed. The modifications did result in improved solubility. For example, the solubility of **36** (<3 μ g/mL at both pH 5.0 and 7.4) was greatly improved by its conversion to **45** (356 μ g/mL at pH 5.0 and 205 μ g /mL at pH 7.4) or **46** (1,045 μ g/mL at pH 5.0 and 405 μ g/mL at pH 7.4).

It has been shown previously that the cytotoxicity of **1** is based on binding to tubulin at the colchicine binding site, thereby inhibiting its polymerization.³³ To confirm that the same mechanism underlies the cytotoxic activity of the new analogs described herein, selected compounds were assayed at 5 and 10 μ M for inhibition of tubulin polymerization. As shown in Table 5, the new analogs inhibited tubulin polymerization as expected. In the tubulin inhibition assay, CA-4 was somewhat more potent than the diarylalkene analogs, in accord with its greater potency against HCT-116. These findings strongly suggest that the compounds' cytotoxicity is based on the same mechanism as that of **1**, namely inhibition of tubulin polymerization.

We have docked compound **28** into the colchicine binding site of the tubulin crystal structure (PDB code 1SA0)⁵⁷ using MOE software.⁵⁸ Considering the greater activity of **12** compared to **1E**, the molecule was docked in the *Z*-configuration. Figure 3 shows the docking results for compound **28** overlaid upon the crystal structure of colchicine. Due to the relatively large binding pocket, two

Table 3

Inhibitory effect of analogs with a 3-ethoxy-4-methoxyphenyl ring on the growth of HCT-116 cells, PDE4 activity, and TNF- α release from hPBMC

Compd	R ₁	R ₂	R ₃	R ₄	R ₅	HCT-116 ^a (µM)	$PDE4^{a}\left(\mu M\right)$	TNF- α^{a} (μM)
28	OCH ₃	Н	OCH ₃	CN	Н	0.034 ± 0.0029	0.054 ± 0.011	0.043 ± 0.014
29	OCH ₂ CH ₃	OCH ₃	Н	CN	Н	0.44 ± 0.0077	0.070 ± 0.015	0.048 ± 0.010
30	OCH_3	OCH ₃	Н	CN	Н	0.20 ± 0.083	0.083 ± 0.020	0.18 ± 0.019
31	CH ₃	OCH ₃	Н	CN	Н	0.087 ± 0.019	0.082 ± 0.0005	0.10 ± 0.032
32	OCH_3	Н	Н	CN	Н	0.45 ± 0.014	0.11 ± 0.0099	0.23 ± 0.058
33	F	OCH ₃	Н	CN	Н	0.13 ± 0.0011	0.07 ± 0.009	0.031 ± 0.040
34	Н	SO ₂ CH ₃	Н	CN	Н	>10	0.20 ± 0.0064	0.13 ± 0.057
35	OH	OCH ₃	Н	CN	Н	0.015 ± 0.0018	0.091 ± 0.030	0.044 ± 0.0056
36	NH ₂	OCH ₃	Н	CN	Н	0.019 ± 0.0048	0.047 ± 0.0099	0.031 ± 0.0066
37	Н	NHCH ₃	Н	CN	Н	0.055 ± 0.011	0.041 ± 0.005	0.14 ± 0.026
38	Н	$N(CH_3)_2$	Н	CN	Н	0.031 ± 0.0063	0.052 ± 0.0095	0.13 ± 0.057
39	Pyrrol-1-yl	OCH ₃	Н	CN	Н	0.049 ± 0.0054	0.070 ± 0.014	0.067 ± 0.033
40	OH	OCH ₃	Н	Н	Н	0.036 ± 0.0014	0.38 ± 0.048	0.029 ± 0.0017
41	OH	OCH ₃	Н	F	F	0.074 ± 0.012	0.36 ± 0.058	0.054 ± 0.046
42	NH ₂	OCH ₃	Н	Н	Н	0.038 ± 0.0075	0.68 ± 0.10	0.38 ± 0.24
43	NH ₂	OCH ₃	Н	CH ₃	Н	0.11 ± 0.026	0.59 ± 0.090	2.8 ± 0.43

 $^{\rm a}~{\rm IC}_{\rm 50}$ values are the means of at least three independent determinations.

Table 4

-

Inhibitory effect of ester- and amide-containing analogs on the growth of HCT-116 cells, PDE4 activity, and TNF- α release from hPBMC

		P ^C N O NH Ar CN	0	
		44 45-50		
Compd	Ar	HCT-116 ^a (µM)	$PDE4^{a} (\mu M)$	TNF- α^a (μM)
44		0.092 ± 0.021	>10	0.066 ± 0.026
45	M N N N N N S Cl	0.093 ± 0.0018	0.4 ± 0.072	0.031 ± 0.020
46	H NH ₃ Cl	0.04 ± 0.0014	0.15 ± 0.016	0.027 ± 0.014
47		>10	0.12 ± 0.01	0.24 ± 0.062
48	O NH ₃ Cl	0.019 ± 0.001	0.049 ± 0.007	0.058 ± 0.014
49		0.017 ± 0.0017	0.069	0.057 ± 0.0054
50	O O O NH ₃ Cl	0.022 ± 0.0033	0.12 ± 0.010	0.067 ± 0.0030

 $^{\rm a}\,$ IC_{50} values are the means of at least three independent determinations.

Table 5

Tubulin polymerization inhibition data and inhibition of HCT-116

					•				
Compd	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	Tubulin inhib% at 5 µM	Tubulin inhib% at 10 μM	HCT-116 ^a (μM)
1	OCH ₃	Н	OCH ₃	OCH ₃	OCH ₃	Н	65	84	0.018
7	OCH ₃	Н	OCH ₃	OCH ₃	Н	Н	67	88	0.015
10	OCH ₃	Н	OCH ₃	OH	OCH ₃	Н	77	N/D	0.0025
11	OCH ₃	Н	OCH ₃	NH ₂	OCH ₃	Н	76	N/D	0.0014
28	OCH ₃	Н	OCH ₃	OCH ₂ CH ₃	OCH ₃	Н	48	59	0.034
36	OCH ₂ CH ₃	OCH ₃	Н	NH ₂	OCH ₃	Н	65	76	0.019
44	OCH ₃	Н	OCH ₃	$NHC(O)CH_3$	OCH ₃	Н	46	74	0.092
45	OCH ₂ CH ₃	OCH ₃	Н	NHC(O)CH2NH3Cl	OCH ₃	Н	59	70	0.023
CA-4							88	N/D	0.00074

^a % inhibition values are the means of at least two independent determinations; N/D: not determined.

Figure 3. Docked models of 28 (green) overlaid on the crystal structure of colchicine (white). A and B display two different binding modes.

different binding modes were possible and these are shown in Figure 3A and B. The first binding mode, shown in Figure 3A, shows good overlay of the aromatic rings of compound 28 with colchicine. The nitrile moiety resides in a similar region as the acetamide of colchicine. The decision to lock the ligand in the Z-configuration resulted in a reversal of the 3,4- and 3,5-dialkoxy rings relative to the corresponding rings in colchicine. This is reasonable considering that results from the SAR study have shown that the 3,4,5-dimethoxy substitution is not critical in this series; for example, replacement of the 3,4,5-trimethoxyphenyl with a 4-methoxyphenyl ring (as in compounds 3 and 5) resulted in comparable activity against HCT-116. In this binding mode, all of the contacts are nonpolar, forming a fairly large lipophilic pocket. The other binding mode, shown in Figure 3B, has the 3,4- and 3,5-dialkoxy rings in the analogous positions to the corresponding rings in colchicine. Although the nitrile has no overlay with colchicine, it does engage in an H-bonding interaction with Ala250 in the tubulin protein backbone.

2.3. HCT-116 xenograft study of selected analogs

Compounds **28** and **45** were selected for further evaluation in the HCT-116 xenograft model. The compounds were administered intraperitoneally (ip) to mice bearing subcutaneous tumors at 20 mg/kg once daily (qd). Figure 4 shows the compounds' effect on HCT-116 tumor mouse xenografts, and Figure 5 shows the compounds' effect on the body weights of treated groups. The positive control in the study was Camptosar (irinotecan), a topoisomerase I inhibitor with good efficacy in this model.^{59,60} As anticipated, Cam-

Figure 4. Effect of **28** and **45** on the growth of human colorectal cancer (HCT-116) mouse xenograft. HCT-116 cells (2×10^6) were injected s.c. into SCID mice. When the tumors reached ~100 mm³, the mice were treated ip with vehicle control, **28** (20 mg/kg once daily), **45** (20 mg/kg once daily), or positive control Camptosar^{57,58} (5 mg/kg once every four days). *Data Points*, mean tumor volumes plotted against time; *bars*, SE.*, *p* <0.001; **, *p* <0.01.

Figure 5. Effect of **28** and **45** on body weights of mice from HCT-116 colorectal cancer mouse xenograft study. Mice were treated ip with vehicle control, **28** (20 mg/kg once daily), **45** (20 mg/kg once daily), or positive control Camptosar^{57,58} (5 mg/kg once every four days).*Data points*, mean body weights plotted against time; *bars*, SE.*, *p* <0.01; **, *p* <0.05.

ptosar administration resulted in efficacious anti-cancer effect, with 85% inhibition of tumor growth compared to the vehicle group. Compound **45** demonstrated significant efficacy, with a 64% tumor growth inhibition over the vehicle group. Overall, the compound was well tolerated. The mice in this group showed a 15% decrease in body weight, with a majority of the body weight loss in this group occurring after day 19 of the study. Tumor volume in mice treated with compound **28** was reduced by only 16% with respect to the vehicle-treated mice. For this compound, it is likely that poor solubility was partly responsible for the lack of efficacy observed in the study.

3. Conclusion

The novel analogs reported herein, dual inhibitors of tubulin polymerization and PDE4, were designed to elicit an antineoplastic effect by means of two independent molecular mechanisms. The SAR for antitubulin activity was similar to that of other combretastatin analogs, with the additional requirement of the nitrile group at the alkene terminus. No other alkene substitution was found to restore antitubulin activity in the absence of polar functionality on the ring. However, the nitrile could be replaced or eliminated in the presence of an appropriate hydroxyl or amino phenyl substitution without loss of antiproliferative activity. The presence of a 3,4-dialkoxy motif in these analogs did provide PDE4 inhibition. The use of 3-ethoxy-4-methoxyphenyl PDE4 pharmacophore resulted in a boost in PDE4 inhibition relative to the 3,4-dimethoxy analogs such as 1. The critical structural motifs were combined in compounds 35 and 36, which possess the 3-ethoxy-4-methoxyphenyl PDE4 pharmacophore and another ring bearing a hydroxyl or amino respectively. These analogs inhibited HCT-116 with IC₅₀ \sim 20 nM and PDE4 with IC₅₀ \sim 50 nM. Their respective amino acid ester or amide derivatives, prepared for improved solubility, showed comparable in vitro activity. One such analog, the glycinamide analog 45 also displayed significant in vivo efficacy in the HCT-116 xenograft study, and merits further study to identify the active isomer and develop a stereoselective synthesis.

In recent years, a multitude of tubulin interactive anti-cancer agents have been reported in the literature, with scattered examples in preclinical and clinical development. The diarylalkenes described herein are distinguished by the introduction of PDE4 inhibitory activity, and it is to be hoped that this additional mechanism of action will result in enhanced clinical efficacy. The success of this strategy will be determined in future studies.

4. Experimental section

Commercial reagents and solvents were used as received without further purification. Reactions were run under nitrogen atmosphere, unless noted otherwise. Column chromatography refers to flash chromatography using Isco brand prepacked silica gel cartridges. Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance were recorded on a Brucker 250 spectrometer. NMR spectra (250 MHz ¹H and 62.5 MHz ¹³C) were recorded in the deuterated solvent indicated with chemical shifts reported in δ units downfield from tetramethylsilane (TMS). Coupling constants are reported in hertz (Hz). Elemental analyses and were obtained from QTI Intertek, Whitehouse, NJ. Elemental analyses were within 0.4% of theory. Purity of compounds was also analyzed by reverse phase HPLC using the solvent systems indicated. All compounds submitted for pharmacological testing possessed purity \ge 95% as evidenced by the results of elemental analysis and HPLC analysis. Melting points were obtained from QTI Intertek, Whitehouse, NJ. CA-4 was prepared according to the literature procedure.¹⁵

4.1. Preparation of 3,3-diarylacrylonitriles by Horner–Wadsworth– Emmons reaction. General procedure A. (*E*/*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)acrylonitrile (1)^{30,31}

To a stirred solution of diethylcyanomethylphosphonate (0.42 mL, 2.5 mmol) in THF (15 mL) was added a 1.3 M solution of LiHMDS in THF (1.9 mL, 2.5 mmol) at 0 °C. The solution was allowed to warm to room temperature and was stirred for 30 min, and then a mixture of 51a (0.7 g, 2.3 mmol) in THF (20 mL) was added. The reaction mixture was refluxed overnight and was then cooled and quenched with water (100 mL). The resulting mixture was extracted with methylene chloride (2×50 mL). The combined extracts were washed with water (100 mL), dried (MgSO₄), and concentrated under vacuum. The residue was chromatographed in 99:1 CH₂Cl₂/EtOAc to provide 0.66 g (81% yield) of a mixture of the *E* and *Z* isomers as a white solid: mp 88–90 °C. ¹H NMR (CDCl₃) & 3.77 (s, 3H), 3.80 (s, 3H), 3.84-3.87 (m, 3H), 3.91-3.94 (m, 3H), 5.61-5.66 (m, 1H), 6.40-6.61 (m, 3H), 6.80-7.10 (m, 3H). ¹³C NMR (CDCl₃) δ 55.4, 55.5, 55.9, 56.0, 93.1, 93.4, 102.0, 102.1, 107.0, 107.6, 110.7, 110.7, 110.9, 112.6, 118.0, 118.2, 122.1, 123.2, 129.2, 131.1, 138.9, 141.3, 148.5, 148.8, 150.6, 151.1, 160.6, 160.7, 162.5, 162.7. Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.30. Found: C, 70.33; H, 5.89; N, 4.03.

4.2. (*E*)-3-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-acrylonitrile (1*E*)

The geometric isomers of compound **1** were separated on a Waters Prep LC 4000 System, eluting with a 2:3 mixture of acetonitrile–water, providing the product as a white solid: mp 114– 116 °C. ¹H NMR (DMSO- d_6) δ 3.74–3.83 (m, 12H), 6.21 (s, 1H), 6.49 (d, *J* = 2.2 Hz, 2H), 6.63 (t, *J* = 2.1 Hz, 1H), 6.93 (dd, *J* = 8.1 Hz, *J* = 1.8 Hz, 1H), 6.99 (d, *J* = 1.8 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (DMSO- d_6) δ 55.4, 55.5, 55.6, 94.0, 95.2, 100.5, 102.0, 106.7, 111.4, 112.6, 118.4, 122.5, 129.0, 140.4, 148.2, 150.1, 160.3, 161.4. Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.30. Found: C, 69.88; H, 5.88; N, 4.40.

4.3. (*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-acrylonitrile (1*Z*)

Compound **1Z** was also obtained from the separation that provided **1E**: mp 129–131 °C. ¹H NMR (DMSO- d_6) δ 3.76–3.78 (m, 12H), 6.32 (s, 1H), 6.47 (d, *J* = 1.8 Hz, 2H), 6.65 (t, *J* = 2.1 Hz, 1H), 6.74 (dd, *J* = 8.5 Hz, *J* = 1.7 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 7.14 (s, 1H). ¹³C NMR (DMSO- d_6) δ 55.4, 55.6, 55.6, 93.9, 101.0, 107.2, 110.6, 111.2, 118.3, 122.3, 129.7, 139.2, 148.7, 151.0, 160.3, 161.1. Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.30. Found: C, 69.81; H, 5.87; N, 4.19.

4.4. 3,3-Bis(3,4-dimethoxyphenyl)acrylonitrile (2)

Compound **2** was prepared from **51b**^{61,62} (1.51 g, 5.0 mmol) using general procedure A. Chromatographic purification using 95:5 CH₂Cl₂/EtOAc gave 1.0 g (61% yield), as a tan glass: ¹H NMR (CDCl₃) δ 3.84 (s, 3H), 3.87 (s, 3H), 3.92 (s, 3H), 3.94 (s, 3H), 5.57 (s, 1H), 7.95 (br, 6H). ¹³C NMR (DMSO-*d*₆) δ 55.9, 55.9, 56.0, 91.9, 110.7, 110.7, 111.4, 112.7, 118,6, 122.2, 123.2, 129.5, 131.8, 148.5, 148.8, 150.5, 151.0, 162.4. Anal. Calcd for C₁₉H₁₉NO₄·0.325H₂O: C, 68.90; H, 5.97; N, 4.23. Found: C, 68.99; H, 5.84; N, 4.10.

4.5. (*E*/*Z*)-3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)-acrylonitrile (3)

Compound **3** was prepared from (3,4-dimethoxyphenyl) (3',4',5'-trimethoxyphenyl)methanone (3.3 g, 10 mmol) using general procedure A. Chromatographic purification using 95:5 CH₂Cl₂/ EtOAc gave 2.7 g (77% yield) as a white solid: mp 119–121 °C. ¹H NMR (DMSO-*d*₆) δ 3.84–3.71 (m, 15H), 6.19–6.25 (m, 1H), 6.66 (d, *J* = 3 Hz, 2H), 7.00–6.77 (m, 2H), 7.14–7.07 (m, 1H). ¹³C NMR (DMSO-*d*₆) δ 55.5, 55.5, 55.6, 56.0, 56.0, 60.1, 93.5, 94.2, 106.3, 106.9, 111.0, 111.2, 111.3, 112.7, 118.6, 118.7, 122.4, 122.7, 128.9, 130.0, 132.5, 133.7, 138.4, 139.4, 148.2, 148.6, 150.1, 151.0, 152.6, 161.3, 161.4. Anal. Calcd for C₂₀H₂₁NO₅: C, 67.59; H, 5.96; N, 3.94. Found: C, 67.66; H, 5.98; N, 3.88.

4.6. 3,3-Bis(3,4,5-trimethoxyphenyl)acrylonitrile (4)

Compound **4** was prepared from bis(3,4,5-trimethoxyphenyl)methanone (0.32 g, 0.88 mmol) using general procedure A. Chromatographic purification using 95:5 CH₂Cl₂/EtOAc gave 0.25 g (74% yield) as a white solid: mp 146–148 °C. ¹H-NMR (DMSO-*d*₆) δ 3.77–3.72 (m, 18H), 6.32 (s, 1H), 6.69 (d, *J* = 5 Hz, 4H). ¹³C NMR (DMSO-*d*₆) δ 56.1, 56.1, 60.1, 60.1, 95.2, 100.4, 106.2, 107.1, 118.4, 131.9, 133.1, 138.7, 139.6, 152.6, 152.7, 161.3. Anal. Calcd for C₂₁H₂₄NO₆: C, 65.44; H, 6.02; N, 3.63. Found: C, 65.08; H, 5.99; N, 3.45.

4.7. (*E*/*Z*)-3-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-acrylonitrile (5)

Compound **5** was prepared from (3,4-dimethoxyphenyl)(4-methoxyphenyl)methanone (2.00 g, 7.3 mmol) using general procedure A. Chromatographic purification using a hexanes/EtOAc gradient gave 2.08 g (96% yield) as a pink oil: ¹H NMR (CDCl₃) δ 3.83–3.94 (m, 9H), 5.56 (s, 1H), 6.79–7.42 (m, 7H). ¹³C NMR (CDCl₃) δ 55.5, 55.5, 56.1, 56.1, 56.29, 91.8, 91.9, 110.9, 111.5, 112.9, 114.0, 114.1, 118.8, 118.8, 122.3, 123.2, 129.5, 129.8, 130.3, 131.5, 131.7, 132.1, 148.8, 149.0, 150.7, 151.2, 161.2, 161.6, 162.5, 162.6. Anal. Calcd for C₁₈H₁₇NO₃·0.3H₂O: C, 71.89; H, 5.90; N, 4.66. Found: C, 71.95; H, 6.04; N, 4.54.

4.8. (*E*/*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3-methoxyphenyl)-acrylonitrile (6)

Compound **6** was prepared from $(3,4-dimethoxyphenyl)(3-methoxyphenyl)methanone (2.0 g, 7.3 mmol) using general procedure A. Chromatographic purification using a hexanes/ethyl acetate gradient gave 1.99 g (92% yield) as a pink oil: ¹H NMR (CDCl₃) <math>\delta$ 3.79–3.94 (m, 9H), 5.61–5.68 (m, 1H), 6.82–7.38 (m, 7H, Ar). ¹³C NMR (CDCl₃) δ 55.5, 56.1, 56.1, 56.2, 93.3, 93.8, 110.9, 110.9, 111.2, 112.8, 114.5, 115.0, 115.9, 116.0, 118.2, 118.4, 121.3, 122.2, 122.3, 123.4, 129.5, 129.7, 129.7, 131.4, 138.6, 140.9, 148.8, 149.0, 150.8, 151.3, 159.6, 159.7, 162.7, 162.8. Anal. Calcd for C₁₈H₁₇NO₃·0.25H₂O: C, 72.10; H, 5.88; N, 4.67. Found: C, 72.33; H, 6.10; N, 4.60.

4.9. (*E*/*Z*)-3-(3,5-Dimethoxyphenyl)-3-(3-methoxyphenyl)-acrylonitrile (7)

Compound **7** was prepared from (3,5-dimethoxyphenyl)(3-methoxyphenyl)methanone (1.02 g, 3.8 mmol) using general procedure A. Chromatographic purification using a hexanes/ethyl acetate gradient gave 1.06 g (96% yield) as an off-white solid: mp 81–83 °C. ¹H NMR (CDCl₃) δ 3.76–3.79 (m, 6H), 3.82 (s, 3H), 5.72 (s, 1H), 6.42–7.35 (m, 7H). ¹³C NMR (CDCl₃) δ 55.5, 55.6, 55.6, 95.4, 95.4, 102.2, 102.34, 107.0, 107.8, 114.3, 115.0, 115.9, 116.1, 117.8, 117.8, 121.0, 122.1, 129.7, 129.8, 138.2, 138.8, 140.1, 141.0, 159.6, 159.8, 160.8, 160.9, 163.0, 163.0. Anal. Calcd for C₁₈H₁₇NO₃: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.10; H, 5.72; N, 4.68.

4.10. (*E*/*Z*)-3-(3,5-Dimethoxyphenyl)-3-(4-methoxyphenyl)-acrylonitrile (8)

Compound **8** was prepared from (3,5-dimethoxyphenyl)(4methoxyphenyl)methanone (1.86 g, 6.8 mmol) using general procedure A. Chromatographic purification using a hexanes/ethyl acetate gradient gave 1.97 g (98% yield) as an off-white solid: mp 79– 81 °C. ¹H NMR (CDCl₃) δ 3.76–3.86 (m, 9H), 5.60–5.65 (m, 1H), 6.42–7.43 (m, 7H). ¹³C NMR (CDCl₃) δ 55.5, 55.6, 55.6, 93.0, 93.8, 102.1, 102.2, 107.2, 107.8, 114.0, 114.2, 118.2, 118.4, 129.3, 130.1, 131.0, 131.5, 139.2, 141.7, 160.8, 160.9, 161.2, 161.7, 162.6, 162.8. Anal. Calcd for C₁₈H₁₇NO₃: C, 73.20; H, 5.80; N, 4.74. Found: C, 72.90; H, 5.52; N, 4.67.

4.11. (*E*/*Z*)-3-(3,5-Dimethoxyphenyl)-3-phenylacrylonitrile (9)

Compound **9** was prepared from (3,5-dimethoxy-phenyl) (phenyl)methanone (0.34 g, 1.4 mmol) using general procedure A. Chromatographic purification using a hexanes/ethyl acetate gradient gave 0.33 g (89% yield) as a light beige oil: ¹H NMR (CDCl₃) δ 3.76 (s, 3H), 3.79 (s, 3H), 5.73 (s, 1H), 6.41–7.44 (m, 8H). ¹³C NMR (CDCl₃) δ 55.6, 55.7, 55.6, 95.1, 95.3, 102.2, 102.3, 107.0, 107.8, 107.8, 117.9, 128.5, 128.6, 128.8, 129.7, 130.2, 130.57, 137.0, 138.7, 139.0, 141.1, 160.9, 160.9, 163.1, 163.2. Anal. Calcd for C₁₈H₁₇NO₃·0.25H₂O: C, 76.44; H, 5.74; N, 5.24. Found: C, 76.41; H, 5.40; N, 5.18.

4.12. Deprotection of *tert*-butyldimethylsilyl ethers. General procedure B. (*E*/*Z*)-3-(3,5-Dimethoxyphenyl)-3-(3-hydroxy-4-methoxyphenyl)acrylonitrile (10)

A 1.0 M solution of tetrabutylammonium fluoride (1.5 mL, 1.5 mmol) was added to a stirred solution of **59a** (0.53 g, 1.3 mmol) in THF (15 mL) at room temperature. After 1 h, ice water (10 mL)

was poured into the reddish solution, followed by addition of ether (50 mL). The mixture was washed with water (2 × 80 mL), dried over MgSO₄, filtered and evaporated under vacuum, providing the product as a foamy solid (0.35 g, 90% yield): mp 43–45 °C. ¹H NMR (DMSO-*d*₆) δ 3.78–3.81 (m, 6H), 3.84–3.87 (m, 3H), 6.17–6.19 (m, 1H), 6.49 (t, *J* = 2.0 Hz, 2H), 6.65–6.69 (m, 1H), 6.82–6.91 (m, 2H), 7.00–7.07 (m, 1H), 9.28–9.36 (m, 1H). ¹³C NMR (CDCl₃) δ 55.6, 56.1, 56.2, 93.5, 94.2, 102.1, 102.2, 107.1, 107.8, 110.4, 110.4, 114.4, 116.0, 118.1, 118.2, 121.3, 122.3, 130.2, 131.9, 139.1, 141.4, 145.5, 145.7, 148.2, 148.7, 160.8, 160.8, 162.6, 162.8. Anal. Calcd for C₁₈H₁₇NO₄·0.08H₂O: C, 69.12; H, 5.53; N, 4.48. Found: C, 68.76; H, 5.69; N, 4.22.

4.13. Tin (II) chloride reduction of nitro compounds. General procedure C. (*E*/*Z*)-3-(3-Amino-4-methoxyphenyl)-3-(3,5-dimethoxyphenyl)acrylonitrile (11)

A suspension of 62a (1.5 g, 4.4 mmol) and tin chloride dihydrate (5.4 g, 23.0 mmol) in ethanol (25 mL) was heated at 70 °C for 1 h. The mixture was cooled and poured onto ice (200 mL). The pH was made strongly alkaline by the addition of 10 N NaOH. The mixture was extracted with EtOAc (5x50 mL) and the combined organic extracts were washed with water (40 mL), brine (40 mL), and dried (MgSO₄). The solvent was removed and the residue was purified by column chromatography eluting with 75:25 hexane/EtOAc, to afford the product (0.8 g, 54% yield) as a yellow solid: mp 93-95 °C. ¹H NMR (CDCl₃) δ 3.73 -3.79 (m, 6H), 3.70–3.87 (br, 2H), 3.87–3.89 (m, 3H), 5.54 (s, 1H), 6.42–6.82 (m, 6H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 55.5, 55.6, 92.7, 93.4, 101.9, 102.0, 107.0, 107.6, 109.8, 109.9, 114.2, 115.8, 119.4, 120.7, 129.5, 131.2, 136.0, 136.2, 139.3, 141.7, 148.8, 149.2, 160.6, 160.6, 162.9, 163.1. Anal. Calcd for C₁₈H₁₈N₂O₃: C, 69.66; H, 5.85; N, 9.03. Found: C, 69.60; H, 5.58; N, 8.88.

4.14. Catalytic hydrogenation of nitro compounds. General procedure D. (*E/Z*)-(3-Amino-4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)acrylonitrile (12)

A mixture of **62b** (0.9 g, 2.4 mmol) and 10% Pd/C (0.1 g) in EtOAc (100 mL) was hydrogenated under 50 psi of hydrogen for 16 h. The mixture was filtered through Celite and the filtrate was concentrated. The crude product was purified by flash chromatography (CH₂Cl₂–EtOAc 85:15) to afford the product (0.3 g, 41% yield) as a yellow solid: mp 97–99 °C. ¹H NMR (CDCl₃) δ 3.80–3.91 (m, 14H), 5.51–5.75 (s, 1H), 6.51–6.87 (m, 5H); ¹³C NMR (CDCl₃) δ 55.5, 55.6, 56.2, 60.9, 92.1, 92.6, 106.2, 107.2, 109.8, 109.8, 114.4, 115.9, 119.5, 120.8, 129.5, 131.5, 132.6, 135.1, 136.0, 136.2, 139.3, 139.9, 148.8, 149.2, 152.9, 153.0, 163.0, 163.1. Anal. Calcd for C₁₉H₂₀N₂O₄: C, 67.05; H, 5.92; N, 8.23. Found: C, 67.08; H, 6.08; N, 7.94.

4.15. Wittig reaction of benzophenones. General procedure E. 4-(1-(3,5-Dimethoxyphenyl)vinyl)-1,2-dimethoxybenzene (13)

To a stirred suspension of methyltriphenylphosphonium bromide (2.4 g, 6.6 mmol) in THF (20 mL) was added a 1.0 M solution of LiHMDS in THF (6.6 mL, 6.6 mmol) at 0 °C. The solution was allowed to warm to room temperature and was stirred for 30 min, and then a mixture of **51a** (1.0 g, 3.3 mmol) in THF (20 mL) was added. The reaction mixture was heated to reflux for 16 h and was then quenched with water (100 mL). The resulting mixture was extracted with methylene chloride (2×50 mL). The combined extracts were washed with water, dried (MgSO₄), and concentrated under vacuum. The residue was chromatographed using a hexanes/ ethyl acetate gradient, to provide 0.76 g (74% yield) of the product as a colorless oil: ¹H NMR (CDCl₃) δ 3.78 (s, 6H), 3.84 (s, 3H), 3.90 (s, 3H), 5.39 (s, 1H), 5.40 (s, 1H), 6.44 (t, J = 2.1 Hz, 1H), 6.51 (d, J = 2.4 Hz, 2H), 6.81–6.93 (m, 3H). ¹³C NMR (CDCl₃) δ 55.5, 56.1, 100.1, 106.8, 110.9, 111.6, 113.4, 121.1, 134.2, 143.9, 148.7, 149.0, 149.8, 160.6. Anal. Calcd for C₁₈H₂₀O₄: C, 71.98; H, 6.71; N, 0.00. Found: C, 71.65; H, 7.08; N, <0.05.

4.16. (*E*/*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-acrylamide (14)

KOSi(CH₃)₃ (0.39 g, 3.1 mmol) was added to a stirred solution of compound **1** (0.50 g, 1.5 mmol) in toluene (10 mL), and the resulting mixture was heated to reflux under nitrogen for 20 h. The mixture was cooled and evaporated under vacuum. The residue was partitioned between water (100 mL) and EtOAc (75 mL), and the aqueous phase was extracted with EtOAc (2×75 mL). The combined organic phases were washed with water (100 mL) and brine (100 mL), and were dried (MgSO₄) and evaporated, to afford 0.45 g of the product, in 85% yield: mp 119–121 °C. ¹H NMR (CDCl₃) δ 3.50–4.00 (m, 12H), 6.32–7.24 (m, 9H). ¹³C NMR (CDCl₃) δ 55.2, 55.4, 55.4, 55.5, 55.5, 99.2, 100.0, 106.2, 107.5, 110.5, 111.0, 111.3, 113.4, 121.0, 121.3, 122.1, 122.8, 131.0, 133.1, 141.2, 143.8, 147.6, 147.8, 148.5, 149.4, 159.9, 160.3, 167.4, 167.6. Anal. Calcd for C₁₉H₂₁NO₅: C, 66.46; H, 6.16; N, 4.08. Found: C, 66.09; H, 6.32; N, 3.92.

4.17. (*E/Z*)-Methyl 3-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-acrylate (15)

To a stirred suspension of methyl diethylphosphonoacetate (1.1 g, 5.4 mmol) in THF (10 mL) was added a 1.0 M solution of LiHMDS in THF (5.4 mL, 5.4 mmol) at 0 °C. The solution was allowed to warm to room temperature and was stirred for 30 min, and then a mixture of 51a (1.5 g, 4.9 mmol) in THF (20 mL) was added, and the mixture was stirred at rt for 4 h. Then, methyl diethylphosphonoacetate (1.1 g, 5.4 mmol) and 1.0 M LiHMDS in THF (5.4 mL, 5.4 mmol) were added, and the mixture was heated to reflux for 6 days. The reaction mixture was cooled to room temperature and guenched with water (100 mL). The resulting mixture was extracted with methylene chloride (2×50 mL). The combined extracts were washed with water (80 mL), dried (MgSO₄), and concentrated under vacuum. The residue was purified using reverse phase preparative HPLC, running a water-acetonitrile gradient. The product, a mixture of geometric isomers, was obtained as a colorless oil, 0.45 g (25% yield): ¹H NMR (CDCl₃) δ 3.62–3.64 (m, 3H), 3.75-3.77 (m, 6H), 3.82-3.84 (m, 3H), 3.89-3.92 (m, 3H), 5.39 (s, 1H), 6.28-6.29 (m, 1H), 6.29-6.49 (m, 3H), 6.72-6.91 (m, 2H). ¹³C NMR (CDCl₃) δ 51.3, 51.3, 55.4, 55.4, 55.8, 56.0, 100.2, $101.4,\ 106.9,\ 107.2,\ 110.4,\ 110.7,\ 112.8,\ 115.0,\ 116.7,\ 122.1,$ 122.4, 131.0, 132.9, 140.9, 143.4, 148.3, 148.8, 149.2, 150.5, 156.4, 156.5, 160.3, 160.6, 166.4, 166.6. Anal. Calcd for C₂₀H₂₂O₆·0.3CH₂Cl₂: C, 63.52; H, 5.93; N, 0.00. Found: C, 66.02; H, 5.81; N, <0.05.

4.18. (*E*/*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)acrylate (16)

A mixture of **15** (0.76 g, 2.1 mmol), and KOH (2.3 g, 40 mmol) in 4:1 MeOH–water (10 mL) was stirred at room temperature under nitrogen for 4 h. The mixture was evaporated under vacuum to remove the methanol, and the remaining solution was diluted with water (10 mL). This mixture was washed with ethyl ether (2 × 60 mL) and then acidified to pH 2–3 (conc. HCl). The resulting mixture was extracted with CH₂Cl₂ (2 × 100 mL), and the combined extracts were dried (MgSO₄) and evaporated, providing the product as an off-white foam: mp 90–92 °C. ¹H NMR (CDCl₃) δ 3.75–3.92 (m, 12H), 6.24–6.50 (m, 6H), 6.75–6.90 (m, 2H). ¹³C NMR (CDCl₃) δ 55.5, 55.6, 56.0, 56.1, 100.7, 101.9, 106.1, 107.2, 107.5, 110.6, 110.8, 111.0, 113.2, 114.7, 116.3, 122.5, 122.9, 130.6, 132.9, 140.5, 143.5, 148.4, 148.9, 149.7, 150.9, 158.4, 158.7, 160.5, 160.7, 170.6, 170.9. Anal. Calcd for C₁₉H₂₀O₆: C, 66.27; H, 5.85; N, 0.00. Found: C, 66.02; H, 5.81; N, <0.05.

4.19. (*E*/*Z*)-4-(3,4-Dimethoxyphenyl)-4-(3,5-dimethoxyphenyl)-but-3-en-2-one (17)

A mixture of Pd(OAc)₂ (67 mg, 0.30 mmol) in DMF (1 mL) was added to a mixture of 55^{63,64} (2.1 g, 10 mmol), 4-bromoveratrole (3.2 g, 14.9 mmol), NaOAc (1.4 g, 17 mmol), and Bu_4NBr (3.5 g, 11 mmol) in DMF (20 mL). The mixture was heated to 60 °C for 48 h, and then cooled to room temperature. The mixture was partitioned between water (150 mL) and EtOAc (50 mL), and the aqueous phase was extracted with EtOAc (2×50 mL), brine (50 mL), dried (MgSO₄) and evaporated. The residue was chromatographed using a hexanes/ethyl acetate gradient. Further purification using reverse phase preparative HPLC in 38-62 acetonitrile-water provided 200 mg of the product as an oil, in 6% yield: ¹H NMR (CDCl₃) δ 1.91 (s, 3H), 3.79 (s, 6H), 3.85 (s, 3H), 3.89 (s, 3H), 6.38 (d, I = 2.3 Hz, 2H), 6.51–6.53 (m, 2H), 6.77–6.82 (m, 2H), 6.92–6.93 (m, 1H). ¹³C NMR (CDCl₃) δ 30.0, 55.4, 55.6, 55.8, 56.1, 100.9, 110.8, 113.2, 122.4, 126.5, 132.9, 141.1, 148.9, 150.7, 153.8, 160.9. Anal. Calcd for C₂₀H₂₂O₅: C, 70.16; H, 6.48; N, 0.00. Found: C, 70.26; H, 6.37; N, <0.05.

4.20. (*E*/*Z*)-4-(1-(3,5-Dimethoxyphenyl)prop-1-en-1-yl)-1,2dimethoxybenzene (18)

Compound **18** was prepared from **51a** (0.96 g, 3.2 mmol) and ethyltriphenylphosphonium bromide (2.4 g, 6.4 mmol) using general procedure E. Chromatographic purification using a hexanes/ EtOAc gradient provided 0.97 g (97% yield) of the product as a pale yellow oil: ¹H NMR (CDCl₃) δ 1.78–1.74 (m, 3H), 3.74 (s, 3H), 3.78 (s, 3H), 3.83 (s, 3H), 3.86–3.91 (m, 3H), 6.20–6.03 (m, 1H), 6.34–6.43 (m, 3H), 6.68–6.76 (m, 2H), 6.83–6.89 (m, 1H). ¹³C NMR (CDCl₃) δ 15.8, 15.9, 55.4, 55.5, 56.0, 56.0, 99.0, 99.2, 105.8, 108.2, 110.3, 110.9, 111.0, 113.3, 119.9, 122.6, 122.8, 124.4, 132.5, 135.6, 142.2, 142.3, 142.3, 145.4, 148.0, 148.3, 148.7, 148.7, 160.6, 160.7. Anal. Calcd for C₁₉H₂₂O₄: C, 72.59; H, 7.05; N, 0.00. Found: C, 72.43; H, 6.96; N, <0.05.

4.21. (*E*/*Z*)-4-(1-(3,5-Dimethoxyphenyl)but-1-en-1-yl)-1,2dimethoxybenzene (19)

Compound **19** was prepared from **51a** (2.0 g, 6.5 mmol) and propyltriphenylphosphonium bromide (5.0 g, 13 mmol) using general procedure E. Chromatographic purification using a hexanes/ EtOAc gradient provided 2.1 g (98% yield) of the product as a colorless oil: ¹H NMR (CDCl₃) δ 1.04 (t, *J* = 7.40 Hz, 3H), 2.04–2.16 (m, 2H), 3.74–3.91 (m, 12H), 6.08–5.94 (m, 1H), 6.33–6.43 (m, 3H), 6.67–6.76 (m, 2H), 6.84–6.88 (1H). ¹³C NMR (CDCl₃) δ 14.7, 14.8, 23.4, 23.4, 55.4, 26.0, 99.0, 99.2, 105.8, 108.0, 110.3, 110.9, 110.9, 113.2, 120.0, 122.4, 130.3, 132.0, 132.8, 135.5, 140.7, 140.8, 142.5, 145.3, 148.1, 148.4, 148.7, 160.6, 160.7. Anal. Calcd for C₂₀H₂₄O₄: C, 73.15; H, 7.37; N, 0.00. Found: C, 72.98; H, 6.25; N, <0.05.

4.22. (*E*/*Z*)-4-(3,4-Dimethoxyphenyl)-4-(3,5-dimethoxyphenyl)-*N*,*N*-dimethylbut-3-en-1-aminium chloride (20)

Compound **20** was prepared from **51a** (0.88 g, 2.9 mmol) and (3-(dimethylamino)propyl)triphenylphosphonium bromide (2.5 g, 5.8 mmol) using general procedure E. Chromatographic purification (CH_2CI_2 -MeOH-concd NH₄OH 98.5:1:0.5) provided 0.37 g as

an oil. This oil was dissolved in 4.0 M HCl in 1,4-dioxane (8 mL), and then evaporated. The residue was triturated in ether, filtered, and dried under vacuum, providing 0.40 g (37% yield), as an off-white solid: mp 123–125 °C. ¹H NMR (CDCl₃) δ 2.42–2.46 (m, 2H), 2.68 (s, 6H), 3.16 (m, 2H), 3.70–3.79 (m, 12H), 6.11 (m, 1H), 6.28 (d, *J* = 2.3 Hz, 1H), 6.38–6.42 (m, 1H), 6.50–6.57 (m, 1H), 6.67–6.70 (m, 1H), 6.85–7.07 (m, 2H), 10.56 (br, 1H). ¹³C NMR (CDCl₃) δ 24.7, 24.7, 41.9, 55.2, 55.4, 55.5, 55.6, 55.7, 55.8, 98.9, 99.1, 105.5, 107.2, 110.1, 111.3, 111.6, 112.9, 120.0, 121.7, 123.7, 131.1, 133.6, 141.2, 142.8, 143.0, 143.8, 148.0, 148.4, 148.5, 160.2, 160.5. Anal. Calcd for C₂₂H₃₀NO₄Cl: C, 64.78; H, 7.41; N, 3.43. Found: C, 64.43; H, 7.40; N, 3.36.

4.23. (*E*/*Z*)-4-(1-(3,5-Dimethoxyphenyl)-2-methoxyvinyl)-1,2dimethoxybenzene (21)

Compound **21** was prepared from **51a** (1.0 g, 3.3 mmol) and (methoxymethyl)triphenylphosphonium chloride (2.3 g, 6.6 mmol) using general procedure E. Chromatographic purification using a hexanes/ethyl acetate gradient provided 0.77 g as a colorless oil, in 77% yield: ¹H NMR (CDCl₃) δ 3.75 (m, 9H), 3.82 (s, 3H), 3.88 (s, 3H), 6.38 (m, 3H), 6.66 (m, 1H), 6.86 (m, 2H), 6.97 (m, 1H). ¹³C NMR (CDCl₃) δ 55.3, 55.8, 55.8, 55.9, 60.6, 98.6, 98.9, 106.4, 108.0, 110.7, 111.0, 111.8, 113.1, 120.1, 120.2, 120.7, 122.5, 130.0, 133.0, 139.6, 142.6, 145.9, 146.0, 147.7, 147.9, 148.3, 148.6, 160.3, 160.6. Anal. Calcd for C₁₉H₂₂O₅: C, 69.07; H, 6.71; N, 0.00. Found: C, 69.10; H, 6.85; N, 0.00.

4.24. (*E*/*Z*)-4-(1-(3,5-Dimethoxyphenyl)but-1-en-3-yn-1-yl)-1,2-dimethoxybenzene (22)

A solution of prop-1-yne-1,3-diylbis(trimethylsilane) (2.2 g, 12 mmol) in THF (40 mL) was cooled to -78 °C, and then a 1.7 M solution of t-BuLi in pentane (7.1 mL, 12 mmol) was added dropwise, and stirring proceeded at this temperature for 1 h following completion of the addition. Intermediate **51a** (1.8 g, 6.0 mmol) was then added and after 5 min the cooling bath was removed. The reaction flask was allowed to warm to room temperature and was then heated to reflux for 1 h. The mixture was cooled to room temperature and then quenched by the addition of water (20 mL). The mixture stirred at rt for 16 h. The solvent was evaporated, and the residue was partitioned between ethyl acetate (100 mL) and water (100 mL), and the aqueous phase was extracted with ethyl acetate (100 mL). The combined organic phases were washed with water ($2 \times 100 \text{ mL}$), 1 N HCl ($2 \times 100 \text{ mL}$), and water (100 mL), were dried (Na₂SO₄) and evaporated under vacuum. The residue was chromatographed using a hexanes/ethyl acetate gradient, providing 900 mg (47% yield) of the product as a colorless oil which darkened over time: ¹H NMR (CDCl₃) δ 3.05 (d, J = 2.5 Hz, 1H), 3.73 (s, 3H), 3.75 (s, 3H), 3.81–3.89 (m, 6H), 5.92 (m, 1H), 6.43-6.47 (m, 2H), 6.61-6.62 (m, 1H), 6.79-6.85 (m, 2H), 6.97–7.16 (m, 1H). ¹³C NMR (CDCl₃) δ 55.3, 55.8, 55.9, 81.7, 81.8, 82.5, 82.8, 100.6, 100.8, 104.6, 105.3, 106.5, 108.0, 110.4, 110.7, 110.8, 113.2, 121.1, 123.0, 131.1, 131.5, 140.7, 143.5, 148.1, 148.6, 149.1, 149.6, 154.1, 154.2, 160.2, 160.5. Anal. Calcd for C₂₀H₂₀O₄·H₂O: C, 70.16; H, 6.48; N, 0.00. Found: C, 70.41; H, 6.14; N, 0.08.

4.25. 5-(1-(3,5-Dimethoxyphenyl)vinyl)-2-methoxyphenol (23)

Compound **23** was prepared from **59b** (0.6 g, 1.5 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient, providing the product as an oil (0.4 g, 93% yield): ¹H NMR (CDCl₃) δ 3.78 (s, 6H), 3.88 (s, 3H), 5.36 (d, *J* = 1.1 Hz, 1H), 5.41 (d, *J* = 1.1 Hz, 1H), 5.72 (s, 1H), 6.46 (t, *J* = 2.1 Hz, 1H), 6.52 (d, *J* = 2.1 Hz, 2H),

6.77–6.83 (m, 2H), 6.99 (d, J = 2.0 Hz, 1H). ¹³C NMR (CDCl₃) δ 55.3, 55.9, 99.8, 106.7, 110.2, 113.3, 114.5, 120.2, 134.6, 143.9, 145.2, 146.4, 149.5, 160.5. Anal. Calcd for C₁₇H₁₈O₄·0.1H₂O: C, 70.87; H, 6.37; N, 0.00. Found: C, 70.77; H, 6.17; N, <0.05.

4.26. (*E*/*Z*)-5-(1-(3,5-Dimethoxyphenyl)prop-1-en-1-yl)-2-methoxyphenol (24)

Compound **24** was prepared from **59c** (1.0 g, 2.4 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient, eluting the product at 25:75 ethyl acetate/hexanes as an oil (0.7 g, 97% yield): ¹H NMR (CDCl₃) δ 1.71–1.78 (m, 3H), 3.75–3.91 (m, 9H), 5.50–5.57 (m, 1H), 6.05–6.13 (m, 1H), 6.31–6.41 (m, 3H), 6.63–6.77 (m, 2H), 6.82–6.88 (m, 1H). ¹³C NMR (CDCl₃) δ 15.6, 15.7, 55.3, 55.9, 56.0, 98.7, 99.0, 105.7, 108.0, 110.2, 110.3, 113.2, 116.3, 118.8, 121.8, 122.7, 124.2, 133.1, 136.1, 141.9, 142.2, 145.1, 145.4, 145.6, 160.4, 160.6. Anal. Calcd for C₁₈H₂₀O₄: C, 71.98; H, 6.71; N, 0.00. Found: C, 71.72; H, 6.48; N, <0.05.

4.27. 5-(1-(3,5-Dimethoxyphenyl)-2-methylprop-1-en-1-yl)-2-methoxyphenol (25)

Compound **25** was prepared from **59d** (0.85 g, 2.05 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient, eluting the product at 25:75 ethyl acetate/hexanes as an oil (0.6 g, 96% yield): ¹H NMR (CDCl₃) δ 1.77 (s, 3H), 1.80 (s, 3H), 3.75 (s, 6H), 3.86 (s, 3H), 5.53 (s, 1H), 6.28–6.32 (m, 3H), 6.63 (dd, *J* = 8.3, *J* = 2.0 Hz, 1H), 6.74–6.78 (m, 2H). ¹³C NMR (CDCl₃) δ 22.3, 22.5, 55.3, 55.9, 98.1, 107.9, 110.1, 116.0, 121.3, 130.7, 136.4, 136.5, 144.9, 145.6, 160.3. Anal. Calcd for C₁₉H₂₂O₄: C, 72.59; H, 7.05; N, 0.00. Found: C, 72.59; H, 7.10; N, <0.05.

4.28. (*E*/*Z*)-5-(1-(3,5-Dimethoxyphenyl)-2-phenylvinyl)-2-methoxyphenol (26)

Compound **26** was prepared from **59e** (1.2 g, 2.6 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient, eluting the product at 30:70 ethyl acetate/hexanes as an oil (0.9 g, 96% yield): ¹H NMR (CDCl₃) δ 3.69 (s, 3H), 3.77 (s, 3H), 3.90–3.91 (m, 3H), 5.54–5.55 (m, 1H), 6.35–6.49 (m, 3H), 6.69–6.90 (m, 4H), 6.99–7.15 (m, 5H). ¹³C NMR (CDCl₃) δ 55.4, 55.9, 56.0, 99.5, 99.9, 106.1, 108.1, 110.2, 113.6, 116.5, 119.5, 122.3, 126.6, 126.7, 126.8, 127.9, 128.1, 129.4, 129.5, 133.2, 136.6, 137.3, 137.4, 141.8, 142.1, 142.3, 145.2, 145.6, 145.9, 146.0, 160.5, 161.0. Anal. Calcd for C₁₇H₁₈O₄·0.1H₂O: C, 70.87; H, 6.37; N, 0.00. Found: C, 70.77; H, 6.17; N, <0.05.

4.29. 5-(1-(3,5-Dimethoxyphenyl)vinyl)-2-methoxyaniline (27)

Compound **27** was prepared from **62c** (1.12 g, 3.55 mmol) using general procedure C. The product was purified by column chromatography using a hexanes/ethyl acetate gradient, providing the product as a solid (0.64 g, 63% yield): mp 93–95 °C. ¹H NMR (CDCl₃) δ 3.77–3.87 (m, 11H), 5.31–5.37 (m, 2H), 6.43–6.73 (m, 6H). ¹³C NMR (CDCl₃) δ 55.36, 55.53, 99.77, 106.7, 109.9, 112.8, 114.9, 118.6, 134.1, 135.6, 144.2, 147.2, 149.9, 160.4. Anal. Calcd for C₁₇H₁₉NO₃: C, 71.56; H, 6.71; N, 4.91. Found: C, 71.31; H, 6.76; N, 4.92.

4.30. (*E*/*Z*)-3-(3,5-Dimethoxyphenyl)-3-(3-ethoxy-4-methoxyphenyl)acrylonitrile (28)

Compound **28** was prepared from **53a** (0.63 g, 2.0 mmol) using general procedure A. The product was purified by column chroma-

tography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.60 g, 89% yield): mp 110–112 °C. ¹H NMR (CDCl₃) δ 1.41–1.49 (m, 3H), 3.77 (s, 3H), 3.80 (s, 3H), 3.90–3.92 (m, 3H), 3.99–4.13 (m, 2H), 5.59–5.65 (m, 1H), 6.43–6.55 (m, 3H), 6.82–7.04 (m, 3H). ¹³C NMR (CDCl₃) δ 14.8, 55.7, 56.1, 56.2, 64.7, 93.2, 93.8, 102.2, 102.3, 107.2, 107.8, 111.1, 111.2, 112.7, 114.2, 118.2, 122.2, 123.3, 129.33, 131.2, 139.1, 141.6, 148.0, 148.3, 151.1, 151.7, 160.8, 160.9, 162.8, 162.9. Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.62; H, 6.25; N, 4.01.

4.31. 3,3-Bis(3-ethoxy-4-methoxyphenyl)acrylonitrile (29)

Compound **29** was prepared from **53b** (7.3 g, 22 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (3.92 g, 50% yield): mp 142–144 °C. ¹H NMR (DMSO-*d*₆) δ 1.31 (t, *J* = 7.0 Hz, 6H), 3.79 (s, 3H), 3.83 (s, 3H), 3.94–4.04 (m, 4H), 6.11 (s, 1H), 6.77–7.09 (m, 6H). ¹³C NMR (DMSO-*d*₆) δ 14.6, 14.6, 55.5, 55.5, 63.8, 92.6, 111.3, 111.5, 112.3, 113.8, 118.9, 122.3, 122.4, 129.3, 130.6, 147.3, 147.8, 150.1, 151.0, 161.4. Anal. Calcd for C₂₁H₂₃NO₄: C, 71.37; H, 6.56; N, 3.96. Found: C, 71.42; H, 6.42; N, 3.97.

4.32. (*E*/*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3-ethoxy-4-methoxy-phenyl) acrylonitrile (30)

Compound **30** was prepared from **51c** (1.6 g, 5.0 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.6 g, 35% yield): mp 103–106 °C. ¹H NMR (CDCl₃) δ 1.36–1.54 (m, 3H), 3.76–4.17 (m, 11H), 5.55 (s, 1H), 6.75–7.10 (m, 6H). ¹³C NMR (CDCl₃) δ 14.6, 55.9, 56.0, 64.5, 91.8, 110.7, 110.7, 110.9, 110.9, 111.4, 112.8, 112.9, 114.2, 118.6, 122.0, 122.1, 123.1, 123.2, 129.5, 129.6, 131.7, 131.9, 147.8, 148.1, 148.6, 148.8, 150.5, 150.8, 151.0, 162.5. Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.62; H, 6.21; N, 4.07.

4.33. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(4-methoxy-3-methylphenyl)acrylonitrile (31)

Compound **31** was prepared from **53c** (1.2 g, 4.0 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.97 g, 75% yield): mp: 86–88 °C. ¹H NMR (DMSO- d_6) δ 1.30 (t, J = 7.0 Hz, 3H), 2.13–2.17 (m, 3H), 3.78–3.86 (m, 3H), 3.82 (s, 3H), 3.93–4.04 (m, 2H), 6.01–6.08 (m, 1H), 6.72–7.26 (m, 6H). ¹³C NMR (DMSO- d_6) δ 14.6, 14.6, 16.0, 63.8, 92.1, 92.4, 110.0, 110.2, 111.4, 111.5, 112.3, 113.8, 119.0, 122.3, 122.4, 125.6, 125.9, 128.1, 128.6, 128.9, 129.4, 130.1, 130.4, 130.8, 131.3, 147.4, 147.8, 150.2, 151.0, 158.4, 159.3, 161.5, 161.5. Anal. Calcd for C₂₀H₂₁NO₃: C, 74.28; H, 6.55; N, 4.33. Found: C, 74.16; H, 6.48; N, 4.30.

4.34. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(3-methoxyphenyl)-acrylonitrile (32)

Compound **32** was prepared from **53d** (1.6 g, 5.5 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (1.6 g, 93% yield): mp 96–98 °C. ¹H NMR (DMSO- d_6) δ 1.31 (t, *J* = 7 Hz, 3H), 3.77–3.83 (m, 6H), 3.94–4.05 (m, 2H), 6.18–6.29 (m, 1H), 6.72–7.43 (m, 7H). ¹³C NMR (DMSO- d_6) δ 14.5, 14.6, 55.2, 55.3, 55.5, 55.6, 63.8, 63.9, 93.9, 94.9, 111.3, 111.5, 111.8, 113.7, 114.6, 115.0, 115.9, 118.4, 118.5, 121.0,

121.3, 122.2, 122.4, 129.1, 129.7, 129.8, 129.9, 138.6, 139.8, 147.4, 147.8, 150.3, 151.1, 159.0, 161.2, 161.4. Anal. Calcd for $C_{19}H_{19}NO_3$: C, 73.77; H, 6.19; N, 4.53. Found: C, 73.43; H, 6.13; N, 4.54.

4.35. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(3-fluoro-4-methoxyphenyl)acrylonitrile (33)

Compound **33** was prepared from **54a** (0.35 mg, 1.2 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as an off-white solid (0.26 g, 69% yield): mp 122–124 °C. ¹H NMR (DMSO- d_6) δ 1.31 (t, J = 7 Hz, 3H), 3.78–3.94 (s, 6H), 4.01 (q, J = 7 Hz, 2H), 6.15–6.21 (m, 1H), 6.74 (dd, J = 2, 8 Hz, 1H), 6.92–7.36 (m, 5H). ¹³C NMR (DMSO- d_6) δ 14.5, 14.56, 55.5, 55.5, 56.1, 56.1, 63.8, 63.8, 93.6, 93.8, 111.4, 111.6, 112.1, 113.8, 115.3, 115.6, 116.7, 116.9, 118.5, 122.2, 122.3, 125.7, 125.7, 126.2, 128.8, 129.6, 129.7, 130.1, 130.8, 130.9, 147.4, 147.9, 148.1, 148.2, 148.9, 149.0, 150.2, 150.8 (d, J = 240), 151.1 (d, J = 240), 151.2, 160.0, 160.1. Anal. Calcd for C₁₉H₁₈NO₃F: C, 69.71; H, 5.54; N, 4.28. Found: C, 69.55; H, 5.58; N, 4.25.

4.36. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(4-(methylsulfonyl)phenyl)acrylonitrile (34)

Compound **34** was prepared from **54b** (0.8 g, 2.4 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.53 g, 62% yield): mp, 159–161 °C. ¹H NMR (DMSO-*d*₆) δ 1.31 (t, *J* = 7 Hz, 3H), 3.26–3.37 (m, 3H), 3.78–3.84 (m, 3H), 3.94–4.07 (m, 2H), 6.30–6.48 (m, 1H), 6.61 (dd, *J* = 8.0 Hz, *J* = 2.0 Hz, 1H), 6.88–7.14 (m, 2H), 7.60–8.08 (m, 4H). ¹³C NMR (DMSO-*d*₆) δ 14.6, 14.6, 55.6, 55.6, 63.9, 64.0, 95.2, 97.3, 111.5, 111.6, 111.7, 113.6, 118.1, 122.4, 122.5, 127.2, 128.5, 129.4, 129.4, 130.2, 141.6, 142.0, 142.4, 143.3, 147.6, 148.1, 150.5, 151.4, 159.8, 159.9. Anal. Calcd for C₁₉H₁₉NO₄S: C, 63.85; H, 5.36; N, 3.92. Found: C, 63.56; H, 5.21; N, 3.73.

4.37. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(3-hydroxy-4-methoxyphenyl)acrylonitrile (35)

Compound **35** was prepared from **59f** (0.61 g, 1.4 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.4 g, 89% yield): mp 63–65 °C. ¹H NMR (CDCl₃) δ 1.40–1.47 (m, 3H), 3.89–3.94 (m, 6H), 3.98–4.12 (m, 2H), 5.53–5.55 (m, 1H), 5.68 (m, 1H), 6.80–7.09 (m, 6H). ¹³C NMR (CDCl₃) δ 14.7, 55.9, 56.0, 64.5, 92.0, 110.2, 111.0, 112.8, 114.1, 114.7, 116.0, 118.6, 118.7, 121.4, 122.1, 122.2, 123.1, 129.5, 130.4, 131.7, 132.5, 145.3, 145.5, 145.5, 147.9, 148.0, 148.1, 148.4, 150.8, 151.4, 162.4; Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.31. Found: C, 69.93; H, 5.84; N, 4.06.

4.38. (*E*/*Z*)-3-(3-Amino-4-methoxyphenyl)-3-(3-ethoxy-4-methoxyphenyl)acrylonitrile (37)

Compound **37** was prepared from **62d** (3.3 g, 9.7 mmol) using general procedure C. The product was purified by column chromatography eluting with 7:3 hexanes/ethyl acetate to provide the product as a yellow solid (1.1 g, 33% yield): mp 141–143°C. ¹H NMR (CDCl₃) δ 1.40–1.47 (m, 3H), 3.88–3.92 (m, 8H), 3.98–4.12 (m, 2H), 5.49 (m, 1H), 6.64–7.00 (m, 6H). ¹³C NMR (CDCl₃) δ 14.7, 55.5, 55.6, 109.8, 110.9, 113.0, 114.2, 114.7, 116.0, 118.8, 118.9, 119.6, 120.7, 122.1, 123.1, 129.8, 129.9, 132.1, 135.9, 136.1, 147.8, 148.0, 146.7, 150.7, 151.2, 163.0. Anal. Calcd for C₁₉H₂₀N₂O₃: C, 70.35; H, 6.21; N, 8.64. Found: C, 70.25; H, 6.21; N, 8.46.

4.39. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(4-(methylamino)-phenyl)acrylonitrile (37)

Compound **37** was prepared from **64** (0.29 g, 1.0 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as an off-white solid (0.26 g, 81% yield): mp 81–83 °C. ¹H NMR (DMSO- d_6) δ 1.28–1.34 (m, 3H), 2.69–2.74 (m, 3H), 3.79–3.83 (m, 3H), 3.94–4.02 (m, 2H), 5.77–5.87 (m, 1H), 6.25–6.36 (m, 1H), 6.50–7.19 (m, 7H). ¹³C NMR (DMSO- d_6) δ 14.6, 14.6, 29.2, 29.3, 55.5, 55.5, 63.7, 88.3, 89.4, 110.8, 111.1, 111.3, 111.4, 112.8, 113.9, 119.6, 122.2, 123.4, 124.5, 129.8, 129.9, 130.9, 131.6, 147.3, 147.6, 149.8, 150.7, 151.3, 151.9, 161.9, 162.1. Anal. Calcd for C₁₉H₂₀N₂O₂: C, 74.00; H, 6.54; N, 9.08. Found: C, 73.67; H, 6.70; N, 8.81.

4.40. (*E*/*Z*)-3-(4-(Dimethylamino)phenyl)-3-(3-ethoxy-4-methoxyphenyl)acrylonitrile (38)

Compound **38** was prepared from **65** (0.22 g, 0.74 mmol) using general procedure A. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as an off-white solid (0.21 g, 87% yield): mp 81–83 °C. ¹H NMR (DMSO- d_6) δ 1.28–1.34 (m, 3H), 2.96–2.99 (m, 6H), 3.79–3.83 (m, 3H), 3.94–4.03 (m, 2H), 5.84–5.93 (s, 1H), 6.68–7.26 (m, 7H). ¹³C NMR (DMSO- d_6) δ 14.6, 14.6, 39.6, 39.7, 55.5, 55.5, 63.8, 89.0, 90.0, 111.2, 111.3, 111.4, 111.5, 112.8, 113.9, 119.5, 122.2, 123.7, 124.7, 129.6, 129.8, 130.7, 131.5, 147.3, 147.7, 149.9, 150.8, 151.2, 151.6, 161.7, 161.9. Anal. Calcd for C₂₀H₂₂N₂O₂: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.42; H, 7.11; N, 8.61.

4.41. (*E*/*Z*)-3-(3-Ethoxy-4-methoxyphenyl)-3-(4-methoxy-3-(1H-pyrrol-1-yl)phenyl)acrylonitrile (39)

2.5-Dimethoxytetrahydrofuran (0.22 g. 1.7 mmol) was added to a stirred solution of **36** (0.50 g. 1.5 mmol) in AcOH (10 mL), and the mixture was heated to reflux for 1 h. The mixture was cooled to room temperature and diluted with ethyl acetate (100 mL). Saturated aqueous sodium bicarbonate (40 mL) was then carefully added. The organic phase was washed with water (60 mL) and brine (60 mL), dried (MgSO₄) and evaporated. The residue was purified using a hexanes/ethyl acetate gradient, providing the product as a white solid (0.35 g, 60% yield): mp 109–111 °C. ¹H NMR (CDCl₃) δ 1.45 (m, 3H), 3.91 (m, 6H), 4.05 (m, 2H), 5.57-5.59 (m, 1H), 6.29-6.32 (m, 2H), 6.81-6.91 (m, 3H), 6.93-7.10 (m, 3H), 7.24–7.27 (m, 1 H), 7.35–7.47 (m, 1H). ¹³C NMR (CDCl₃) δ 14.7, 56.0, 56.1, 64.6, 92.5, 109.2, 109.3, 111.1, 112.7, 112.0, 112.1, 114.0, 118.4, 118.5, 121.9, 122.1, 122.2, 123.1, 125.9, 127.1, 127.9, 129.0, 129.8, 130.1, 131.4, 132.1, 148.3, 148, 151.0, 151.6, 153.9, 154.4, 161.6, 161.7. Anal. Calcd for C23H22N2O3: C, 73.78; H, 5.92; N, 7.48. Found: C, 73.46; H, 5.71; N, 7.35.

4.42. 5-(1-(3-Ethoxy-4-methoxyphenyl)vinyl)-2-methoxyphenol (40)

Compound **40** was prepared from **59g** (1.1 g, 2.7 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.65 g, 83% yield): mp 99–101 °C. ¹H NMR (CDCl₃) δ 1.42 (t, *J* = 7.0 Hz, 3H), 3.89 (s, 3H), 3.91 (s, 3H), 4.06 (q, *J* = 7.0 Hz, 2H), 5.29 (d, *J* = 1.2 Hz, 1H), 5.32 (d, *J* = 1.2 Hz, 1H), 5.60 (s, 1H), 6.78–6.98 (m, 6H). ¹³C NMR (CDCl₃) δ 14.8, 55.9, 56.0, 64.3, 110.1, 111.0, 112.1, 113.1, 114.6, 120.2, 121.0, 134.5, 135.2, 145.2, 145.3, 147.8, 149.1, 149.2. Anal. Calcd for C₁₈H₂₀O₄: C, 71.98; H, 6.71; N, 0.00. Found: C, 71.90; H, 6.74; N, <0.05.

4.43. 5-(1-(3-Ethoxy-4-methoxyphenyl)-2,2-difluorovinyl)-2methoxyphenol (41)

Compound **41** was prepared from **59h** (0.80 g, 1.8 mmol) using general procedure B. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a white solid (0.5 g, 83% yield); mp 74–76 °C; ¹H NMR (CDCl₃) δ 1.43 (t, *J* = 7.0 Hz, 3H), 3.88 (s, 3H), 3.90 (s, 3H), 4.03 (q, *J* = 7.0 Hz, 2H), 5.57 (s, 1H), 6.74–6.86 (m, 6H). ¹³C NMR (CDCl₃) δ 14.7, 55.9, 64.4, 95.5 (t, *J* = 19), 110.4, 111.2, 114.3 (t, *J* = 3.4), 115.76 (t, *J* = 3.8), 121.5 (t, *J* = 3.0), 122.3 (t, *J* = 3.4 Hz), 126.8 (t, *J* = 2.6), 127.7 (t, *J* = 3.0), 145.4, 145.9, 148.0, 148.8, 153.5 (t, *J* = 290). Anal. Calcd for C₁₈H₁₈F₂O₄: C, 64.28; H, 5.39; N, 0.00. Found: C, 64.27; H, 5.46; N, <0.05.

4.44. 5-(1-(3-Ethoxy-4-methoxyphenyl)vinyl)-2-methoxyaniline (42)

Compound **42** was prepared from **62e** (0.9 g, 2.8 mmol) using general procedure C. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a solid (0.4 g, 48% yield): mp 91–93 °C. ¹H NMR (CDCl₃) δ 1.43 (t, *J* = 6.8 Hz, 3H), 3.75 (br, 2H), 3.86 (s, 3H), 3.88 (s, 3H), 4.06 (q, *J* = 7.1 Hz, 2H), 5.28 (d, *J* = 6.5 Hz, 2H), 6.72–6.91 (m, 6H). ¹³C NMR (CDCl₃) δ 14.8, 55.5, 56.0, 64.3, 109.9, 110.9, 111.5, 113.1, 115.0, 118.7, 120.9, 134.6, 134.7, 135.6, 147.1, 147.7, 149.0, 149.6. Anal. Calcd for C₁₈H₂₁NO₃: C, 72.22; H, 7.07; N, 4.68. Found: C, 72.16; H, 7.10; N, 4.74.

4.45. (*E*/*Z*)-5-(1-(3-Ethoxy-4-methoxyphenyl)prop-1-en-1-yl)-2methoxyaniline (43)

Compound **43** was prepared from **62f** (1.10 g, 3.2 mmol) using general procedure C. The product was purified by column chromatography using a hexanes/ethyl acetate gradient to provide the product as a solid (0.73 g, 73% yield): mp 108–110 °C. ¹H NMR (CDCl₃) δ 1.39–1.46 (m, 3H), 1.72–1.77 (m, 3H), 3.71–3.75 (br, 2H), 3.83–3.90 (m, 6H), 3.99–4.09 (m, 2H), 5.97–6.05 (m, 1H), 6.54–6.61 (m, 6H). ¹³C NMR (CDCl₃) δ 14.8, 15.7, 15.7, 55.5, 55.9, 56.0, 64.2, 64.3, 109.9, 110.0, 111.0, 111.0, 112.1, 114.1, 114.8, 116.8, 117.5, 119.9, 120.4, 121.8, 122.0, 122.4, 132.9, 132.9, 135.5, 135.6, 136.3, 136.5, 141.9, 142.0, 146.3, 146.5, 147.8, 148.0, 148.3. Anal. Calcd for C₁₉H₂₃NO₃: C, 73.82; H, 7.40; N, 4.47. Found: C, 72.57; H, 7.47; N, 4.40.

4.46. (*E*/*Z*)-N-(5-(2-Cyano-1-(3,5-dimethoxyphenyl)vinyl)-2-methoxyphenyl)acetamide (44)

A mixture of **11** (0.4 g, 1.3 mmol) and acetyl chloride (0.2 mL) in THF (50 mL) was refluxed overnight, and then cooled and quenched with water (100 mL). The resulting mixture was extracted with methylene chloride (2 × 50 mL). The combined extracts were washed with water (100 mL), dried (MgSO₄), and concentrated under vacuum. The crude product was purified by flash chromatography (hexane-ethyl acetate 1:1) to afford the product as a white solid (0.3 g, 62% yield): mp 163–165 °C. ¹H NMR (CDCl₃) δ 2.06 (s, 3H), 3.76 (s, 6H), 3.91 (s, 3H), 6.14–6.22 (m, 1H), 6.46 (d, *J* = 1.8 Hz, 2H), 6.62 (s, 1H), 7.17 (m, 2H), 7.93 (s, 1H), 9.28 (s, 1H). ¹³C NMR (CDCl₃) δ 23.8, 55.4, 55.8, 95.0, 102.0, 106.7, 110.9, 118.3, 122.5, 125.5, 127.3, 128.5, 140.3, 150.5, 160.3, 161.3, 168.7. Anal. Calcd for C₂₀H₂₀N₂O₄: C, 68.17; H, 5.72; N, 7.95. Found: C, 68.03; H, 5.54; N, 7.85.

4.47. Boc deprotection reactions. General procedure F. (E/Z)-2-Amino-N-(5-(2-cyano-1-(3-ethoxy-4-methoxyphenyl)vinyl)-2methoxyphenyl)acetamide hydrochloride (45)

A solution of 4 N HCl/dioxane (3 mL) was added to a stirred solution of **66a** (1.1 g, 2.4 mmol) in CH₂Cl₂ (35 mL). The resulting solution was stirred at room temperature overnight. Ether (10 mL) was added and the mixture was stirred for 2 h. The slurry was filtered and was washed with ether to afford the product as a white solid (0.44 g, 44% yield): mp 208–210 °C. ¹H NMR (DMSO-*d*₆) δ 1.31 (t, *J* = 6 Hz, 3H), 3.78 (s, 2H), 3.83 (s, 3H), 3.90 (s, 3H), 3.99 (q, *J* = 7 Hz, 2H), 6.01 (s, 1H), 7.36–6.91 (m, 5H), 7.89 (d, *J* = 1 Hz, 1H), 8.20 (br, 3H), 9.88 (s, 1H). ¹³C NMR (DMSO-*d*₆) δ 14.6, 41.0, 55.5, 56.1, 63.8, 92.8, 111.5, 113.8, 118.7, 122.4, 125.2, 126.2, 129.2, 130.5 147.4, 150.1, 151.4, 161.4, 165.4. Anal. Calcd for C₂₁H₂₄N₃O₄Cl·1.4H₂O: C, 56.92; H, 6.10; N, 9.48. Found: C, 56.58; H, 5.85; N, 9.72.

4.48. (*S*)-(*E*/*Z*)-2-Amino-*N*-(5-(2-cyano-1-(3-ethoxy-4-methoxyphenyl)vinyl)-2-methoxyphenyl)propan-amide hydrochloride (46)

Compound **46** was prepared from **66b** (2.1 g, 4.4 mmol) using general procedure F, to afford the product as a white solid (1.4 g, 74% yield): mp 207–209 °C. ¹H NMR (DMSO- d_6) δ 1.31 (t, *J* = 6 Hz, 3H), 1.41 (m, 3H), 3.79–3.83 (m, 3H), 3.91–3.94 (m, 3H), 3.99 (m, 2H), 4.19 (m, 1H), 6.02–6.16 (m, 1H), 6.75–7.92 (m, 6H), 8.31 (br, 3H), 9.90–9.94 (m, 1H). ¹³C NMR (DMSO- d_6) δ 14.6, 14.6, 17.4, 48.6, 55.5, 55.6, 56.0, 56.1, 63.8, 63.8, 92.9, 93.0, 111.3, 111.4, 111.6, 114.5, 112.3, 113.8, 118.7, 118.8, 122.2, 122.4, 122.9, 123.1, 125.6, 126.1, 126.6, 129.1, 129.2, 130.4, 130.5, 147.4, 147.8, 151.0, 151.1, 150.2, 151.9, 161.0, 161.3, 168.8. Anal. Calcd for C₂₂H₂₆N₃O₄Cl·0.03H₂O: C, 61.10; H, 6.07; N, 9.72. Found: C, 60.75; H, 5.84; N, 9.51.

4.49. (*E*/*Z*)-5-(2-Cyano-1-(3-ethoxy-4-methoxyphenyl)vinyl)-2methoxyphenyl dimethylcarbamate (47)

A mixture of **35** (0.57 g, 1.8 mmol), dimethylcarbamyl chloride (1.5 g, 14 mmol), and DIEA (0.91 g, 7.0 mmol) was heated to reflux for 5 h. The mixture was cooled and evaporated, and the residue was purified by column chromatography using a hexanes/ethyl acetate gradient, to provide the product as an off-white solid (0.58 g, 84% yield): mp 114–116 °C. ¹H NMR (DMSO-*d*₆) δ 1.31 (t, *J* = 7.0 Hz, 3H), 2.88–3.01 (m, 6H), 3.79–3.85 (m, 6H), 3.95–4.05 (m, 2H), 6.13–6.15 (m, 1H), 6.74–7.35 (m, 6H). ¹³C NMR (DMSO-*d*₆) δ 14.6, 14.6, 36.1, 36.3, 55.5, 55.6, 55.9, 56.0, 63.8, 93.1, 93.2, 111.4, 111.6, 112.3, 112.5, 112.5, 113.8, 118.7, 118.7, 122.1, 122.2, 123.2, 124.3, 127.0, 127.7, 129.0, 129.1, 130.4, 139.6, 139.9, 147.4, 147.8, 150.2, 151.1, 152.6, 153.3, 153.4, 160.3, 160.4. Anal. Calcd for C₂₂H₂₄N₂O₅: C, 66.65; H, 6.10; N, 7.07. Found: C, 66.47; H, 6.20; N, 6.95.

4.50. (*E*/*Z*)-5-(2-Cyano-1-(3-ethoxy-4-methoxyphenyl)vinyl)-2methoxyphenyl 2-aminoacetate hydrochloride (48)

Compound **48** was prepared from **67a** (0.36 g, 0.76 mmol) using general procedure F, to afford the product as a white solid (0.18 g, 58% yield): mp 190–192 °C. ¹H NMR (DMSO- d_6) δ 1.32 (t, *J* = 7.0 Hz, 3H), 3.79–3.88 (m, 6H), 3.94–4.04 (m, 2H), 4.10–4.13 (m, 2H), 6.14–6.22 (m, 1H), 6.73–7.48 (m, 6H), 8.54 (br, 3H). ¹³C NMR (DMSO- d_6) δ 14.6, 14.6, 55.5, 55.6, 56.1, 63.8, 93.5, 93.7, 111.4,

111.6, 112.2, 113.0, 113.2, 113.7, 118.5, 122.1, 122.3, 122.7, 123.6, 127.9, 128.9, 128.9, 129.5, 130.3, 130.8, 137.9, 138.0, 147.5, 147.9, 150.3, 151.1, 151.7, 152.3, 159.9, 160.1, 166.0. Anal. Calcd for $C_{20}H_{23}N_2O_5Cl\cdot0.5H_2O$: C, 58.95; H, 5.65; N, 6.55. Found: C, 58.57; H, 5.52; N, 6.35.

4.51. (S)-(*E*/*Z*)-5-(2-Cyano-1-(3-ethoxy-4-methoxyphenyl)vinyl)-2-methoxyphenyl 2-aminopropanoate hydrochloride (49)

Compound **49** was prepared from **67b** (0.89 g, 1.8 mmol) using general procedure F, to afford the product as a white solid (0.52 g, 67% yield): mp 173–175 °C. ¹H NMR (DMSO- d_6) δ 1.32 (t, *J* = 7.0 Hz, 3H), 1.55–1.59 (m, 3H), 3.74–3.88 (m, 6H), 3.94–4.05 (m, 2H), 4.30–4.39 (m, 1H), 6.14–6.22 (m, 1H), 6.73–7.42 (m, 6H), 8.64 (br, 3H). ¹³C NMR (DMSO- d_6) δ 14.6, 14.6, 15.8, 24.4, 25.3, 33.3, 47.5, 47.8, 55.5, 55.6, 56.2, 56.3, 63.8, 93.6, 93.8, 111.4, 111.6, 112.2, 113.0, 113.1, 113.7, 118.5, 122.2, 122.3, 122.5, 123.4, 128.0, 128.9, 129.0, 129.5, 130.2, 130.9, 138.0, 138.2, 147.5, 147.9, 150.3, 151.2, 151.5, 152.3, 159.9, 160.1, 168.3, 168.3. Anal. Calcd for C₂₀H₂₅N₂O₅Cl-0.6H₂O: C, 59.55; H, 5.95; N, 6.31. Found: C, 59.20; H, 5.83; N, 6.67.

4.52. (S)-(*E*/*Z*)-5-(2-Cyano-1-(3-ethoxy-4-methoxyphenyl)vinyl)-2-methoxyphenyl 2-amino-3-methylbut-anoate hydrochloride (50)

Compound **50** was prepared from **67c** (0.82 g, 1.6 mmol) using general procedure F, to afford the product as a white solid (0.51 g, 70% yield): mp 192–194 °C. ¹H NMR (DMSO- d_6) δ 1.07–1.14 (m, 6H), 1.32 (t, *J* = 7.0 Hz, 3H), 2.30–2.37 (m, 1H), 3.79–3.88 (m, 6H), 3.94–4.02 (m, 2H), 4.13–4.19 (m, 1H), 6.14–6.22 (m, 1H), 6.74–7.45 (m, 6H), 8.61 (br, 3H). ¹³C NMR (DMSO- d_6) δ 14.6, 17.4, 18.0, 29.5, 55.5, 55.6, 56.0, 56.1, 57.3, 63.8, 93.6, 93.8, 111.4, 111.6, 112.2, 113.0, 113.1, 113.7, 118.5, 122.1, 122.3, 122.6, 123.5, 128.0, 128.8, 129.0, 129.5, 130.9, 137.9, 138.0, 147.5, 147.9, 150.3, 151.2, 151.5, 152.2, 159.9, 160.0, 167.0. Anal. Calcd for C₂₄H₂₉N₂O₅Cl-0.1H₂O: C, 62.29; H, 6.39; N, 6.05. Found: C, 62.07; H, 6.30; N, 6.06.

4.53. HCT-116 cell proliferation assay

The human colorectal carcinoma tumor cell line HCT-116 was purchased from American Type Culture Collection (Manassas, VA). Cell proliferation was assessed by [³H] thymidine incorporation assay. Briefly, cells were seeded on 96-well microtiter plates 24 h before addition of compound to allow them to adhere to plates. Each compound was tested at serial dilutions in triplicate. Following compound treatment, the cells were incubated at 37 °C for additional 72 h. [³H]thymidine (1 µCi in 20 µL medium) was added to each well for the last 6 h of incubation time. The cells were then harvested for detection of tritium incorporation with a TopCount® Microplate Scintillation Counter (Packard Instrument Company, Meriden, CT). Final cumulative half-maximal inhibitory concentrations (IC₅₀s) were calculated using non-linear regression and sigmoidal dose-response, constraining the top to 100% and the bottom to 0% and allowing variable slope, using GraphPad Prism version 5.01. SEM (standard error of the mean) was calculated from the individual IC₅₀s of each replicate.

4.54. PDE4 enzyme assay

PDE4 enzyme was purified from U937 human monocytic cells by gel filtration chromatography, and phosphodiesterase reactions were carried as previously described.⁵⁰ Briefly, reactions were carried out in 96-well deep well plates in 50 mM Tris–HCl pH 7.5, 5 mM MgCl₂, 1 µM cAMP, plus 10 nM [³H]-cAMP for 30 min at 30 °C, terminated by boiling, treated with 1 mg/ml snake venom, and separated using AG-1X8 ion exchange resin (BioRad). Reactions consumed less than 15% of available substrate. $IC_{50}s$ and SEM were calculated as described above.

4.55. PBMC TNF- production assay

Peripheral blood mononuclear cells (PBMC) were obtained from leukocyte units (Blood Center of New Jersey, East Orange, NJ) by Ficoll Hypaque (Pharmacia, Piscataway, NJ, USA) density centrifugation. Cells were cultured in R10 medium (RPMI) (Life Technologies, Grand Island, NY, USA) supplemented with 10% AB+ human serum (Gemini Bio-products, Woodland, CA, USA), 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin (Life Technologies)). PBMC (2×10^5 cells) were plated in 96-well flat-bottom Costar tissue culture plates (Corning, NY, USA) in triplicate. Compounds were dissolved in DMSO (Sigma) and further dilutions were done in culture medium immediately before use. The final DMSO concentration in all samples was 0.25%. Compounds were added to cells 1 h before stimulation. Cells were stimulated with LPS (from Salmonella abortus equi, Sigma, St.Louis, MO, USA) at 1 ng/ml in the absence or presence of compounds. Cells were incubated for 18-20 h at 37 °C in 5% CO₂ and supernatants were then collected, diluted with culture medium and assayed for TNF- α levels by ELISA (Endogen, Boston, MA, USA) according to the manufacturer's instructions. IC₅₀s and SEM were calculated as described above.

4.56. Tubulin polymerization assay

Tubulin polymerization was measured in a cell-free spectrophotometric assay system, as previously described.³⁰

4.57. Solubility determination

Solubility was determined using 0.5 mL of a ~ 1 mg/mL suspension of the appropriate samples in pH 5.0 buffer (Tritisol 9882–2) or pH 7.4 buffer (Metrepak CAS#270–7.40) in a sealed matrix tube containing a stir flea. Each sample was set on stir plate set at 400 rpm for 4 h. After 4 h, the samples were filtered using a 0.45 mm filter. Samples were analyzed using a Spectramax UV-vis Plate Reader (200–400 nm) and compared with standard curves generated (range 0.25–100 mg/mL) for each compound to determine the concentration in buffer solution. Replicate measurements were made for buffer 5.0 determinations.

4.58. Human plasma stability

Analogs were incubated in human plasma at 37 °C for 0, 0.5, 1, 2, 3, 4, 6, 8, and 24 h. At each time point, 60 μ L of each plasma sample was added into 120 μ L of acetonitrile containing 0.1% formic acid and internal standard. After centrifugation at \geq 3000g, the supernatants were transferred for LC–MS/MS analysis.

A Shimadzu HPLC system interfaced with an Applied System Sciex 4000 QTrap mass spectrometer was used for analysis of samples. The LC separation was carried out on a Phenomenex Onyx Monolithic C18 column ($50 \times 2.0 \text{ mm}$) with gradient of aqueous acetonitrile containing 0.1% formic acid. The optimized MRM tandem mass spectrometry was used to detect the analytes and IS. The percentage remaining data of each compound were calculated using the peak area ratios (analyte/IS) of the samples at the designated time points and those at time zero.

4.59. Docking study

Compound **28** was docked into the colchicine binding site of the tubulin crystal structure (PDB code 1SA0)⁵⁷ using MOE software.⁵⁸

After aligning the ligand with colchicine, the ligand and protein residues with atoms within 5 Angstroms of the bound inhibitor were minimized using the standard parameters in MOE/LigX. Residues outside the 5 Angstrom radius remained fixed.

4.60. Human tumor xenograft model

Female SCID mice (6-8 weeks old) were obtained from the Charles River Laboratory (Wilmington, MA) and maintained in microisolator cages under sterile conditions. The right hind legs of the mice were inoculated s.c. with HCT-116 cells suspended in sterile PBS (2×10^6 cells per mouse). On day 8, tumors of all mice were measured with a digital caliper and volumes were calculated with a formula of $W^2 \times L/2$, where W is width (short axis) and L is length (long axis). Mice bearing tumor size ranging between 75 and 125 mm³ were pooled together and randomly distributed into cages. The mice were then ear tagged and cages were randomly assigned to treatment groups. On day 8, the tumors were measured and considered as starting volumes. The mice were then dosed ip with either vehicle (CMC-Tween: 0.5% Carboxymethylcellulose and 0.25% Tween 80 in water), Compound 28 (20 mg/kg), Compound 45 (20 mg/kg) or positive control Camptosar (5 mg/kg; Pfizer, Inc., New York, NY). Compound 28 and Compound 45 were given once daily administrations (qd). Camptosar was administered once every four days (q4d). Mice were monitored daily for health status as well as tumor growth. Tumors were measured twice weekly.

Acknowledgements

The authors wish to give special thanks to Dr. Meg McCarrick for performing the docking study, Dr. Isabelle Okuda for solubility determination, and Dr. Sekhar Surapaneni for performing the plasma stability study.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2011.08.068.

References

- 1. Honore, S.; Pasquier, E.; Braguer, D. Cell. Mol. Life Sci. 2005, 62, 3039.
- 2. Islam, M. N.; Iskander, M. N. Mini-Rev. Med. Chem. 2004, 4, 1077.
- 3. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253.
- Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Med. Res. Rev. 1998, 18, 259.
- 5. Kingston, D. G. I. J. Nat. Prod. 2009, 72, 507.
- 6. Hinnen, P.; Eskens, F. A. L. M. Br. J. Cancer 2007, 96, 1159.
- 7. Gaya, A. M.; Rustin, G. J. Clin. Oncol. 2005, 17, 277.
- 8. Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat. Rev. Cancer 2005, 5, 423.
- 9. Patterson, D. M.; Rustin, G. J. S. Clin. Oncol. 2007, 19, 443.
- 10. Siemann, D. W.; Chaplin, D. J.; Walicke, P. A. Expert Opin. Invest. Drugs 2009, 18, 189.
- 11. Chaplin, D. J.; Horsman, M. R.; Siemann, D. W. Curr. Opin. Invest. Drugs 2006, 7, 522.
- Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W. P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J. S.; McCrae, K. R.; Remick, S. C. *Cancer Res.* **2002**, *62*, 3408.
- 13. Pettit, G. R.; Cragg, G. M.; Singh, S. B. J. Nat. Prod. 1987, 50, 386.
- Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. Experientia 1989, 45, 209.
- Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. J. Med. Chem. 1995, 38, 1666.
- El-Zayat, A. A. E.; Degen, D.; Drabek, S.; Clark, G. M.; Pettit, G. R.; Von Hoff, D. D. Anti-Cancer Drugs 1993, 4, 19.
- 17. Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Biochemistry 1989, 28, 6984.
- 18. Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel,
- E. J. Med. Chem. **1991**, 34, 2579. 19. Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H. M.; Lin, C. M.; Hamel, E. J.
- Med. Chem. 1992, 35, 2293.
 Hatanaka, T.; Fukita, K.; Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Akiyama, Y.; Tsuji, T. Bioorg. Med. Chem. Lett. 1998, 8, 3371.

- Medarde, M.; Ramos, A.; Caballero, E.; Peláez-Lamamié de Clairac, R.; López, J. L.; Grávalos, D. G.; Feliciano, A. S. Eur. J. Med. Chem. 1998, 33, 71.
- 22. Maya, A. B.; del Ray, B.; Peláez-Lamamié de Clairac, R.; Caballero, E.; Barasoain, I.; Andreu, J. M.; Medarde, M. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2549.
- Pettit, G. R.; Anderson, C. R.; Herald, D. L.; Jung, M. K.; Lee, D. J.; Hamel, E.; Pettit, R. K. J. Med. Chem. 2003, 46, 525.
- Gaukroger, K.; Hadfield, J. A.; Lawrence, N. J.; Nolan, S.; McGown, A. T. Org. Biomol. Chem. 2003, 1, 3033.
- Pettit, G. R.; Rhodes, M. R.; Herald, D. L.; Hamel, E.; Schmidt, J. M.; Pettit, R. K. J. Med. Chem. 2005, 48, 4087.
- Monk, K. A.; Siles, R.; Hadimani, M. B.; Mugabe, B. E.; Ackley, J. F.; Studerus, S. W.; Edvardsen, K.; Trawick, M. L.; Garner, C. M.; Rhodes, M. R.; Pettit, G. R.; Pinney, K. G. *Bioorg. Med. Chem.* 2006, *14*, 3231.
- Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033.
- Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J. Med. Chem. 1998, 41, 1688.
- Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J. Med. Chem. 2000, 43, 2731.
- Zhang, L.-H.; Wu, L.; Raymon, H. K.; Chen, R. S.; Corral, L.; Shirley, M. A.; Narla, R. K.; Gamez, J.; Muller, G. W.; Stirling, D. I.; Bartlett, J. B.; Schafer, P. H.; Payvandi, F. *Cancer Res.* 2006, 66, 951.
- Vu, H. N.; Miller, W. J.; O'Connor, S. A.; He, M.; Schafer, P. H.; Payvandi, F.; Muller, G. W.; Stirling, D. I.; Libutti, S. K. J. Surg. Res. 2010, 164, 116.
- 32. Torphy, T. J. Am. J. Respir. Crit. Care Med. 1999, 63, 1.
- 33. Souness, J. E.; Aldous, D.; Sargent, C. Immunopharmacology 2000, 47, 127.
- 34. Barnette, M. S.; Underwood, D. C. Curr. Opin. Pulm. Med. 2000, 6, 164.
- Teixeira, M. M.; Gristwood, R. W.; Cooper, N.; Hellewell, P. G. Trends Pharmacol. Sci. 1997, 18, 164.
- Taffet, S. M.; Singhel, K. J.; Overholtzer, J. F.; Shurtleff, S. A. Cell. Immunol. 1989, 120, 291.
- 37. Lerner, A.; Kim, D. H.; Lee, R. Cell. Biochem. Biophys. 1998, 28, 75.
- 38. Marko, D.; Pahlke, G.; Merz, K. H.; Eisenbrand, G. Chem. Res. Toxicol. 2000, 13, 944.
- Wagner, B.; Jakobs, S.; Habermeyer, M.; Hippe, F.; Cho-Chung, Y. S.; Eisenbrand, G.; Marko, D. Biochem. Pharmacol. 2002, 63, 659.
- Schmidt, A. L.; Farias, C. B.; Abujamra, A. L.; Kapczinski, F.; Schwartsmann, G.; Brunetto, A. L.; Roesler, R. J. Mol. Neurosci. 2010, 40, 303.
- Goldhoff, P.; Warrington, N. M.; Limbrick, D. D.; Hope, A.; Woerner, B. M.; Jackson, E.; Perry, A.; Piwnica-Worms, D.; Rubin, J. B. *Clin. Cancer Res.* 2008, 14, 7717.
- 42. Netherton, S. J.; Maurice, D. H. Mol. Pharmacol. 2005, 67, 263.
- 43. Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033.
- Man, H.-W.; Schafer, P.; Wong, L. M.; Patterson, R. T.; Corral, L. G.; Raymon, H.; Blease, K.; Leisten, J.; Shirley, M. A.; Tang, Y.; Babusis, D. M.; Chen, R.; Stirling, D.; Muller, G. W. J. Med. Chem. 2009, 52, 1522.
- 45. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
- 46. Amorese, A.; Arcadi, A.; Bernocchi, E.; Cacchi, S.; Cerrini, S.; Fedeli, W.; Ortar, G. *Tetrahedron* **1989**, *45*, 813.
- 47. Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 19, 1287.
- 48. Yamakado, Y.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Am. Chem. Soc. **1981**, 103, 5568.
- 49. Peterson, P. E. *Tetrahedron Lett.* **1984**, *25*, 5711. 50. Muller, G. W.; Shire, M. G.; Wong, L. M.; Corral, L. G.; Patterson, R. T.; Chen, Y.;
- Stirling, D. I. Bioorg. Med. Chem. Lett. **1998**, 8, 2669. 51. Muller, G. W.; Corral, L. G.; Shire, M. G.; Wang, H.; Moreira, A.; Kaplan, G.;
- Stirling, D. I. J. Med. Chem. 1996, 39, 3238.
 Fang, Z.; Song, Y.; Sarkar, T.; Hamel, E.; Fogler, W. E.; Agoston, G. E.; Fanwick, P.
- Harg, Z., Song, T., Sankai, T., Hande, E., Fogler, W. E., Agoston, G. E., Fanwer, F. E.; Cushman, M. J. Org. Chem. **2008**, 73, 4241.
 McKenna, J. M.; Muller, G. W. Medicinal. In Cyclic Nucleotide Phosphodiesterases
- MCKenna, J. M.; Muller, G. W. Medicinal. In *Cyclic Nucleotide Phosphodiesterases* in *Health and Disease*; CRC Press/Taylor & Francis: Boca Raton, FL, 2007; pp 667–699.
- 54. Kodimuthali, A.; Jabaris, S. S. L.; Pal, M. J. Med. Chem. 2008, 51, 5471.
- Messaoudi, S.; Treguier, B.; Hamze, A.; Provot, O.; Peyrat, J.-F.; De Losada, J. R.; Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M. J. Med. Chem. 2009, 52, 4538.
- Alvarez, R.; Alvarez, C.; Mollinedo, F.; Sierra, B. G.; Medarde, M.; Pelaez, R. Bioorg. Med. Chem. 2009, 17, 6422.
- Ravelli, R. B. G.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Nature 2004, 428, 198.
- MOE software was used for ligand comparative modeling in the tubulin binding site. Molecular Operating Environment, version 2010.10; Chemical Computing Group, Inc.; Montreal, Quebec, 2010.
- Kurtzberg, L. S.; Battle, T.; Rouleau, C.; Bagley, R. G.; Agata, N.; Yao, M.; Schmid, S.; Roth, S.; Crawford, J.; Krumbholz, R.; Ewesuedo, R.; Yu, X.-J.; Wang, F.; Lavoie, E. J.; Teicher, B. A. *Mol. Cancer Ther.* **2008**, *7*, 3212.
- 60. Nair, J. S.; de Stanchina, E.; Schwartz, G. K. Clin. Cancer Res. 2009, 15, 2022.
- Silvestri, M. A.; Nagarajan, M.; De Clercq, E.; Pannecouque, C.; Cushman, M. J. Med. Chem. 2004, 47, 3149.
- 62. Learmonth, D. A. Synth. Commun. 2002, 32, 2757.
- 63. Zumbansen, K.; Doehring, A.; List, B. Adv. Synth. Catal. 2010, 352, 1135.
- 64. Zhang, Y.; Wang, M. G.; Liang, J.; Shang, Z. C. Lett. Org. Chem. 2010, 7, 27.