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Chiral phosphorus ligands have been widely used in transition metal-catalyzed asymmetric reactions. Herein, we report a new syn-

thesis approach of chiral biaryls containing a phosphorus moiety using P(O)R,-directed Pd-catalyzed C—H activation; the function-

alized products are produced with good enantioselectivity.

Introduction

In the past decades, phosphorus ligands have been demon-
strated to be efficient ligands in many metal-catalyzed organic
reactions [1-4]. In particular, their special effects of enhancing
the metal-catalyst efficiency and of controlling chiral induction
has continually prompted synthetic chemists to probe efficient
methods generating access to chiral, enantiomerically pure
phosphorus compounds used in pharmaceutical, agrochemical
and perfume industries [5-10]. However, the difficulty of
synthesizing such ligands hampered their wide application,
mainly due to the challenging formation of P-X (X = N, O,
C...), especially C—P bond formation.

At present, the traditional strategy to introduce phosphorus

atoms requires prefunctionalization or lithiation of substrate.

However, these methods are not compatible for some activated
functional groups in precursor compounds. Over the past
several years, we have achieved reactions of C—P bond forma-
tion with new and efficient protocols via transition metal-catal-
ysis [11-16]. Despite the progress in this area, only limited
development has been accomplished through metal-catalyzed
C—H activation to build C—P bonds [17,18]. As an alternative,
we disclosed a novel protocol of palladium-catalyzed C—H
functionalization by using the P(O)R; moiety as a new directing
group to synthesize a series of phosphorus-containing com-
pounds in a straightforward and atom-efficient way (Scheme 1)
[19-23]. In our system, we proposed a seven-membered cyclo-
palladium transition state instead of the common five or six-
membered transition state [24-30]. The P(O)R, group not only
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Scheme 1: C-H functionalization of P(O)R; directed through a seven-membered cyclopalladium transition state.

achieved the directing role but also acts as an important compo-
nent unit of the C—H functionalized products. In this paper, we
use the axially chiral biaryl phosphine oxides as substrates and
report the synthesis of various chiral phosphorus ligands with
high enantiomeric selectivity using palladium-catalyzed C—H
functionalization.

Results and Discussion

To obtain the axially chiral phosphorus compounds, we first
synthesized the special chiral-bridged atropisomeric monophos-
phorus ligand L-1 through an eight-step reaction sequence
starting from 1,3-dimethoxybenzene. According to the reported
operation, the substrates of biaryl derivatives that contained
phosphate with axial chirality were obtained in high yields
using the Suzuki-Miyaura coupling reaction with the assistance
of this versatile chiral ligand [31-34]. We used substituted naph-
thylboronic acid or ortho-substituted-phenylboronic acid to
synthesize the corresponding substituted binaphthyl or phenyl-
naphthyl skeleton substrates with axial chirality. To maintain

the axial chirality within the substrates, a steric hindrance effect
at the ortho position of phenylboronic acids was required,
rendering the non-ortho substituted-phenylboronic acid that is
not applicable in these reactions. As the P(O)Ar, group showed
a better directing ability in the process of C—H activation, the
axial chiral P(O)(OEt), 4a was transformed into P(O)Ar, by
reacting with an arylgrignard reagent (Scheme 2) [32]. At the
same time, the racemic substrates were produced using the non-
chiral S-phos ligand. By using 2-chlorophenylboronic acid as
coupling component, we demonstrated that we could obtain the
phosphate compound, but it failed to yield the P(O)Ph, group in
the arylation step. In addition, in the processes of hydroxylation,
arylation, alkenylation, the P(O)(iPr), group showed a good
guiding ability, but the corresponding substrates could not be
obtained because the phosphate moiety did not react with the
(iPr)MgBr.

Under the optimized conditions, we started to investigate the

scope and applicability of our strategies. Initially, we used
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Scheme 2: Synthesis of chiral and racemic substrates.

chiral [1,1'-binaphthalen]-2-yldiphenylphosphine oxide as a
substrate [35]. In the process of alkenylation and acetoxylation,
the corresponding products 2a and 2b were obtained in
moderate yields and high enantioselectivities. Next, we exam-
ined the substituent effect with P(O)(p-Tol), as a directing
group: The reactions of alkenylation, acetoxylation, hydroxyla-
tion and acylation occurred smoothly. Even if the products were
obtained in low to moderate yields, they were optically pure
(Figure 1, 2¢—f). For the substrate of 4-methoxy substituted
binaphthyl, we could achieve the alkenylation product 2g in
moderate yield and with high ee. When a fluorine substituent
was used, the acetoxylated product 2h was obtained in moderate
yield and high ee. Even if the alkenylation product 2i was
obtained when the substituent was methyl, we failed to produce
the desired chromatogram; however, it did exhibit a good
optical rotation. Those results showed that the products of C—H
functionalization were maintained with high enantio-
selectivities when the substrates were optically pure, even when
these reactions were carried out in air atmosphere and at high
temperature. Herein, we provided a method to synthesize the
substituted axially chiral binaphthyl compounds with a phos-
phorus moiety. Moreover, these products can be further trans-

formed into other functional groups.

1a’
racemic substrate

Next, the substrates of the phenyl-naphthyl framework were
examined. For the ortho-OMe substituted substrate, we
achieved the products of alkenylation, acetoxylation and
hydroxylation. The OMe group is a relatively small group, so
the ee was not very high. If the substituent was OEt, the prod-
ucts of alkenylation and acetoxylation (Figure 1, 2m and 2n)
were obtained in moderate yield and the results showed good
enantioselectivities. Although the yields were not very high in
these processes, the starting materials were completely
converted except for the acylation reaction, presumably due to
partial decomposition of the starting materials. These function-
alized products showed that the axially chiral substrates could
be well maintained in our system of P(O)R,-directed
Pd-catalyzed C—H activation. These compounds could be trans-
formed to trivalent phosphorus compounds by silane to obtain

the corresponding phosphorous ligands.

Conclusion

In summary, a series of substrates with axially chiral biaryl
compounds containing a P(O)Ar, directing group were success-
fully synthesized using the Suzuki—-Miyaura coupling reaction
under the assistance of a chiral ligand. Moreover, the substrates

were further C—H functionalized using the P(O)Ar, directing
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IC-3, (-) ee 90%

Figure 1: C—H functionalization of axially chiral phosphorus substrates. The yields are isolated yields and the ee values are determind by HPLC.
@Reaction conditions: substrate (0.3 mmol), ethyl acrylate (1.5 mmol), Pd(OAc); (10 mol %), Ac-Gly-OH (20 mol %), AgOAc (1.5 mmol), TFE

(3.0 mL), 100 °C, 24 h, air atmosphere; PSubstrate (0.3 mmol), Phl(OAc), (0.9 mmol), Pd(OAc); (10 mol %), TFE (3.0 mL), 100 °C, 24 h, air atmos-
phere; ®Substrate (0.3 mmol), TBHP (1.2 mmol), benzy! alcohol (0.75 mmol), Pd(TFA) (10 mol %), DCE (3.0 mL), 60 °C, air atmosphere; 9Substrate
(0.3 mmol), PhI(TFA), (0.45 mmol), Pd(OAc), (10 mol %), MeNO5 (3.0 mL), 60 °C, 24 h, air atmosphere.

role with Pd salt as catalyst. Notably, the reactions took palladium transition state for this transformation and provide
place in air atmosphere and at high temperature and the a new and efficient route to synthesize the substituted axially-
corresponding functionalized products exhibited good enantio- chiral oxygen—phosphine or alkene—phosphine ligand

selectivities. We propose a unique seven-membered cyclo- analogues.
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Experimental
See Supporting Information File 1.

Supporting Information

Supporting Information File 1

Experimental details, characterization data (IH, 3¢, 3lp
spectra) of products.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-215-S1.pdf]
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