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Neuromyelitis optica (NMO) is a demyelinating autoimmune

disease of the optic nerve and spinal cord triggered by binding

of NMO-specific immunoglobulin G (NMO-IgG) auto-antibodies
to the water channel aquaporin-4 (AQP4) in astrocytes. To find

potential NMO therapeutics, a screening system was estab-
lished and used to identify inhibitors of NMO-IgG-mediated

complement-dependent cytotoxicity (CDC). The screening of
approximately 400 compounds yielded potent hit compounds

with inhibitory effects against CDC in U87-MG cells expressing

human AQP4. Derivatives of the hit compounds were synthe-
sized and evaluated for their inhibition of CDC. Of the small

molecules synthesized, (E)-1-(2-((4-methoxyphenyl)sulfonyl)vin-
yl)-[4-[(3-trifluoromethyl)phenyl] methoxy]benzene (5 c)

showed the most potent activity in both stably transfected
U87-MG cells and mice-derived astrocytes. The results of this

study suggest that 5 c, which targets NMO-IgG-specific CDC,

may be useful as a research tool and a potential candidate for
therapeutic development for the treatment of NMO.

Neuromyelitis optica (NMO) is an autoimmune disorder of the

optic nerve and spinal cord of the central nervous system

(CNS).[1] The symptoms of NMO include optic neuritis (inflam-
mation of the optic nerve with a sudden decrease of vision)

and acute myelitis (inflammation of the spinal cord). NMO was
previously thought to be a variant of multiple sclerosis (MS)

but in 2004, Lennon et al.[1b] reported that NMO immuno-
globulin G (NMO-IgG) was present in patients with NMO but

not in those with MS. Because NMO-IgG is detected with

a high sensitivity and specificity in clinically defined NMO, this
marker is now used as a major diagnostic criterion.[2] The etiol-

ogy of NMO is elusive but recent studies have suggested that
it may involve the binding of pathogenic NMO-IgG auto-anti-

body to the water channel aquaporin-4 (AQP-4), which is ex-
pressed by almost all CNS astrocytes, but it is particularly en-

riched in the spinal cord gray matter, the posterior optic nerve,

and the floor of the fourth ventricle.[3] Several magnetic reso-
nance imaging (MRI) results of patients with NMO showed that

the associated brain lesions were extensively localized in high
AQP4 expression sites.[4]

An in vitro assay showed that NMO-IgG was bound to the
extracellular domain of AQP4, and in the presence of active
complement, this binding leads to strong complement activa-

tion and rapid complement-dependent cytotoxicity (CDC).[5]

Moreover, a recent study reported that passive transfer (intra-

thecal injection) of NMO-IgG and human activated comple-
ment into an animal model triggers symptoms similar to

NMO.[6]

Considering that strong humoral responses are a central fea-

ture of NMO, common therapies include general immunosup-
pressants and plasma exchange to achieve a sustained deple-
tion of NMO-IgG and complement. However, these therapies

are associated with severe side effects. Several therapeutic
strategies for perturbing complement proteins or interleukin

(IL)-6 receptor, and depleting neutrophils, eosinophils, or
B cells (CD19) are under clinical evaluation for the treatment of

NMO.[7] Other therapeutic approaches have been developed to

block the binding of NMO-IgG to AQP4 and decrease CDC.
Among them, aquaporumab, a nonpathogenic human mono-

clonal antibody, competitively displaces NMO-IgG in the serum
of patients with NMO. This direct blocker greatly decreased

NMO-IgG-dependent cytotoxicity and NMO pathology in both
in vivo and in vitro models of NMO.[7] In an alternative ap-
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proach, small molecules were identified as possible blockers
that decrease the binding of NMO-IgG to AQP4 by competi-

tively binding to the extracellular surface of AQP4.[8] Com-
pounds that specifically block NMO-IgG binding to AQP4 could

provide an approach to inhibiting CDC and further inflamma-
tory cascades. The small molecules identified so far exhibit rel-

atively weak inhibitory activity against CDC and unfavorable
pharmacological properties. Here, we developed a cell-based

screening system and identified potent inhibitors of CDC

caused by NMO-IgG binding to AQP4.
Our cell-based assay used stably transfected U87-MG cells

expressing high levels of the M23 isoform of the human AQP4
channel. Research studies have revealed that the binding of

NMO-IgG from NMO patients occurs more with transfected
cells expressing the M23 isoform than those with M1 isoform.[9]

AQP4 overexpression in the stable cell line was confirmed

using reverse transcription-polymerase chain reaction (RT-PCR)
and Western blot analysis (Figure S1 in the Supporting Infor-

mation).
To establish a screening system for inhibitors of CDC caused

by a human NMO-IgG autoantibody from patients with NMO,
we measured lactate dehydrogenase (LDH) release from cells

with damaged membranes. The binding of NMO-IgG to AQP4

recruited complement (C1q) and formed a membrane attack
complex (MAC), which disrupted the plasma membrane fol-

lowed by LDH release (Figure 1 a). To validate the efficacy of
our CDC assay system, NMO-IgG from patients with NMO or

control-IgG from healthy individuals was treated with increas-
ing concentrations of human complement in either non-trans-

fected or AQP4-overexpressing cells. NMO-IgG incubation with

AQP4 overexpressing cells significantly increased LDH release
dose-dependently whereas the control groups did not exhibit

this effect (Figure S2 in the Supporting Information).
NMO-IgG acquired from the sera of patients with NMO was

provided by Seoul National Hospital, Korea. Pathogenic waste
sera from patients with severe relapsing NMO who had under-

gone plasmapheresis was stored at ¢80 8C and bio-banked for

future reference. The use of NMO-IgG derived from patient
sera is valuable for developing in vitro, in vivo, and ex vivo dis-

ease models of NMO.[10] This study was approved by the Insti-
tutional Review Board of the Seoul National University Hospital

(IRB number: H-1012-023-317). All patients provided written in-
formed consent. NMO-IgG was purified from sera, using the

method outlined in the Supporting Information, because
serum contains other IgGs, complement, cytokines, and plasma
protein-bound toxins. The severity of disease progression of

each patient differs, as does the concentration of IgG, and
therefore, the purified NMO-IgG was subjected to activity test-

ing prior to the screening experiments. The NMO-IgG binding
affinity and CDC pathogenicity of the NMO-IgGs from different

patients were tested using the same concentrations, and sam-
ples with optimal activity were selected (concentration of each
NMO-IgG that induced 50 % CDC).

To identify potent small-molecule inhibitors of NMO-IgG-de-
pendent CDC, we screened ~400 synthetic small molecules

from our central nervous system (CNS)-focused chemical library

and selected a hit compound (5 a) that decreased the LDH re-

lease by >30 % (Figure 1 b).
The analysis of the screening results revealed that the vinyl

sulfone group is a potentially favorable motif for inhibitory ac-
tivity against CDC. Accordingly, we synthesized five vinyl sul-

fone derivatives by introducing H or CF3 instead of F (5 b and

5 c) or by placing the OMe or PhOMe groups in different posi-
tions on the aryl group (5 d and 5 e). Vinyl sulfone derivatives
5 a–e were prepared in three steps (Scheme 1).[11] First, substi-
tuted benzenethiols (1) were coupled with (diethoxyphosphor-

yl)methyl-4-methylbenzenesulfonate in the presence of a base
to obtain the sulfides (2). In the next step, the sulfides (2) were

oxidized with meta-chloroperoxybenzoic acid (mCPBA) at 0 8C
to obtain the sulfones (3). The final compounds (5 a–e) were
obtained by Horner–Emmons olefination reactions with the de-

sired substituted benzaldehydes (4 ; for synthetic methods, see
the Supporting Information).

Using a CDC assay, we found that compound 5 c exhibited
the most potent inhibitory activity (43.4 % decrease in LDH re-

lease at 25 mm). The substitution of the trifluoromethyl group
(CF3) instead of the fluorine group (F) on the ring C significant-
ly increased the inhibitory activity in the CDC assay. When the

electron-withdrawing group (F or CF3) was replaced with hy-
drogen (5 b), the inhibitory activity was decreased (Figure 2).

We placed a methoxy group at the 2-position on ring A in-
stead of the 4-position and observed that the 2-methoxy deriv-

Figure 1. Screening system for the identification of inhibitors of neuromyeli-
tis optica-specific immunoglobulin G autoantibodies (NMO-IgG)/comple-
ment-mediated cytotoxicity. A) Schematic of the screening assay used for
identifying potent inhibitors of (a) NMO-IgG binding to aquaporin-4 (AQP4),
(b) complement binding to NMO-IgG, and (c) membrane attack complex
(MAC) formation by measuring lactate dehydrogenase (LDH) release from
AQP4-expressing U87-MG cells incubated with NMO-IgG and 5 % comple-
ment. B) Chemical structure of hit compound 5 a.
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ative (5 d) had a similar inhibitory activity with the 4-methoxy
derivative (5 a). Next, we changed a methylphenyl group at-

tached to the para position on ring B to the ortho position
(5 e) but did not observe a clear change in activity.

Next, we evaluated the ability of 5 c to block the binding of
NMO-IgG to AQP4 using immunofluorescence. An NMO-IgG
polyclonal antibody against the three-dimensional epitopes on

the extracellular surface of AQP4 was incubated with the
AQP4-expressing U87-MG cells (DsRed positive) in the absence

or presence of 5 c for 30 min. Then, the cells were washed with
phosphate-buffered saline (PBS), fixed, and then incubated

with a fluorescein isothiocyanate (FITC)-conjugated antihuman

secondary antibody. The NMO-IgG but not the control-IgG effi-
ciently bound to the AQP4-overexpressing U87-MG cells. The

immunofluorescence micrographs showed a substantial de-
crease in NMO-IgG binding to AQP4 following 5 c treatment

(Figure 3). This result suggests that 5 c physically interferes
with the binding of polyclonal NMO-IgG to AQP4 (Figure 1 a).

The highest potency compound (5 c) was further evaluated

for its ability to decrease CDC in primary astrocytes highly ex-

pressing AQP4. It has been suggested that NMO-IgG binding
to AQP4 is accompanied by complement-dependent astrocyte

cytotoxicity, which produces NMO lesions in the disease patho-
genesis.[13] CDC in astrocytes was tested using a two-color

staining method in which live and dead cells were stained
blue and green, respectively. Mouse primary astrocytes were

incubated with NMO-IgG in the presence of human comple-

ment with or without 5 c. Compound 5 c decreased cytotoxici-
ty dose-dependently in the NMO-IgG/complement-treated

AQP-4-expressing astrocytes (Figure 4). We found that 5 c de-
creased cell death of primary astrocytes by 46.4 % at 10 mm,

which indicated a higher CDC inhibition than was shown in
U87-MG cells (43.4 % decrease at 25 mm). This result may be

Scheme 1. Synthesis of vinyl sulfone derivatives 5 a–e. Reagents and conditions : a) (diethoxyphosphoryl)methyl 4-methylbenzenesulfonate, CsCO2, DMF, RT,
overnight, 69–73 %; b) meta-chloroperoxybenzoic acid, CH2Cl2, RT, 4 h, 68 %; c) [(substituted phenyl)methoxy]benzaldehydes (4), nBuLi, THF, ¢78 8C, 2 h, 73–
90 %.

Figure 2. Potency of synthetic compounds (5 a–e) against neuromyelitis
optica-specific immunoglobulin G autoantibodies (NMO-IgG) and human
complement-dependent cytotoxicity (CDC) in cell cultures Five vinyl sulfone
derivatives (5 a–e) were used at a final concentration of 25 mm before incu-
bation with 100 mg mL¢1 NMO-IgG and 5 % pooled human complement in
aquaporin-4 (AQP4)-expressing U87-MG cells. After 40 min, lactate dehydro-
genase (LDH) release was measured. Arbidol was used as a positive con-
trol.[12] Black bars show LDH release (%) [data are the mean�SEM n = 4] and
grey bars show CDC inhibition (%) compared with dimethyl sulfoxide
(DMSO)-treated group (no inhibition).

Figure 3. Analysis of inhibition of neuromyelitis optica-specific immuno-
globulin G autoantibodies (NMO-IgG) binding to AQP4 by compound 5 c
using immunofluorescence in aquaporin-4 (AQP4)-expressing U87-MG cells,
which expressed DsRed were treated with compound 5 c (50 mm) before in-
cubation with neuromyelitis optica-specific immunoglobulin-G autoantibod-
ies (NMO-IgG, 6 mg mL¢1). Binding of NMO-IgG or control-IgG to AQP4 was
detected using fluorescein isothiocyanate (FITC)-conjugated antihuman sec-
ondary antibody. Binding affinities were determined using Harmony soft-
ware programmed to automatically calculate nonlinear regression of back-
ground-subtracted green/red fluorescence intensity ratios. Values shown are
the relative binding affinity (%); data are the mean�SEM (n = 5).
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due to overexpression of the M23 isoform of AQP4 in U87-MG
cells, which probably enhances the binding efficiency of NMO-

IgG to AQP4 compared with endogenous AQP4 in astrocytes.
Compound 5 c was identified as a potent inhibitor of CDC

induced by NMO-IgG binding to AQP4. For a compound to be

used as a drug candidate, a number of pharmacokinetic re-
quirements must be met. To assess the metabolic stability of

5 c, we determined its degree of degradation using liver micro-
somes from four different animal species (human, dog, rat, and

mouse) and plasma from two different animal species (human
and rat). Compound 5 c exhibited favorable liver microsomal

stabilizing effects in the human, rat, and mouse with 43.9, 69,

and 62.5 %, respectively, remaining after 30 min incubation
with nicotinamide adenine dinucleotide phosphate (NADPH).

In addition, it exhibited complete resistance to metabolism in
dog liver microsomes (~100 %; Table 1). Compound 5 c was

also stable in human and rat plasma during 120 min incuba-
tion. The favorable stability of 5 c against the human enzymes

suggests that the compound may have a high bioavailability

when administered to humans.
Metabolism-related drug–drug interactions in vivo might

cause adverse reactions or severe side effects, and this was
evaluated using a cytochrome 450 (CYP) inhibition test, partic-
ularly in subtypes 1A2, 2C9, 2C19, 2D6, and 3A4.[14] As shown

in Table 1, for the subtypes evaluated, the IC50 values of com-
pound 5 c were all over 10 mm except for 2C19 (slightly below

10 mm), indicating that 5 c is not likely to cause drug-drug in-
teraction-related side effects.

In conclusion, we report on a novel compound 5 c, which

has inhibitory effects against NMO-IgG/CDC and may be a po-
tential therapeutic candidate for NMO treatment. Further eval-

uations in ex vivo and in vivo animal models and drug optimi-
zation are necessary to evaluate its desired drug properties.
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Table 1. In vitro profile of compound 5 c determined using metabolic sta-
bility and cytochrome P450 (CYP) inhibition assays.
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