THE INFRARED SPECTRA OF SOME DNP-α-AMINO ACIDS^{1, 2} FELIX FRIEDBERG⁸ AND MYLOUS S. O'DELL #### ABSTRACT The infrared spectra of some DNP- α -amino acids were examined using the KBr technique in the region 5000 to 625 cm⁻¹. There is sufficient variation in spectra of closely related DNP-amino acids to allow positive identification even though the spectra on the whole are more strikingly similar than they are different. Differences in varying degrees were also noted between L- and DL-forms. ### INTRODUCTION The DNP4-derivatives of amino acids recently have assumed importance in amino acid sequence studies on peptides and proteins (1). While the KBr pellet spectra of a large number of the amino acids (2, 3), and also of their 3-phenyl-2-thiohydantoins (4), are reported in the literature, there is little information with regard to the infrared spectra of DNP-derivatives. This study was undertaken to compare the spectra (a) of the DNPderivatives of amino acids with the spectra of the corresponding free amino acids as given in the literature, (b) of the DNP-derivatives of comparable L- and DL-amino acids, and (c) of the DNP-derivatives of structurally related acids, to see whether such compounds can be identified by their spectra. ### **EXPERIMENTAL** The spectra were taken on a Model No. 21 Perkin-Elmer spectrophotometer (equipped with sodium chloride optics). Pellets were made by first mixing the DNP-amino acids with KBr in an agate mortar, and then pressing the material in the Perkin-Elmer die, under evacuation. The DNP-amino acids had been prepared in this laboratory by the method of Levy and Chung (5), and each was crystallized several times and found pure by paper chromatography. Melting points for all derivatives were determined and are essentially in agreement with the values given in literature (6). # DISCUSSION Table I lists and characterizes the spectral absorption bands in the 5000 to 625 cm⁻¹ region. As a result of dipolar ion structure many amino acids possess a characteristic absorption frequency at about 1587 cm⁻¹ which is related to the COO⁻ group, as well as a relatively weak absorption at about 2128 cm⁻¹ which may be attributed to NH frequencies in the -NH₃ ion. The absence of this absorption peak at 2128 cm⁻¹ in the case of DNPderivatives of amino acids, where the amino group is attached to the dinitrophenyl ring, was therefore expected. by Freyman and his co-workers (J. phys. radium, 7, 30 (1936)). ¹Manuscript received April 16, 1959. Contribution from the Department of Biochemistry, Howard University Medical School, Washington, D.C. This work was supported in part by a grant from the American Cancer Society. 2 Spectra deposited with Documentation of Molecular Spectroscopy, Butterworth Scientific Publications, London, England. ³Work done during tenure of Lederle Medical Faculty Award. ⁴DNP is used as an abbreviation for 2,4d-initrophenyl. The first systematic study of the vibrational spectra of α -amino acids was made by Edsall and his co-workers (J. Phys. Chem. 41, 133 (1937); J. Chem. Phys. 4, 1 (1936); 5, 225, 508 (1937); J. Am. Chem. Soc. 65, 1767 (1943); 71, 474 (1950); and more recently J. Am. Chem. Soc. 80, 3807, 3813, 3818, 3823, 3827 (1958). This work is concerned primarily with Raman spectra in aqueous solutions. The first infrared studies were published | DNP-L-arginine 245–250 $(d)^b$ | 3311sh
3236SB | | 2882MB | _ | | 1658SB
1618SB | 1580SB
1570sh | 1520SB | 1484SS
1464sh | 1408SB | 1387SS | 1335SB | |---|------------------|----------|--------------------|------|------------------|------------------|------------------|------------------|------------------|----------|------------------|------------------| | | 52503D | | | | | 10103D | 1370811 | | 1451sh | | | | | DNP-L-alanine 182 | 3311MS | 3058MB | | | 1718SS | 1675MB | 1590SS | 1522SS | | 1414SB | 1359SB | 1333sh | | 2 | 0011111 | | | | 1110-0 | 1623SS | 100000 | 1502MS | 1,012 | 111101 | 100002 | 10000. | | DNP-DL-alanine 180.5 | 3279MS | 3058MB | | | 1709SS | 1618SS | 1587SS | 1522SS | 1464WB | 1414SB | 1364sh | 1333SB | | | | | | | | | | 1499MS | | | | | | DNP-L-aspartic 186-187 | 3279MS | 3058MB | 2857 MB | | 1712SB | 1618SS | 1590SS | 1546MS | | 1425SB | 1361SB | 1333SB | | | | | | | | | | 1522SS | | 1395SS | | | | D. D | 0050540 | | | | | | | 1499SS | | | | | | Bis-DNP-L-cysteine 155-158 | 3279MS | 3058MB | 2907 W B | | 1748SS | 1613SB | 1590SB | 1515SB | | 1427 M B | 1385MB | 1333SB | | Di-DNP-L-cystine 118-121 | 3311sh | | | | 1745MB | 1616SS | 1590SS | 1511sh
1520SB | | 1422MB | | 1333SB | | Di-Divi -L-Cystine 110-121 | 3289MS | | | | TIADMD | 101033 | 109055 | 102031 | | 1422MD | | 10000B | | DNP-glycine 209 | 3311MS | | | | 1712SS | 1608SS | 1595sh | 1517SB | 1447MS | 1422sh | 1362SS | 1335SB | | | | | | | | | | 1497SS | 1441sh | 1412SB | | | | Di-DNP-L-histidine 219 | 3268MS | 3058MB | | | 1715MB | 1618sh | 1582SS | 1511SB | | 1416SB | 1362MS | 1333sh | | | | | | | | 1613SB | | | | 1412sh | 1359sh | 1326SB | | | | | | | | | | | | | | 1321sh | | DNP-hydroxy-L-proline 174-178 | 3425SB | 3095WB | 2950WB | | 1744SB | 1610SB | 1588SB | 1533SB | 1464vw | | 1384sh | 1345SB | | | 3319sh | | | | | | | 1512SB | 1439MB | | | | | DNP-L-isoleucine 109-110 | 00003.60 | 3058MB | 2924MB 2 53 | n | 1712SS | 101000 | 1 50500 | 1515SB | 1450sh | 141000 | 1004350 | 100000 | | DNP-L-isoleucine 109-110
DNP-DL-isoleucine 174.5 | 3289MS
3289WS | 3030MB | | BAWB | 1712SS
1712SS | 1618SS
1621SS | 1587SS
1582SS | 1515SB
1517MS | 1456MB
1453WB | 1412SS | 1364MS
1377WS | 1333SB
1332SB | | DIVIT-DE-ISOICUCINE 174.5 | 0203113 | 9090 MID | 2833sh | | 1/1255 | 102155 | 100433 | 1502MS | 14503 AA ED | 141255 | 1361MS | 1002313 | | DNP-L-leucine 102 | 3289SS | 3030SB | 2899SB | | 1712SB | 1618SB | 1587SB | 1513SB | 1464SB | 1422SB | 1385SS | 1325SB | | | 3-00-0 | _0000 | | | CD | -01002 | -00, CD | 1495SB | -10101 | - 1000 | 1364SS | | | | | | | | | | | | | | | | $\label{thm:thm:continued} TABLE~I~(\textit{Continued})$ Absorption spectra in the infrared in the 5000–625 cm $^{-1}$ region a | | | | | | | | | | _ | | | | | | |--|------------------|--------------------------------------|---------------------------|--------------------|------------------|----------------------------|-------------------------|------------------|------------------|--------|----------------|----------------|-------------------------|--------| | DNP-L-arginine 245–250 (d) ^b
DNP-L-alanine 182 | 1277SB
1302MS | 1250SB
1261SB
1230SB | 1217MB | 1176sh
1157SS | 1139SB
1140MB | 1094MB
1124MB | 1072WB | 1054MB
1057MS | | - | | 948vw
940WB | 919MB
919WB | | | DNP-DL-alanine 180.5 | 1292SB
1284sh | 1242SB
1232sh | | 1172 MB
1156 MS | | 1119SS | | 1053MB | | | | | 916MB | | | DNP-L-aspartic 186-187 | 1282SB | 1229SB | 1220sh | | 1136SS | 1109SB | | 1056SS | 1040MB
1037sh | | | 928SB | 915MB | 905SB | | Bls-DNP-L-cysteine 155-158 | 1290SB | 1244SB
1239sh | | 1171MB | 1143SB
1135sh | 1107SB
1100sh | | 1050MB | 100/511 | | | | 918MB
916sh | 902WB | | Di-DNP-L-cystine 118-121 | 1299sh
1292SB | 1200011 | | | 1140sh
1135MB | 1105MB | | 1058MB | | | | | 926MB | | | DNP-glycine 209 | 1307SB
1290SB | 1250sh
1232SB | | 1155SS | 1131SS | 1105SS | | 1056MB | | 996MS | 978WB | 945MB | 922SS | | | Di-DNP-L-histidine 219 | 1285sh | 1230SB | 1222sh | | 1144SB
1133SB | 1103SB | | 1054MB | 1026MB | 996SB | 971MB | 952MB
936MB | 918MB | | | DNP-hydroxy-L-proline 174-178
DNP-L-isoleucine 109-110 | 1285sh
1285SB | 1245WB
1244SB | 1210vw
1222SB | 1183MB
1163sh | | 1125MS
1121MB
1101MB | 1074MS | 1056MB | | 997MS | 980MS
966WB | 000112 | 927WS
921MB
919sh | 903vWB | | DNP-DL-isoleucine 174.5 | 1290SS | 1261sh
1247SB | | | 1149SS | 1124MS
1098MB | | 1054WS | | 1008vw | 965WB | | 918MB | | | DNP-L-leucine 102 | 1302MB
1276SB | 1232sh
1229sh
1261SB
1232SB | 1206SB | 1151SS | 1139WB
1125SB | 1094SB | 1076SB | 1054SB | | | 958MB | 939SB | 917SB | | | DNP-L-arginine 245-250 (d) ^b DNP-L-alanine 182 | | _ | 831MS
833WB
828WS | 811MB | , | 763MB
765WB | 743SB
743MB | 722MB
720WB | | | 667WB | | 645MB | | | DNP-pL-alanine 180.5 | | | 828WS
832WB | 817WS | | 763WB | 743MB | 724WB
720sh | | | | | | | | DNP-L-aspartic 186–187
Bis-DNP-L-cysteine 155–158 | 877WB | 858WB | 832MS
833MS | 807MS
819MB | 785WB | 762WB
762WB | 744SS
745MB
732MS | 716SB
718MB | 687WB | 680WB | 678WB | 658WB
660WB | 644WB | | | Di-DNP-L-cystine 118-121
DNP-glycine 209 | 889WB
886sh | | 832MB
835MS | 818SS | | 762WS | 743MB
745SS | 714WB | 695WB | 684WB | | 657MB | | | | Di-DNP-L-histidine 219 | 885WB
879vw | 870WB | 832MB | 822MB
818sh | | 759WB | 743MS | 719MB | | | | | | | | DNP-hydroxy-L-proline 174-178
DNP-L-isoleucine 109-110 | 882vwB | 1 | 832vwS
831 MS
826MB | 810SS
821MB | | 758WS
765WB | 743SS
743MS
733MB | 724vwB
719WB | | 689MB | | 653MB | | | | DNP-DL-isoleucine 174.5
DNP-L-leucine 102 | | | 830WS
831SB | 818MS
817SB | 791vw
774MB | 760vw
767MS | 743MB
741SS | 717WB
711SB | 690vw
699WB | 685MB | 667vw
665MB | | 644WB | | TABLE I (Continued) Absorption spectra in the infrared in the 5000-625 cm⁻¹ region^a | DNP-DL-leucine 132-133 | 3322WS | | 3058WB | | 2899 MB | | | | | 1712SS | 1618SS | 1592SS | |------------------------------|--------------------|--------------------|-----------|----------|-------------------|---------|--------|--------|--------|--------|--------------------|--------| | Di-DNP-L-lysine 178–180 | 3300WS | | 3058WB | | 2890WB | | | | | 1715MS | 1618SS | 1587SS | | E-DNP-L-lysine 197-200 | 3333MS | | | | 2841SB | | | | | 1724MS | 1618SS | 1587SS | | DNP-pl-methionine 122 | 3279MS | | 3058MB | | $2874\mathrm{MB}$ | | | | | 1718SB | $1618 \mathrm{sh}$ | 1590SS | | | | | | | | | | | | | 1608SS | | | DNP-L-phenylalanine 191 | 3279SS | 3195sh | 3077sh | | 2882sh | | 1965WB | 1821WB | 1742SS | 1715sh | 1618sh | 1580SS | | | 3247 sh | 3175sh | | | | | | | | 1701sh | 1608SS | | | DNP-pt-phenylalanine 219 | 3279MS | 3205sh | 3058sh | 3003sh | | | 1980WB | 1818WB | 1742SS | 1701sh | 1613SS | 1580SS | | | $3247 \mathrm{sh}$ | $3185 \mathrm{sh}$ | | | | | | | | 1686sh | | | | | | 3145sh | | | | | | | | | | | | DNP-L-proline 138 | 3356WB | | 3049MB | | 2833MB | | | | | 1712SS | 1603SS | 1577SS | | DNP-DL-serine 197-201 | 3344SS | | 3077sh | 3021sh | 2899SB | | | | 1757SS | | 1616SS | 1592sh | | | 3300SS | | | 2959sh | | | | | | | | 1587SS | | | | | | 2941sh | | | | | | | | | | DNP-pl-threonine 178-179 | 3390SB | | 3086MS | | 2899SB | | | | 1757SS | | 1618SS | 1587SS | | | 3333SS | | | | | | | | | | | | | DNP-L-tryptophan 217-221 (d) | 3401SS | | 3096MB | | 2915MB | | | | | 1715SS | 1613SS | 1582SS | | 21(1 2 (1))(0) | 3322MS | | 00001112 | | | | | | | | 101000 | 100200 | | Di-DNP-L-tyrosine 184 (d) | 3390sh | | 3058WB | | | | | | | | 1613SS | 1582SS | | Di-Ditt -E-tyrosine for (a) | 3279WB | | 0000112 | | | | | | | | 101000 | 100200 | | Di-DNP-DL-tyrosine 207 (d) | 3378MS | | 3058WB | | | | | | | 1715SS | 1616SS | 1582SS | | DI-DIVI -DE-tytosine 201 (a) | 3279 MS | | 0000 11 D | | | | | | | 1,1000 | 101000 | 100200 | | DNP-L-valine 132-133 | 3311SS | 3215SS | | 2950SS | 2915SS | | | | 1748SS | | 1618SS | 1587SS | | DIAL-1-49 197-199 | 991122 | | | 200000 | 201000 | | | | 114000 | | | 100100 | | DND 107 100 | 2070340 | 3145sh | | 200234P | 00043470 | 0571117 | | | | 171000 | 1616sh | 150500 | | DNP-DL-valine 187-189 | 3279MS | | | 3003 MvB | | 2571WB | | | | 1712SS | 1623SS | 1587SS | | | | | | | 2890sh | | | | | | | | | DNP-DL-leucine 132-133
Di-DNP-L-lysine 178-180 | | 1517SS
1517SS | 1499MS | 1464WS | | 1422SS
1416SS | 1387vw | 1355MS | 1332SB
1337SB | 1302MB
1307MB | 1277MB
1269MB | 1261SB | 1222MS
1229MB | | |---|---------|------------------|----------|---------|---------|--------------------|------------------|----------|------------------|------------------|------------------|--------|------------------|---------| | E-DNP-L-lysine 197–200 | | 1522SB | | | | 1420SS | | 1361MS | 1330SB | 1312SB | 12001111 | | 1238SB | 1195SB | | DNP-pL-methionine 122 | 1541WB | | 1499SB | | | 1420SB
1416sh | | 1357MS | 1330SS | 1307SB | 1274SB | 1266sh | 1244SB
1229sh | 1198MB | | DNP-L-phenylalanine 191 | 1534WB | 1515SS | 1488SS | 1451MS | 1437sh | 1420sh | 1401SB
1395sh | 1362MS | 1325SB | 1307sh | | | 1236SB | 1203sh | | DNP-DL-phenylalanine 219 | 1538WB | 1517SS | 1486SS | 1451WB | 1439sh | $1420 \mathrm{MB}$ | 1393SB | 1366MS | 1330sh | 1314sh | 1287sh | | 1245SS | 1205 MB | | | | | | | | | | | 1321sh | 1300sh | 1282sh | | 1235SB | | | | | | | | | | | | 1318SS | 1294SS | | | | | | DNP-L-proline 138 | | 1520SB | 1495SS | | 1447MS | 1420 MB | 1377SS | | 1326SB | 1297sh | 1274sh | | 1221MB | | | | | | | | | | | | | 1290SB | | | | | | DNP-DL-serine 197-201 | | 1513SS | 1495SS | 1456MS | 1431sh | 1412SS | | 1362SS | 1335SB | 1316SB | 1279sh | 1266SS | 1232SB | 1198SB | | DNP-DL-threonine 178-179 | | 1520SS | 1495SB | | | 1420SB | 1395sh | 1364SB | 1335SS | 1316SB | 1277SB | | 1235SB | 1206SB | | | | | | | | | 1389sh | 1357sh | | | | | | | | 70 VD - 4 | 1501340 | 151500 | 14003470 | 1440340 | | 141000 | 1381 M B | 1001 1 | 100000 | 1000CD | 105000 | | 1050CD | 1100CD | | DNP-L-tryptophan 217-221 (d) | 1531MS | 1515SS | 1493 M B | 1449MS | | 1418SB | | 1361sh | 1332SB | 1290SB | 1276SB | | 1250SB
1227SB | 1198SB | | Di-DNP-L-tryosine 184 (d) | 1527SB | | 1502MS | | | 1412MB | | | 1340SB | | | 1266SB | 12213B | | | Di-Divi -L-ti yosille 104 (b) | 102731 | | 1479MS | | | 14121111 | | | 104031 | | | 120031 | | | | Di-DNP-pl-tryosine 207 (d) | 1531sh | 1517SS | 1490SS | | 1439sh | 1416SS | | 1362MB | 133055 | 1312sh | 1274SB | | 1248sh | 1205SS | | Di-Ditt -BE-tryosine 201 (3) | 1001311 | 101,00 | 110000 | | 1100011 | 111000 | | 10021111 | 100000 | 101251. | 121 102 | | 1239SB | 120000 | | DNP-L-valine 132-133 | 1541SS | 1520SS | 1490SS | 1466MS | 1447sh | 1427 MS | 1406SS | 1372SS | 1333SB | 1299SB | | | 1245SS | | | 211 2 Minis 202 200 | | | | | | 1425sh | 1391sh | | | | | | 1238sh | | | | | | | | | | | | | | | | 1235sh | | | DNP-DL-valine 187-189 | 1529sh | 1520sh | 1508SB | 1462MS | | 1412SS | | 1362MS | 1332SB | 1309SS | 1284SB | 1261SB | 1242SB | | | | | | | 1451MS | | | | | | | | | | | $\label{thm:continued} TABLE~I~(Continued)$ Absorption spectra in the infrared in the 5000–625 cm $^{-1}$ region a | | | _ | | | | | | | | | | | | | |------------------------------|----------------------------|----------------------------|----------------------------|------------------|--------|------------------|------------------|--------|----------------|-------------------------|--------------------|----------------|----------------|---------| | | | | | | | | , | | | | | | | | | DNP-DL-leucine 132-133 | 1164MS | 1148WB | 1122MB
1112MB | 1095WB | | 1058WB | | | | 958WB | | | 916WS | | | Di-DNP-L-lysine 178-180 | 1181WS | 1140MB | | | | 1054WB | | | | | | | 917WB | | | E-DNP-L-lysine 197-200 | | | 1131SB
1122sh
1117SB | 1088sh | 1076MB | 1053MB | | | | | | 922MB | | | | DNP-DL-methionine 122 | 1183MS
1170MS | 1144SS | 1127MS | 1100sh
1093MB | | 1057MB | | | 987WB | 966WB
9 5 9sh | 939WB | 921MS | 917sh
907WB | | | DNP-L-phenylalanine 191 | 1188SB
1174sh | 1156sh
1147SB
1138sh | 1130sh | 1094sh
1091SB | 1071MB | 1054SS | 1028WB
1026WB | 997WB | 987WB
976WB | 963WB | 926MS | | 913MS | 881WB | | DNP-DL-phenylalanine 219 | 1175sh | 1159SB
1144SB | 1136sh
1131sh | 1094SS | 1075MS | 1054MS | 1027WB | | 983WB | 965WB | 928WB | 923WB
919sh | 916sh
909WS | 883WB | | DNP-L-proline 138 | 1178MB | 1159MS
1145MB | 1119MB | 1094MB | | 1063MB | 1040WB | | 976MB | | | 020311 | 909MB | 878WB | | DNP-DL-serine 197-201 | | 1153SB | 1131sh
1112SB | | 1067SB | 1062sh | | | | | 934MB | | 915SB | 887 M B | | DNP-DL-threonine 178-179 | | 1155SB | 1126sh
1124sh
1105SB | | 1083SB | 1057SB | 1024MB | | 986WB | 966WB | 934MB | | 911MB | | | DNP-L-tryptophan 217-221 (d) | | 1143SS | 1120MB
1104MB | 1093MB | | 1058MB | | | | | | 923vw | 913WB | 882WB | | Di-DNP-L-tryosine 184 (d) | 1190MB | 1161WS
1144MB | 1133sh
1105WB | | | 1064WB
1057sh | 1015WB | | | | | 923MB | | 889vw | | Di-DNP-pL-tryosine 207 (d) | | 1147MB | 1121MS
1107MS | 1089MB | | 1062MB | | 1006WB | | | 939 M B
929 W B | 921vw | 914MB | | | DNP-L-valine 132–133 | 1176SS
1174sh
1170sh | 1149SS | 1125SS
1100SS | | | 1055MS | 1029sh | | | 968WS | 945WB
926MS | | | 885vwS | | DNP-DL-valine 187-189 | 1174WB | 1151SB | 1124MB
1100MB | | | 1055WB | | | | 953WB | | 918MB | | | | DNP-pL-leucine 132-133 | | 831WS | | | | 763vw | 743MS | 715WB | 709vw | 685 MB | | 654WB | |------------------------------|----------------|----------------|-------|-------|--------|-------------------|------------------|-------------------|------------------|--------|----------------|-------| | | | 825WS | | | | | | | | - | | | | Di-DNP-L-lysine 178-180 | | 831WB | 817WB | | | 761vw | 741 MS | | 709 vw
703 vw | | | | | E-DNP-L-lysine 197-200 | | 831MS | 818MB | | | 763WB | 741MS | | 699 MB | | | | | DNP-DL-methionine 122 | | 830MB | 817MB | 797WB | 784WB | 762WB | 743MS | $720 \mathrm{WB}$ | 714WB | 676WB | | | | DNP-L-phenylalanine 191 | 849WB | 831WB | 817SS | | | 768sh
762SS | 743MS | 717MB | 711sh
703SS | | 661SB | 648MB | | DNP-pL-phenylalanine 219 | 855WB | 833WB | | 811MS | | 765MB | 744WB | 719MS
717sh | 707 MS | | 663sh
662MS | 648MB | | DNP-L-proline 138 | | 829MS | | 805MS | 773WB | 755WS | 741SS | $724\mathrm{MB}$ | | 690WB | | 647WB | | DNP-dl-serine 197–201 | | 827SS | | | | 768sh
763MB | 744SS | 715MB | | 690MB | 658MB | | | DNP-dl-threonine 178-179 | 867MB | 834sh
828MB | | | | 764WB | 750MB
744MS | 715MB | | | 660WB | | | DNP-L-tryptophan 217-221 (d) | | 830MS | 821MB | | | 768WB
755MB | 741MB | | 707WB | | 658WB | | | Di-DNP-L-tryosine 184 (d) | 866vw
855vw | 833 MB | 814vw | | 784 vw | 765 v w | $744\mathrm{MB}$ | | | | 667WB | | | Di-DNP-dl-tryosine 207 (d) | | 831WB | 820MB | | 778MB | 760vw | 750MB
742SB | | 711MB | | | | | DNP-L-valine 132-133 | | 834MS | 820SS | | | $762 \mathrm{MB}$ | 749MB | 722SB
718SB | | | | | | DNP-pl-valine 187-189 | | 830WB | 819MS | | | 761WS | 749sh
745MS | 720WB | | 692vw | 669WB | | W weak intensity, M medium intensity, S strong intensity, B broad band, S sharp band, sh shoulder, vw very weak band. bThese numbers represent uncorrected melting points. Amino acids have been reported to show marked similarity in their infrared spectra in the region of 1587 to 1333 cm⁻¹. Bands at 1587 and 1408 cm⁻¹ have been related, respectively, to the antisymmetrical and symmetrical stretching vibrations of the ionized carboxyl group of the dipolar ions. None of the free amino acids studied lacked the 1408 cm⁻¹ band. Among those in which the 1587 cm⁻¹ band was not observed were L-threonine and L-proline (3). All of the DNP-derivatives examined by us, however, exhibit the bands at 1587 and 1408 cm⁻¹, and hence the implication is possible that these compounds are dipolar ions. For the free amino acids, a band at 1515 cm⁻¹ due to an N-H deformation motion of the α -amino group has been reported, L-leucine, L-serine, and hydroxy-L-proline being among the exceptions (3). Again, there are no such exceptions among the DNPderivatives studied by us; but we believe that the band here represents antisymmetrical aromatic NO₂ stretch rather than NH-deformation. In the case of free amino acids, bands at 1449 and 1370 cm⁻¹ are due to antisymmetrical and symmetrical CH₃ and possibly CH₂ deformation motions, respectively. Among the free amino acids in which the 1449 cm⁻¹ band was not apparent were L-valine, L-phenylalanine, hydroxy-L-proline, L-aspartic acid, and L-lysine (3). While the DNP-derivatives of L-aspartic acid and L-lysine (both mono- and di-) and in addition of L-cysteine, L-cystine, L-histidine (di-), L-tyrosine (di-), and DL-threonine do not show the band, those of L- and DL-valine, L- and DL-phenylalanine, and hydroxy-L-proline exhibit it weakly or as a shoulder. In the spectrum of free glycine only, the 1370 cm⁻¹ band was lacking (3), and in that of its DNP-derivative it is present. Furthermore, the DNP-derivatives of L-cystine (di-), L-lysine (di-) (unlike the monosubstituted forms), and DNP-L-tyrosine (di-) do not show this band. A 1333 cm⁻¹ band has been considered to be related to a CH₂ wagging motion and the only exception among the free amino acids was due to L-alanine (3). None of the DNP-amino acids studied lacks this band. It should be emphasized, however, that bands in the region 1330-1370 will be difficult to interpret, as symmetrical aromatic NO₂ stretch is in this region and is usually intense. While many free amino acids possessed a band at $2564 \,\mathrm{cm^{-1}}$, provisionally assigned to the C-H stretching motion (3), but more likely due to overtone or combinations of the strongly anharmonic N-H_n deformations, it is missing in almost all DNP-derivatives. On the other hand, the spectra of DNP-derivatives with the exception of DNP-L-tyrosine (di-) and DNP-L-arginine possess a band at $1724 \,\mathrm{cm^{-1}}$, a band which is not exhibited by the free amino acids. The spectrum of the racemic form of DNP-alanine differs very little from that of its optically active form. The spectrum of the former does not show the band at 1727 cm⁻¹ or that at 1261 cm⁻¹. In the case of DNP-isoleucine, the differences are also not very marked. There is an additional band at 733 cm⁻¹ in the spectrum of the active form. The spectrum of the active form of leucine shows additional bands at 1206, 1076, 939, and 775 cm⁻¹. The shoulders at 1420 and at 1203 cm⁻¹ of DNP-L-phenylalanine turn into medium broad bands for the DL-form. This L-form has an additional band at 1188, while the DL-form also has an additional band at 1294 cm⁻¹. For tyrosine the shoulder at 3390 cm⁻¹ of the L-isomer is a definite dip in the spectrum of the racemic mixture. A striking difference is the absence of the intense and sharp band at 1715 cm⁻¹, the medium band at 1479 cm⁻¹, and the weak one at 1161 cm⁻¹ in the DL-form of this amino acid. The DL-form has additional bands at 1362, 1239, 1121, 1089, 939, 750, and 711 cm⁻¹. The shoulder at 1529 cm⁻¹ for DNP-DL-valine turns into a definite band for the L-form. The major differences, however, between the spectra for the L- and DL-forms of this amino acid lie between 1429 to 1250 cm⁻¹ where the L-form has clearly resolved bands at 1427, 1309, and 1261 cm⁻¹. The question arises as to whether structurally related DNP-amino acids can be readily differentiated. In the case of DNP-L-proline versus DNP-hydroxy-L-proline, for instance, the former has pronounced additional peaks at 1377, 1290, 1221, 1159, 1094, 1040, and 773 cm⁻¹, the latter at 1245, 997, and 927 cm⁻¹. The 3226-cm⁻¹ band, however, reported to be present in the free hydroxy-prolines but not in the spectrum of free proline and assumed to reflect the presence of the —OH group in the former (3), is absent in the spectra of the DNP-derivatives of either L-hydroxyproline or L-proline. The spectra of DNP-L-valine and DNP-L-isoleucine would be expected to resemble each other. DNP-L-isoleucine has additional bands at 3058, 1222, 1121, and 733 cm⁻¹, DNP-L-valine at 1490, 1427, 1176, and 945 cm⁻¹. In the case of the spectrum of the corresponding free amino acids, L-isoleucine, unlike L-valine, shows a sharp and discrete band at 1462 cm⁻¹ (3). Such a distinguishing difference is ruled out for the DNP-derivative of these amino acids. It would be surprising if the infrared spectra of closely related compounds did not reveal some differences by which pure, individual samples of such compounds could be differentiated from each other. A review of the table suggests that among the DNP-L-amino acids studied the spectra on the whole are more strikingly similar than they are different, and that the use of the spectral tool for purposes of identification is much weaker and less reliable than such procedures as chromatography. There are, however, some DNP-amino acids (e.g., leucine and isoleucine) which are difficult to identify by chromatography and hence spectral analysis after purification would still be of value. Even the spectra of structurally very similar DNP-amino acids show sufficient variation to allow positive identification.6 ## REFERENCES - SANGER, F. Biochem. J. 39, 507 (1945); 45, 563 (1949). LEIFER, A. and LIPPINCOTT, E. R. J. Am. Chem. Soc. 79, 5098 (1957). KOEGEL, R. J., GREENSTEIN, J. P., WINITZ, M., BIRNBAUM, S. M., and McCallum, R. A. J. Am. Chem. Soc. 77, 5708 (1955). - RAMACHANDRAN, L. K., EPP, A., and McConnell, W. B. Anal. Chem. 27, 1734 (1955). Levy, A. L. and Chung, D. J. Am. Chem. Soc. 77, 2899 (1955). RAO, K. R. and SOBER, H. A. J. Am. Chem. Soc. 76, 1328 (1954). While it is recognized that polymorphism can result in spectral changes due to the alterations in the immediate environments of the vibrating groups, no attempt has been made here to evaluate this factor.