

Available online at www.sciencedirect.com

Chinese Chemical Letters 22 (2011) 1454-1456

CHINESE CHEMICAL LETTERS

www.elsevier.com/locate/cclet

A novel 8,4'-oxyneolignan diglycoside from Ligusticum sinensis

Jian Ping Ma^{a,*}, Chang Heng Tan^b, Da Yuan Zhu^b, Ling Jin^c

^a College of Life Science and Technology, Lanzhou University of Technology, Lanzhou 730050, China

^b State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences,

Chinese Academy of Sciences, Shanghai 201203, China

^c Department of Pharmacy, Gansu College of Traditional Chinese Medicine, Lanzhou 730000, China

Received 13 May 2011 Available online 13 October 2011

Abstract

A novel 8,4'-oxyneolignan diglycoside, named ligusinenoside D (1), was isolated from the rhizomes of *Ligusticum sinensis*, together with five known analogues 2–6. The absolute configurations of 1 and 2 were elucidated by means of enzymatic hydrolysis and spectroscopic data.

© 2011 Jian Ping Ma. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Ligusticum sinensis Oliv.; 8,4'-Oxyneolignan diglycoside; Ligusinenoside D

The rhizome of *Ligusticum sinensis* Oliv. (Umbelliferae) is known as *Gaoben* in traditional Chinese medicines, which is used for the treatment of headache, rheumatic arthralgia, pain in the abdomen and diarrhea [1]. Previous studies revealed numbers of phthalides [2], coumarins [3], terpenoids [4], phenylpropanoids [5] and glycosides [6] from the *Ligusticum* genus plants. In our ongoing study to find active natural products, extensive chemical studies have been carried out on the *n*-BuOH extract of *L. sinensis*, and obtained six 8,4'-oxyneolignan glycosides, including a new diglycoside, named ligusinenoside D (1) and five known analogues (2–6).

The BuOH-soluble part (280 g) of 95% EtOH extract from rhizomes of *L. sinensis* (10 kg) was separated over macroporous resin column chromatography (CC) (i.d. 10 cm \times 80 cm) and eluted with EtOH/H₂O gradient systems (0, 10%, 30%, 50%, 75%, 95%) to give fractions A–F. Fr. C (30% EtOH fraction, 15 g) was subsequently subjected to repeated silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC, yielding compounds **1** (11 mg), **2** (13 mg), **3** (12 mg), **4** (9 mg), **5** (28 mg) and **6** (7 mg).

Compound **1** (Fig. 1) was isolated as white amorphous powders with negative optical rotation $([\alpha]_D^{21} - 55.0, c \, 0.26, MeOH)$, had a molecular formula of $C_{31}H_{42}O_{16}$ derived from its *quasi*-molecular ion peak at *m*/*z* 693.2351 ([M+Na]⁺, calcd. for $C_{31}H_{42}O_{16}$ Na, 693.2371) by HR-ESI-MS spectrum. The enzymatic hydrolysis yielded *D*-apiose and *D*-glucose, which were confirmed by GC comparison with the authentic samples. The IR spectrum exhibited absorption bands for hydroxy group (3406 cm⁻¹) and aromatic ring (1603, 1510 cm⁻¹). The ¹H and ¹³C NMR spectra (Table 1) were nearly identical to those of compound **2** [6]. The ¹H NMR (500 MHz, CD₃OD) signals for the aglycone moiety were attributed to two 1,3,4-trisubstituted phenyl groups at δ 7.01 (br s, 2H), 6.90 (d, 1H, *J* = 8.2 Hz), 6.86 (br d, 1H,

* Corresponding author.

E-mail address: majp@fudan.edu.cn (J.P. Ma).

^{1001-8417/\$-}see front matter © 2011 Jian Ping Ma. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2011.07.018

Fig. 1. Chemical structures of 1-6.

Table 1 ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) and HMBC data for 1 (CD₃OD, δ in ppm, J in Hz).

No.	δ_{C}	$\delta_{ m H}$	HMBC	No.	$\delta_{\rm C}$	$\delta_{ m H}$	HMBC
1	134.5		H-5, 7, 8	8′	125.6	6.22 (dt, 1H, 15.9, 6.2)	H-9′
2	112.3	7.01 (br s, 1H)	H-6, 7	9′	71.5	4.46 (dd, 1H, 13.4, 6.6)	H-7', 8', 1"
3	149.2		H-2, 5, 3-OCH ₃			4.28 (dd, 1H, 13.3, 6.8)	
4	147.5		H-2, 5, 6	3'-OCH ₃	57.0	3.79 (s, 3H)	
5	116.1	6.72 (d, 1H, 8.1)		1″	103.7	4.34 (d, 1H, 7.8)	H-9', 2"
6	121.5	6.83 (dd, 1H, 8.1, 1.7)	H-2, 7	2″	75.6	3.21 (dd, 1H, 8.8, 7.8)	H-3″
7	74.5	4.82 (d, 1H, 5.8)	H-2, 6, 8, 9	3″	78.5	3.34 (m, 1H)	H-2", 4"
8	86.6	4.36 (dt, 1H, 7.3, 5.7)	H-7, 9	4″	72.2	3.28 (t, 1H, 9.0)	H-3", 5", 6"
9	62.7	3.84 (dd, 1H, 12.1, 6.8)	H-7, 8	5″	77.4	3.39 (m, 1H)	H-4", 6"
		3.80 (dd, 1H, 12.2, 6.3)		6″	69.2	3.99 (dd, 1H, 11.4, 1.7)	H-4", 1"'
3-OCH ₃	56.8	3.79 (s, 3H)				3.61 (dd, 1H, 11.2, 6.1)	
1'	133.2		H-2', 5', 7', 8'		111.5	5.03 (d, 1H, 2.6)	H-2"', 4"', 6"
2'	111.9	7.01 (br s, 1H)	H-6', 7'	1‴′	78.5	3.91 (d, 1H, 2.5)	H-4"', 5"'
3'	152.3		H-2', 5', 3'-OCH ₃	2"''	81.0		H-1"', 4"', 5"'
4′	149.6		H-8, 2', 5', 6'	3‴′	75.5	3.98 (d, 1H, 9.7)	H-1"', 5"'
5'	119.2	6.90 (d, 1H, 8.2)		4‴′		3.76 (d, 1H, 9.7)	
6′	121.5	6.86 (br d, 1H, 8.2)	H-2', 7'		66.0	3.57 (s, 2H)	H-2"', 4"'
7′	134.3	6.58 (d, 1H, 15.9)	H-2', 6'	5‴			

J = 8.2 Hz), 6.83(dd, 1H, *J* = 8.1, 1.7 Hz) and 6.72 (d, 1H, *J* = 8.1 Hz), one 1-ol-2(*E*)-propenyl moiety at δ 6.58 (d, 1H, *J* = 15.9 Hz), 6.22 (dt, 1H, *J* = 15.9, 6.2 Hz), 4.46 (dd, 1H, *J* = 13.4, 6.6 Hz) and 4.28 (dd, 1H, *J* = 13.3, 6.8 Hz), two oxygenated methines at δ 4.82 (d, 1H, *J* = 5.8 HZ) and 4.36 (dt, 1H, *J* = 7.3, 5.7 Hz), one oxygen-bearing methylene at δ 3.84 (dd, 1H, *J* = 11.9, 6.8 Hz) and 3.80 (dd, 1H, *J* = 12.2, 6.3 Hz), and two methoxy groups at δ 3.79 (s, 6H), demonstrating a citrusin A-like 8,4'-oxyneolignan diglycoside [6]. Moreover, the ¹³C NMR (125 MHz, CD₃OD) signals at δ 111.5 (C), 81.0 (C), 78.5 (CH), 75.5 (CH), 66.0 (CH₂) and a +5.8 ppm downfield shift at C-6 of glucose, revealed a β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl moiety. In the HMBC spectrum, significant correlations of 3-OCH₃/C-3, 3'-OCH₃/C-3', H-1"/C-9', H-9'/C-1", H-6"/C-1"' and H-1"'/C-6" were observed (Fig. 2), confirming the connectivities of two methoxyls with C-3 and C-3', a β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyloxy group at C-9' of the aglycone, respectively. By enzymatic hydrolysis, *erythro*-form aglycone was obtained (400 MHz, acetone-*d*₆, *J*_{7,8} = 5.4 Hz) [7]. A negative chirality appearing around 250–300 nm (*c* 1.0 g/L, MeOH, θ : -360,000 (281 nm), -160,000 (271 nm), 200,000 (265 nm), 250,000 (257 nm)) in the CD spectrum of the aglycone consolidated the absolute configuration of 8*R*. Therefore, compound **1**, named ligusinenoside D was elucidated to be (7*S*, 8*R*)-9'-[β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-3,3'-dimethoxy-8,4'-oxyneolign-7'-ene-4,7,9-triol.

The five known analogues were identified as ligusinenoside C (2), alaschanioside A (3), citrusin A (4), hyuganoside IIIb (5) and ligusinenoside B (6) [6,8,9].

Ligusinenoside C (2) was previously deduced to be *threo*-form relative configuration. By enzymatic hydrolysis, *threo*-form aglycone was obtained ($J_{7, 8} = 5.8$ Hz) [7]. A negative chirality appearing at 250–300 nm (*c* 2.3 g/L, MeOH, θ : -60,000 (281 nm), -30,000 (275 nm), 60,000 (267 nm), 90,000 (257 nm)) in the CD spectrum of the aglycone demonstrated the absolute configuration of 8*R*. Therefore, the absolute configuration of ligusinenoside C (2) was further clarified to be (7*R*, 8*R*)-9'-[β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyloxy]-3,3'-dimethoxy-8,4'-oxyneolign-7'-ene-4,7, 9-triol.

Fig. 2. Structure and key HMBC correlations of 1.

Enzymatic hydrolysis of 1–2. Each compound (5 mg) was dissolved in acetate buffer (pH 3.8, 2 mL) and incubated for 15 h at 40 °C with 27 mg of hesperidinase (H8137 (EC 3.2.1.40, Sigma)). Then, the extraction mixture was extracted by the same volume of AcOEt. The aglycone was analyzed by ¹H NMR. The water soln. was subjected to CC (Sephadex LH-20, MeOH/H₂O 10:1) to afford a sugar fraction. The sugar fraction and standard D-glucose and D-apiose (Sigma, USA) were each treated with Lcysteine methyl ester hydrochloride (2 mg) in pyridine (1 mL) at 60 °C for 1 h. Then the soln. was treated with *N,O*-bis(trimethylsilyl)trifluoro-acetamide (0.02 mL) at 60 °C for 1 h. Subsequently, the supernatant was subjected to GC analysis (Supelco, 230 °C, flow rate 15 mL/min). D-Glucose (standard: t_R 24.1 min; 1: t_R 24.2 min) and D-apiose (standard: t_R 14.3 min; 1: t_R 14.2 min) were detected in the sugar fractions from 1.

Acknowledgment

We gratefully acknowledge financial support of this work by the science fund for scholars from Lanzhou University of Technology (No. BS08201001).

References

- [1] Jiangsu New Medical College, Dictionary of Chinese Herb Medicine, Shanghai Scientific and Technologic Press, 1986.
- [2] Y.H. Li, S.I. Peng, Y. Zhou, et al. Planta Med. 72 (2006) 652.
- [3] B.D. Gupta, S.K. Banerjee, K.L. Handa, Phytochemistry 14 (1975) 598.
- [4] S.G. Gillespie, J.N. Duszynski, Planta Med. 64 (1998) 392.
- [5] T. Naito, K. Niitsu, Y. Ikeya, et al. Phytochemistry 31 (1992) 1787.
- [6] J.P. Ma, C.H. Tan, D.Y. Zhu, Helv. Chim. Acta 90 (2007) 158.
- [7] M.L. Gan, Y.L. Zhang, S. Lin, et al. J. Nat. Prod. 71 (2008) 647.
- [8] J.J. Gao, Z.J. Jia, Indian J. Chem. B 34 (1995) 466.
- [9] T. Morikawa, H. Matsuda, N. Nishida, et al. Chem. Pharm. Bull. 52 (2004) 1387.