Methylenethioxophosphorane (thiophosphene) intermediates in the reactions of diphenylmethylphosphonamidothioic chlorides with amines. Differences between the elimination–addition mechanisms of nucleophilic substitution for P=S and P=O substrates

Martin J. P. Harger

Department of Chemistry, The University, Leicester, UK LE1 7RH

Received (in Cambridge, UK) 31st October 2001, Accepted 28th November 2001 First published as an Advance Article on the web 21st January 2002

In reactions with R_2NH (R = Me or Et) in CHCl₃ the P=S substrate Ph₂CHP(S)(NMe₂)Cl differs markedly from its P=O counterpart: the rate of substitution is increased much more by a 4-nitro substituent but is also more sensitive to the bulk of the amine, there is greater discrimination between competing nucleophiles, and with R_2ND there is relatively little H–D exchange at the α carbon atom prior to substitution. Yet the P=S and P=O compounds both seem to react by elimination–addition mechanisms. It is suggested that whereas in the P=O case the conjugate base is formed rapidly and elimination of chloride to give the methyleneoxophosphorane (phosphene) intermediate is rate limiting, the conjugate base of the P=S substrate eliminates chloride rapidly giving a relatively stable methylenethioxophosphorane (thiophosphene) intermediate.

With acyl and sulfonyl substrates it is not unusual for nucleophilic substitution to favour an elimination–addition mechanism with a ketene¹ or sulfene² as the product-forming species. With phosphonyl (P=O) substrates,³ however, elimination– addition (EA) *via* a methyleneoxophosphorane (phosphene) intermediate⁴ does not generally compete effectively⁵ with the normal associative $S_N^2(P)$ mechanism.^{3,6} An exception is the fluorenyl phosphonamidic chloride 1: considerable evidence points to the intermediacy of the phosphene 2 in its substitution reactions with amines.^{7,8}

Three-coordinate P^v species, notably monomeric metaphosphate,⁹ are more stable when they contain P=S in place of P=O, or at least they are formed more readily.¹⁰ That is certainly the case with the phosphene 2, to the extent that the P=S analogue of 1 undergoes substitution with Et₂NH ten thousand times faster than the P=O compound itself.¹¹ Conversely, in S_N2(P) reactions it is P=O compounds that are the more reactive.¹² The likelihood of EA being the preferred mechanism of substitution is therefore much greater for a substrate that contains a P=S group.

Having recently argued that EA competes effectively with $S_N^2(P)$ in the reactions of the benzhydryl P=O compound **3a** with Me₂NH and Et₂NH¹³ we confidently expected that EA would be dominant for the corresponding P=S compound **5a** and that the reactions would proceed very readily. It was therefore disturbing to find that substitution does *not* occur at all readily, at least with Et₂NH as the nucleophile: if the P=S analogue does *not* react by EA the case for the P=O compound doing so will be hard to sustain. We have therefore examined in some detail the behaviour of the phosphonamidothioic chloride **5a** and also its 4-nitro substituted derivative **5b**.

Results and discussion

Phosphonamidothioic chlorides

The reactions of phosphonic and thiophosphonic dichlorides $[RP(X)Cl_2; X = O \text{ or } S]$ with secondary amines are generally easy to control so that just one of the chlorine atoms is replaced. Unfortunately, as previously noted,14 that is not the case with the benzhydryl compound 4a: regardless of the conditions employed, on reaction with Me₂NH it gives largely the diamide 6a (R = Me). To obtain the amidic chloride 5a we therefore had to find a way of selectively replacing one of the NMe₂ groups of the diamide by a chlorine atom. The most satisfactory method proved to be exchange with PSCl₃ (10-fold excess) at 120-125 °C using DMF as catalyst. Typically the conversion was $\geq 95\%$ complete in 24 h (³¹P NMR), but it was not pushed to completion because the second NMe₂ group began to be exchanged. The same method was also satisfactory for the 4-nitro substituted amidic chloride 5b which, being chiral at carbon as well as phosphorus, was obtained as a mixture of diastereoisomers: $\delta_{\mathbf{P}}$ 95.4 (major) and 95.3; $\delta_{\mathbf{H}}$ 5.25 (major) and 5.22 (both d, $J_{\rm PH}$ 21, CH) and 2.83 and 2.805 (major) (both d, J_{PH} 15, NMe₂).

Reactions with Me₂NH and Et₂NH

The unsubstituted substrate 5a gave the expected diamide

Table 1 Pseudo-first order rate constants (*k*) for reactions of phosphonamidothioic chlorides **5a** and **5b** (and, for comparison, the corresponding P=O compounds **3a** and **3b**) with 2.0 mol dm⁻³ amines in CHCl₃ at 30 °C

	$10^{5} k/s^{-1}$		
Substrate	Me ₂ NH	Et ₂ NH	
5a	2.52	0.052 <i>^a</i>	
5b	2200	105 ^b	
3a	1.04	0.21	
3b	13.8	3.87	

^{*a*} For consumption of substrate to give diamide product and byproducts (~ 18%). For diamide formation alone would be somewhat smaller. ^{*b*} Mean value; for individual diastereoisomers $10^5 k ca$. 165 and 46 s⁻¹.

product **6a** with R_2NH (R = Me or Et) but in the case of Et_2NH the reaction was very slow. Using an excess of the amine as a 2 mol dm⁻³ solution in CHCl₃ some 7% of the substrate still remained unreacted after 8 weeks at 30 °C, and even that may not fully represent the slowness of the substitution as side reactions (most likely hydrolysis) accounted for about a fifth of the substrate consumed.

The nitro-substituted substrate **5b** was much more reactive and side reactions were minimal. In this case the diamide product **6b** formed with Me₂NH (δ_P 84.3) has diastereotopic NMe₂ groups [δ_H 2.45 and 2.44 (both 6 H, d, J_{PH} 11.5)] while that derived from Et₂NH exists as diastereoisomers (δ_P 81.5 and 81.3) [δ_H 4.815 and 4.805 (both 1 H, d, J_{PH} 18, CH); 2.495 and 2.475 (both 6 H, d, J_{PH} 11, NMe₂)].

Rate studies were carried out using a large excess of the amine (R₂NH; R = Me or Et) as a 2.0 mol dm⁻³ solution in CHCl₃ (containing 0.1 mol dm⁻³ $R_2NH_2^+$ Cl⁻) at 30 °C. † The reactions were monitored by ³¹P NMR spectroscopy to 90% completion. First order plots were linear for the unsubstituted substrate **5a** (Table 1; values of k for the P=O compound **3a** included for comparison) but for the nitro-substituted substrate 5b reaction was too fast to follow by NMR spectroscopy with Me₂NH ($t_{1/2} < 1$ min) and with Et₂NH it produced a plot that was distinctly non-linear (successive half lives 16, 18 and 20 min). The curvature seems to be caused by a difference in the reactivity of the two diastereoisomers of the substrate: the lowfield diastereoisomer constituted one third of the substrate initially but only one seventh at 50% completion, implying that it reacts 3 or 4 times more quickly. The value of k shown (Table 1) is the mean of the estimated values for the individual diastereoisomers. The product diastereoisomer ratio (64 : 36) remained constant throughout, however, suggesting that substitution is non-stereospecific. A difference in reactivity was not apparent for the diastereoisomers of the corresponding P=O substrate 3b but that could be because they equilibrate rapidly under the conditions of substitution.¹³ To obtain the rate constant for the fast reaction of 5b with Me₂NH samples were withdrawn at 15 s intervals and quenched by mixing with MeOH (large excess); they were then analysed by GLC. Curvature of the first-order plot was not as pronounced as with Et₂NH, but the method did not allow the relative reactivity of the individual diastereoisomers of the substrate to be assessed.

Competition experiments were also performed, using an equimolar mixture of Me₂NH and Et₂NH (2.0 mol dm⁻³ total amine). The unsubstituted substrate **5a** gave only the product derived from Me₂NH (product ratio \geq 99 : 1) but the nitro

compound was not completely selective and gave a 97:3 mixture of products.

The results in Table 1 show that the P=S substrate **5a** is indeed less reactive than its P=O counterpart with Et₂NH ($t_{1/2}$ 15.3 day; k^{S}/k^{O} 0.25). It is the more reactive with Me₂NH (k^{S}/k^{O} 2.5) but with both amines it is the closeness of the P=S and P=O reactivity that is really striking. Such similarity would not be expected for S_N2(P) reactions,¹² or for EA either based on such precedent as there is ($k^{S}/k^{O} \ge 10^{4}$ for **1** and its P=S counterpart with Et₂NH).¹¹

The Me₂NH/Et₂NH rate difference for the P=S substrate **5a** $(k^{M}/k^{E} = 50)$ is an order of magnitude greater than for the P=O substrate **3a** $(k^{M}/k^{E} = 5)^{13}$ or for the fluorenyl substrate 1 $(k^{M}/k^{E} = 4)^{7}$ and its P=S counterpart $(k^{M}/k^{E} = 4)^{.11}$ It is not quite as great as is seen in the S_N2(P) reactions of PhP(S)(NMe₂)Cl $(k^{M}/k^{E} = 200)$,¹⁵ but the complete selectivity for Me₂NH in the competition experiment is exactly what would be expected for S_N2(P).^{7,15} The nitro-substituted substrate **5b** shows rather less discrimination against Et₂NH, both in terms of rate of reaction $(k^{M}/k^{E} = 21)$ and competitive product formation (NMe₂ : NEt₂ product ratio 97 : 3), but its behaviour is still hardly supportive of an EA mechanism.

In spite of all this there is one feature of the results in Table 1 that seems inexplicable without recourse to an EA mechanism. With either amine, introduction of the 4-nitro substituent into the substrate $(5a \rightarrow 5b)$ increases the reactivity about a thousand fold. An increase of this magnitude is not only inconceivable for an $S_N 2(P)$ mechanism but is also at least 60 times greater than was seen for the P=O substrate $3.^{13}$ Our preferred explanation is that the P=S and P=O substrates differ not in the *type* of substitution mechanism—for both it is EA—but in the detail, specifically as regards the elimination stage leading to the transient phosphene or thiophosphene intermediate (Scheme 1). For the P=O substrate removal of the

proton from the α carbon atom is fast and reversible and expulsion of chloride ion from the conjugate base (phosphene formation) is rate limiting ($k^2 < k^{-1}$) (Fig. 1, P=O line *a*). With the

Fig. 1 Postulated reaction energy profiles for formation of phosphene and thiophosphene intermediates (I) from P=O and P=S reactants (R) *via* conjugate bases (cB); *a*, $Ar = C_6H_5$; *b*, Ar = 4-NO₂C₆H₄.

P=S compound the conjugate base is formed more or less as readily ¹⁶ but the thiophosphene intermediate is relatively stable; loss of chloride ion (thiophosphene formation) is now fast $(k^2 \ge k^{-1})$, so formation of the conjugate base becomes rate limiting (Fig. 1, P=S line *a*). A 4-nitro substituent will greatly increase the stability of the anionic conjugate base (cB), and hence its rate of formation, but the influence it has on the stability of the uncharged phosphene or thiophosphene intermediate (I) is unlikely to be large (Fig. 1, lines *b*; for simplicity

[†] In substitution reactions of phosphonamidic chlorides with amines the amine hydrochloride byproduct can accelerate the reaction slightly, causing deviations from linearity in the first-order rate plots (ref. 7). In the present study a small amount of the appropriate amine hydrochloride (Et₂NH₂Cl or Me₂NH₂Cl) (0.1 mol dm⁻³) was included in each reaction mixture; now the rate plots showed little if any curvature.

the NO₂ group is shown as having no effect on the stability of the intermediate). The nitro group therefore has a major impact on the rate of formation of the thiophosphene intermediate from **5** (Fig. 1, P=S) but a much smaller effect on the rate of phosphene formation from **3** (Fig. 1, P=O). More extreme stabilisation of the conjugate base should increase still further the difference in reactivity between P=O and P=S substrates hence, we suppose, the dramatic difference seen for the fluorenyl substrate **1** and its P=S counterpart ($k^{8}/k^{O} \ge 10^{4}$).¹¹

As regards the differences in the rates of reaction with Me₂NH and Et₂NH, the congested environment of the C_{a} -H bond in these benzhydryl compounds may make proton removal more sensitive than usual to the bulk of the base, so that formation of the conjugate base will be markedly slower in the case of Et₂NH. This will be reflected strongly in the rate of thiophosphene formation from **5** (proton removal rate-limiting) but only modestly in the rate of phosphene formation from **3**. It should be noted, however, that the behaviour of the P=S substrate does not actually require that the elimination stage of the EA mechanism be E1cB; it could equally well be E2 with an ElcB-like transition state.

As regards product formation it is a characteristic of threecoordinate P^v intermediates (monomeric metaphosphate etc.) that they discriminate little between competing nucleophiles.^{17,18} If substrate 5 does indeed react with Me₂NH and Et₂NH by way of a thiophosphene intermediate the observed selectivity for Me_2NH (≥ 99 : 1 for 5a; 97 : 3 for 5b) is unprecedented. It far exceeds what is seen in the EA reactions of either the corresponding P=O compound 3 (~ 75 : 25) ‡ or the less hindered P=S substrate $ArCH_2P(S)(NMe_2)Cl$ (Ar = $4-NO_2C_6H_4$) (70 : 30).^{13,15} Perhaps with this thiophosphene (Scheme 1) the combined effect of the stabilisation afforded by the P=S group and the steric shielding imposed by the benzhydryl group is enough to confer selectivity. If the thiophosphene lies in a sufficiently deep energy well the activation energy for product formation is going to vary considerably from one nucleophile to another. To the extent that reaction of the thiophosphene mirrors its formation it will have a transition state or intermediate that resembles the conjugate base of the substrate except that the leaving group has been replaced by the nucleophile. Structural features that stabilise the conjugate base will then lower the energy barrier not only for return of the thiophosphene (Scheme 1) but also its progression on to product. That may be why the fluorenyl substrate (the P=S analogue of 1) discriminates much less than the benzhydryl substrate 5 between competing nucleophiles.

Reactions with Me₂ND and Et₂ND

Although selectivity does not necessarily detract from the case for a thiophosphene intermediate it certainly lends no support. Non-stereospecificity of substitution would be powerful supporting evidence for a planar three-coordinate intermediate and, as noted earlier, there was an indication of this in the reaction of **5b** with Et₂NH. It is no more than an indication, however: the diastereoisomers of the substrate have not been separated, and they are only partially resolved in the ³¹P NMR spectrum of the mixture ($\Delta \delta_P 0.08$), so any conclusion concerning the behaviour of the individual diastereoisomers cannot be very secure.

Equally good evidence for a thiophosphene intermediate would be the incorporation of deuterium into the product as it is formed using a deuteriated amine (R_2ND). The reactions of **5a** and **5b** with Me₂NH and Et₂NH were therefore repeated using amine containing 80–85 atom% D and in every case the product was seen to be substantially deuteriated at the a carbon atom (¹H NMR; CH integral < 1 H). Provided the substrate does not become deuteriated by exchange with R₂ND before it undergoes substitution, this is compelling evidence for an intermediate with a (formal) C=P bond. To assess the importance of exchange the reactions were monitored by ¹H and ³¹P NMR spectroscopy, focusing on the H/D composition of the methine group of the substrate (CH integral) at various stages of reaction. It was not possible to obtain relevant data for the fast reaction of 5b with Me₂ND-no substrate remained when the first spectrum was recorded-but with Et₂ND it could be seen that there was no appreciable exchange to at least 70% completion (substrate CH integral still ~1 H). For the unsubstituted substrate 5a there was some exchange, at a rate comparable with the rate of substitution, but useful information could still be obtained. Thus, for example, when the reaction with Me₂ND was about half complete (³¹P NMR) the product contained practically as much deuterium as the amine (CH: 0.2 H/0.8 D) whereas the substrate contained substantially less (CH: 0.63 H/0.37 D). Most of the product at that time would have been derived from substrate containing even less deuterium (less H-D exchange) so there can be no doubt that a thiophosphene is important in product formation. This result is all the more significant because it relates to the less acidic substrate (no NO₂ group) and the more nucleophilic (less hindered) amine; if EA is able to compete effectively with $S_N 2(P)$ in this reaction it will surely be dominant in all the others. That being so, it is interesting to note that with the nitro-substituted substrate 5b the products as formed contained less deuterium than expected (CH: ~0.5 H/0.5 D) and that only after reaction was complete did the deuterium content gradually increase to the expected level (CH: ~0.2 H/0.8 D), by slow exchange with R₂ND. This suggests that there is a D kinetic isotope effect in the product-forming addition of the amine (80-85 atom% D) to the thiophosphene intermediate.

The extent of H-D exchange in the substrate is itself of mechanistic significance. In the case of the nitro-substituted P=O substrate 3b exchange is very much faster than substitution so that the deuterium content of the substrate practically matches that of the amine (Et₂ND) before any detectable product formation has occurred. The contrast with the P=S substrate 5b-no exchange even at 70% completion-could hardly be greater. As implied by the energy profiles in Fig. 1 (lines b) the preferred fate of the conjugate base is return to substrate (protonation) in the case of the P=O compound but formation of the intermediate (elimination of Cl⁻) in the case of the P=S compound. The contrast should be less pronounced when the substrates have no nitro substituent (Fig. 1; lines a) and that indeed is so: with the P=S compound 5a exchange occurs at about the same rate as substitution and with the P=O compound 3a it is not very much faster (2 and 10 times faster with Et₂ND and Me₂ND respectively). It is surprising that for the P=S substrate exchange is less important, relative to substitution, when the nitro substituent is present. Intuitively we would expect it to be more important, as it is for the P=O substrate, but perhaps the nitro group assists return of the thiophosphene intermediate less than it assists progression on to product.

Conclusion

The P=S substrates 5 resemble their P=O counterparts 3 in as much as they react with amines by an EA mechanism rather than by $S_N 2(P)$. The elimination stage is most likely ElcB for both types, but differences emerge because the three-coordinate P^v intermediates differ in stability. In the case of the P=S compounds the intermediate thiophosphene is relatively stable and elimination of chloride from the conjugate base is fast. The overall rate of substitution is therefore determined mainly by the rate of formation of the conjugate base (large effect of NO₂

[‡] The NMe₂ : NEt₂ product ratio is 3.1 : 1 for **3b**, and 3.05 : 1 for **3a** when a small amount of DBU (strong base) is included in the reaction mixture. In the absence of DBU some **3a** reacts by $S_N2(P)$ rather than EA so substitution appears to be more selective (product ratio 6.4 : 1).

substituent), there is little return of the conjugate base to substrate (little H–D exchange), and the intermediate discriminates quite strongly between competing nucleophiles. For the P=O compounds the intermediate phosphene is relatively unstable and elimination of chloride from the conjugate base is slow. There is extensive return of the conjugate base to substrate and little discrimination between competing nucleophiles.

For phosphonic acid derivatives generally there may not always be a clear mechanistic distinction between the EA pathways of P=O and P=S compounds. However, as long as the thiophosphene intermediate is more stable than the phosphene, the tendency will be towards dissimilar types of behaviour as identified now for the P=O and P=S benzhydryl phosphonamidic chlorides **3** and **5**.

Experimental

Instrumentation and general experimental methods were as previously described.¹³

Phosphonothioic dichlorides

The phosphonic dichloride Ph₂CHP(O)Cl₂ or ArPhCHP(O)Cl₂ (4 mmol) was stirred with PSCl₃ (20 mmol), P₄S₁₀ (1 mmol) and DMF (catalyst; 0.15 mmol) at 130 °C (bath temp.) until the P=O \rightarrow P=S transformation was complete (*ca.* $\delta_{\rm P}$ 45 \rightarrow 85) (2–3 h). The mixture was diluted with CH₂Cl₂ and filtered, and volatile material (including PSCl₃) was removed by warming under vacuum. The crude product was passed down a short column of silica (CH₂Cl₂ eluent) and was then crystallised:

Diphenylmethylphosphonothioic dichloride 4a. Mp 84.5–85 °C (from light petroleum), m/z 304, 302, 300 (M⁺, <1%), m/z (CI; NH₃) 322, 320, 318 [(M + NH₄)⁺, 15%], 305, 303, 301 [(M + H)⁺, 3] and 167 (Ph₂CH⁺, 100); $\delta_{\rm P}$ (CDCl₃) 89.2; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 7.69 (4 H, m), 7.38 (6 H, m) and 5.22 (1 H, d, $J_{\rm PH}$ 21) (Found: C, 51.9; H, 3.6. C₁₃H₁₁Cl₂PS requires C, 51.8; H, 3.7%).

4-Nitrophenyl(phenyl)methylphosphonothioic dichloride 4b. Mp 107–108 °C (from CH₂Cl₂–light petroleum), *m/z* 349, 347, 345 (M⁺, 0.5%) and 212 (ArPhCH⁺, 100); $\delta_{\rm P}$ (CDCl₃) 84.2; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 8.26 (2 H, dd, $J_{\rm PH}$ 1, $J_{\rm HH}$ 9), 7.89 (2 H, dd, $J_{\rm PH}$ 3, $J_{\rm HH}$ 9), 7.7–7.6 (2 H, m), 7.45–7.35 (3 H, m) and 5.34 (1 H, d, $J_{\rm PH}$ 21); $\nu_{\rm max}$ (Nujol)/cm⁻¹ 1520 and 1345 (NO₂) (Found: C, 45.7; H, 2.8; N, 3.8; M⁺, 344.9548. C₁₃H₁₀Cl₂NO₂PS requires C, 45.1; H, 2.9; N, 4.05%; *M*, 344.9547 for ³⁵Cl).

Phosphonamidothioic chlorides

The phosphonothioic dichloride **4a** or **4b** (0.5 mmol) was treated with an excess of Me₂NH ($\ge 2 \text{ mmol}$) in CH₂Cl₂ (2 ml), the solvent was evaporated, and the residue was extracted thoroughly with ether to give the phosphonothioic diamide **6a** or **6b**. The crude diamide was dissolved in PSCl₃ (0.5 ml, 5 mmol) containing DMF (catalyst; 3.5 mg, 0.05 mmol) and the solution was heated in an NMR tube at 120–125 °C until practically all the diamide had been converted into the amidic chloride **5a** or **5b** (≥ 18 h; $\delta_{\mathbf{p}} \sim 85 \rightarrow 95$). Volatile material was evaporated by warming under vacuum and the product was extracted into ether and purified by crystallisation or chromatography:

N,*N*-Dimethyl-*P*-(diphenylmethyl)phosphonamidothioic chloride 5a. Yield 66%, mp 128–129 °C (from ether–light petroleum), *m*/*z* 311,309 (M⁺, 3%) and 167 (Ph₂CH⁺, 100); $\delta_{\rm P}$ (CDCl₃) 99.3; $\delta_{\rm H}$ (CDCl₃) 7.7–7.6 (4 H, m), 7.4–7.25 (6 H, m), 5.13 (1 H, d, *J*_{PH} 21) and 2.80 (6 H, d, *J*_{PH} 15) (Found: C, 58.0; H, 5.5; N, 4.4; M⁺, 309.0508. C₁₅H₁₇ClNPS requires C, 58.15; H, 5.5; N, 4.5%; *M*, 309.0508 for ³⁵Cl). N,N-Dimethyl-P-[4-nitrophenyl(phenyl)methyl]phosphon-

amidothioic chloride 5b. Yield 45%, eluted from silica using light petroleum–ethyl acetate (5 : 1), mixture of diastereoisomers, mp 60–67 °C (from ether–light petroleum); $\delta_{\rm P}$ (CDCl₃) 95.4 and 95.3 (major); $\delta_{\rm H}$ (CDCl₃) (300 MHz) 8.20 (2 H, d, $J_{\rm HH}$ 9), 7.81 (2 H, dd, $J_{\rm PH}$ 3, $J_{\rm HH}$ 9), 7.67–7.60 (2 H, m), 7.4–7.3 (3 H, m), 5.25 (major) and 5.22 (total 1 H; both d, $J_{\rm PH}$ 21), and 2.83 and 2.805 (major) (total 6 H; both d, $J_{\rm PH}$ 15); $v_{\rm max}$ (Nujol)/cm⁻¹ 1520 and 1350 (NO₂); *m*/*z* 356, 354 (M⁺, 6%), 212 (ArPhCH⁺, 80) and 196 (100) (Found: C, 50.6; H, 4.6; N, 7.7; M⁺, 354.0358. C₁₅H₁₆ClN₂O₂PS requires C, 50.8; H, 4.55; N, 7.9%; *M*, 354.0359 for ³⁵Cl).

Phosphonamidothioic chloride rate studies

All materials and glassware were dried and moisture was excluded as completely as possible. The reaction medium was a 2.0 mol dm⁻³ solution of R_2NH (R = Me or Et) in CHCl₃ containing $R_2NH_2^+$ Cl⁻ (0.1 mol dm⁻³). The substrate (10–15 µmol) was dissolved in the reaction medium [240 µl, but 60 µl for 5a with Et₂NH (to reduce hydrolytic side reactions)] and the solution was transferred to a 4 mm (or capillary) NMR tube housed in a 5 mm tube containing D₂O (NMR lock). Faster reactions were conducted in the probe of the NMR spectrometer at 30 °C. Slower reactions (sealed tubes) were maintained at 30 °C (block heater) and transferred to the spectrometer periodically. The reaction of 5b with Me₂NH was complete within 8 min but in other cases the ³¹P NMR spectrum (1H decoupled) was recorded at regular intervals so that 9 spectra were obtained as reaction progressed to 90% completion. For each spectrum the relative amounts of substrate and product were deduced from the integral. In the case of 5a with Et₂NH byproducts (hydrolysis) accounted for ca. 20% of the substrate consumed. The values of k were deduced from first order plots (Table 1).

When reaction was complete the volatile material was evaporated and the residue was dissolved in CH_2Cl_2 . The solution was washed with water and the product was isolated and characterised spectroscopically (see below).

The very fast reaction of **5b** with Me₂NH was repeated and samples (8 µl) were withdrawn at intervals (15 s), diluted with MeOH (100 µl), and left overnight to allow the remaining substrate to be converted completely into the methyl ester [ArPhCHP(S)(NMe₂)OMe]. The samples were then analysed by GLC [OV 1701 widebore capillary column (1 µm film; 15 m × 0.53 mm); He carrier (35 ml min⁻¹); 235 °C; FID] and the relative amounts of the methyl ester (R_t 3.6 min) and the amide product (R_t 6.3 min) were deduced from the peak areas. The value of *k* (Table 1) was deduced as before.

Deuterium incorporation studies

Stock solutions of R_2ND (R = Me or Et) (80–85 atom% D; 1.9–2.0 mol dm⁻³) in CDCl₃ (containing 0.1 mol dm⁻³ $R_2ND_2^+$ Cl⁻) were prepared as previously described.¹³ The substrate **5** (12–16 µmol) was dissolved in the appropriate stock solution (65 µl) and the solution was transferred to a capillary NMR tube. At intervals the ³¹P and ¹H NMR spectra were recorded and from them the extent of reaction and the approximate deuterium content of the CH(D) group of the substrate (and sometimes the product) were estimated as before. The temperature was maintained at *ca.* 30 °C generally but 19 °C for **5b** + Et₂ND. The deuterium content of the product from **5b** was seen to increase gradually (by H–D exchange) from the level when reaction was just complete (CH: 0.7 D increasing to 0.85 D in 36 h at room temp. with Me₂ND; 0.5 D increasing to 0.85 D in 4 days at 30 °C then 3 days at room temp. with Et₂ND.

Competition experiments

The substrate 5 (~ 10 μ mol) was added to a mixture of Me₂NH

Phosphonothioic diamide products

The identities of the products formed in the rate studies were confirmed as detailed below.

From **5a** and Me₂NH, *product* **6a** (R = Me), crystallised from light petroleum, mp 104.5–105.5 °C; *m/z* 318 (M⁺, 1.5%) and 151 (M⁺ – Ph₂CH, 100); $\delta_{\rm P}$ (CDCl₃) 85.7; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 7.8–7.7 (4 H, m), 7.35–7.15 (6 H, m), 4.64 (1 H, d, $J_{\rm PH}$ 18) and 2.43 (12 H, d, $J_{\rm PH}$ 11) (Found: C, 64.4; H, 7.3; N, 8.7; M⁺, 318.1319. C₁₇H₂₃N₂PS requires C, 64.1; H, 7.3; N, 8.8%; *M*, 318.1320).

From **5a** and Et₂NH, *product* **6a** (R = Et), purified by chromatography (silica; 1 : 1 CH₂Cl₂–light petroleum) and crystallisation from ether–light petroleum, mp 101.5–103.5 °C; *m*/*z* 346 (M⁺, 1.5%) and 179 (M⁺ – Ph₂CH, 100); $\delta_{\rm P}$ (CDCl₃) 83.1; $\delta_{\rm H}$ (CDCl₃; 250 MHz) 7.8–7.7 (4 H, m), 7.3–7.15 (6 H, m), 4.68 (1 H, d, $J_{\rm PH}$ 18), 3.01 (4 H, dq, $J_{\rm PH}$ 11, $J_{\rm HH}$ 7), 2.46 (6 H, d, $J_{\rm PH}$ 11) and 0.86 (6 H, t, $J_{\rm HH}$ 7) (Found: M⁺, 346.1632; C₁₉H₂₇N₂PS requires *M*, 346.1633).

From **5b** and Me₂NH, *product* **6b** (R = Me), non-crystalline (glass), m/z 363 (M⁺, 0.3%) and 151 (M⁺ – ArPhCH, 100); $\delta_{\rm P}$ (CDCl₃) 84.3; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 8.15 (2 H, d, $J_{\rm HH}$ 8.5), 7.95 (2 H, d, $J_{\rm PH}$ 1.5, $J_{\rm HH}$ 8.5), 7.75–7.65 (2 H, m), 7.35–7.2 (3 H, m), 4.76 (1 H, d, $J_{\rm PH}$ 18), 2.45 (6 H, d, $J_{\rm PH}$ 11.5) and 2.44 (6 H, d, $J_{\rm PH}$ 11.5); $v_{\rm max}$ (film)/cm⁻¹ 1520 and 1350 (NO₂) (Found: M⁺, 363.1170; C₁₇H₂₂N₃O₂PS requires *M*, 363.1170).

From **5b** and Et₂NH, product **6b** (R = Et) (mixture of diastereoisomers), non-crystalline, m/z 391 (M⁺, 0.5%) and 179 (M⁺ – ArPhCH, 100); $\delta_{\rm P}$ (CDCl₃) 81.5 (major) and 81.3; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 8.13 (2 H, d, $J_{\rm HH}$ 9), 8.0–7.9 (2 H, m), 7.8–7.7 (2 H, m), 7.35–7.2 (3 H, m), 4.815 (major) and 4.805 (total 1 H; both d, $J_{\rm PH}$ 18), 3.1–2.9 (4 H, m), 2.495 (major) and 2.475 (total 6 H; both d, $J_{\rm PH}$ 11), and 0.91 and 0.86 (major) (total 6 H; both t, $J_{\rm HH}$ 7); $v_{\rm max}$ (film)/cm⁻¹ 1520 and 1350 (NO₂) (Found: M⁺, 391.1483).

References

- F. I. Luknitskii and B. A. Vovsi, *Russ. Chem. Rev.*, 1969, **38**, 487;
 B. R. Cho, Y. K. Kim, Y. J. Seung, J. C. Kim and S. Y. Pyun, *J. Org. Chem.*, 2000, **65**, 1239 and references cited therein.
- 2 J. F. King, Acc. Chem. Res., 1975, 8, 10; J. F. King, J. Y. L. Lam and S. Skonieczny, J. Am. Chem. Soc., 1992, 114, 1743; J. F. King and R. Rathore, in The Chemistry of Sulfonic Acids, Esters and their Derivatives, ed. S. Patai and Z. Rappoport, Wiley, Chichester, 1991, ch. 17; T. Kataoka and T. Iwama, Synlett, 1994, 1017.
- 3 Chemistry of Organophosphorus Compounds, ed. F. R. Hartley, Wiley, Chichester, 1996, vol. 4.
- 4 Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed. M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990, Section E.
- 5 G. Cevasco and S. Thea, J. Chem. Soc., Perkin Trans. 2, 1993, 1103; G. Cevasco and S. Thea, J. Chem. Soc., Perkin Trans. 2, 1994, 1103.
- 6 G. R. J. Thatcher and R. Kluger, Adv. Phys. Org. Chem., 1989, 25, 99;
 D. M. Perreault and E. V. Anslyn, Angew. Chem., Int. Ed. Engl., 1997, 36, 433;
 A. Blasko and T. C. Bruice, Acc. Chem. Res., 1999, 32, 475.
- 7 M. J. P. Harger and B. T. Hurman, J. Chem. Soc., Perkin Trans. 1, 1998, 1383.
- 8 M. J. P. Harger and D. K. Jones, Chem. Commun., 1999, 339.
- 9 R. Breslow and I. Katz, J. Am. Chem. Soc., 1968, 90, 7376; I. E. Catrina and A. C. Hengge, J. Am. Chem. Soc., 1999, 121, 2156.
- 10 A. F. Gerrard and N. K. Hamer, J. Chem. Soc. (B), 1969, 369; M. J. P. Harger, J. Chem. Soc., Perkin Trans. 2, 1991, 1057; E. Deschamps and F. Mathey, J. Chem. Soc., Chem. Commun., 1984, 1214.
- 11 C. D. Cox and M. J. P. Harger, J. Chem. Res. (S), 1998, 578
- 12 J. R. Cox and B. O. Ramsay, Chem. Rev., 1964, 64, 317; A. A. Neimysheva, V. I. Savchik, M. V. Ermolaeva and I. L. Knunyants, Bull. Acad. Sci. USSR (Engl. Transl.), 1968, 2104; A. A. Neimysheva, M. V. Ermolaeva and I. L. Knunyants, J. Gen. Chem. USSR (Engl. Transl.), 1973, 43, 2589; V. A. Baranskii, G. D. Eliseeva and N. A. Sukhorukova, J. Gen. Chem. USSR (Engl. Transl.), 1988, 58, 687.
- 13 M. J. P. Harger, J. Chem. Soc., Perkin Trans. 2, 2001, 41.
- 14 M. J. P. Harger, Tetrahedron Lett., 1996, 37, 8247.
- 15 M. P. Coogan and M. J. P. Harger, J. Chem. Soc., Perkin Trans. 2, 1994, 2101.
- 16 M. I. Kabachnik and T. A. Mastryukova, J. Gen. Chem. USSR (Engl. Transl.), 1984, 54, 1931; M. I. Kabachnik, Phosphorus, Sulfur Silicon Relat. Elem., 1993, 77, 97; M. I. Kabachnik, J. Gen. Chem. USSR (Engl. Transl.), 1994, 64, 993.
- A. J. Kirby and A. G. Varvoglis, J. Am. Chem. Soc., 1967, 89, 415;
 F. Ramirez, J. F. Marecek and S. S. Yemul, *Tetrahedron Lett.*, 1982, 23, 1515.
- 18 S. Jankowski and L. D. Quin, J. Am. Chem. Soc., 1991, 113, 7011; M. J. P. Harger and S. Freeman, J. Chem. Soc., Perkin Trans. 1, 1987, 1399.