
Diamidocarbenes as versatile and reversible
[2 1 1] cycloaddition reagents
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We describe the synthesis of a variety of cyclopropanes and epoxides by combining a readily accessible and isolable N,N′-
diamidocarbene with a range of structurally and electronically diverse olefins and aldehydes, including electron-rich
derivatives. Surprisingly, the cyclopropanation and epoxidation reactions were discovered to be rapid and thermally
reversible at relatively low temperatures, two features often desired for applications that utilize dynamic covalent
chemistry. In addition, a diamidocyclopropane derivative prepared via this method was hydrolysed successfully to form the
corresponding linear carboxylic acid in a metal- and carbon monoxide-free hydrocarboxylation reaction. As such,
diamidocarbenes are expected to find utility in the synthesis of cyclopropanes, epoxides and their derivatives, as well as in
dynamic covalent chemistry applications.

H
ighly strained rings, particularly cyclopropanes and epoxides,
enjoy extraordinary utility in a broad range of synthetic1–3

and biological4,5 applications. Moreover, from a fundamental
perspective, these compounds attract interest for their unique struc-
tural and bonding characteristics6,7. An efficient method for the
synthesis of three-membered carbocycles and oxacycles involves
metal-mediated delivery of a carbene to an olefin or aldehyde8,9;
however, free carbenes have also been employed successfully10–12.
Although most free carbenes used in [2þ 1] cycloadditions are gen-
erated in situ, the use of isolable derivatives as starting materials is
particularly attractive as they offer avenues to streamline the syn-
thetic procedure, aid in the discovery of novel transformations
and provide opportunities to probe deeper into the mechanism
and structure of reactive organic species13,14. Unfortunately, [2þ 1]
cycloadditions that involve isolable carbenes remain extremely rare.

The first example of an isolable free carbene capable of partici-
pating in cyclopropanation and epoxidation reactions was the phos-
phinosilylcarbene I (Fig. 1)15,16, which was reported by Bertrand and
co-workers in 1989. Since then, the acyclic alkylamino II (in 2004)
and diamino[3]ferrocenophane17 (III) (in 2010) carbenes were
found to display similar cyclopropanation reactivities18,19. The
chemistry displayed by the latter was particularly surprising, as
N-heterocyclic carbenes investigated previously20–23 yielded exo-
cyclic olefins rather than cyclopropane products24. Regardless, the
cycloaddition chemistry displayed by I–III was restricted to
electron-deficient olefins16,18,19,25–27 and aldehydes16,28–30, and until
now isolable carbenes have not been shown to engage in [2þ 1]
cycloadditions with electron-rich olefins20.

Recently, we reported that diamidocarbenes (DACs)31–38, which
can be prepared in two high-yielding steps from a 1,3-disubstituted
formamidine and malonyl dichloride, exhibit a wide range of
nucleophilic and electrophilic characteristics. For example, akin to
nucleophilic carbenes, they were found to condense with CS2 and
ligate to various transition metals31,34,37,38. However, they were also
found to undergo transformations typical of more electrophilic
carbenes, such as ammonia activation34, C–H insertions31, reversible
coupling with carbon monoxide31,34,37 and irreversible coupling
with isonitriles33,34,37. Given this unique reactivity profile and their
reduced singlet–triplet gap33, we reasoned that DACs would be
excellent candidates for participating in [2þ 1] cycloadditions.

Moreover, the carbene carbon in DACs is in the same oxidation
state as the carbon atom in carbon monoxide and bears amides
that should be susceptible to hydrolysis. As such, we predicted
that DACs could also serve as a masked equivalent of CO
(a molecule that does not readily undergo [2þ 1] cycloaddition
chemistry) for use in accessing synthetically versatile cyclopropa-
none derivatives or other carbonyl-containing compounds.
Indeed, as described below, we found that isolable DAC 1 not
only effected a broad range of cyclopropanation and epoxidation
reactions that involved electron-deficient as well as electron-rich
olefins and aldehydes, but also that many of these reactions were
thermally reversible. Additionally, we found that hydrolysis of a
diamidocyclopropane derivative afforded the corresponding linear
carboxylic acid via a metal- and carbon monoxide-free hydrocar-
boxylation, which presumably occurred through a cyclopropanone
intermediate39,40. During the course of our studies, we also discov-
ered an unprecedented formal [4þ 1] cycloaddition between 1
and a,b-unsaturated ketones, which provided rapid access to a
new class of dihydrofurans.

Results and discussion
Given that known, isolable carbenes react with electron-deficient
olefins16,18,19,25–27, our initial efforts focused on studying the cyclo-
addition chemistry of readily accessible 1 with methyl acrylate.
Stirring equimolar quantities of 1 and methyl acrylate for two
hours in benzene ([1]0¼ 0.29 M) at ambient temperature, followed
by the removal of the solvent and washing with cold hexanes,
afforded a white solid in 98% yield (Table 1). 1H NMR analysis of
this material revealed diagnostic signals at d¼ 0.96, 1.63 and
2.01 ppm (C6D6) consistent with the structure of cyclopropane 2a.
To explore the scope of this cyclopropanation chemistry, a
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Figure 1 | Examples of isolable carbenes that may be used as [2 1 1]

cycloaddition reagents. Np¼ neopentyl, Mes¼ 2,4,6-trimethylphenyl.
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variety of 1-substituted and 1,1-disubstituted olefins were treated
with 1 (Table 1). In general, equimolar concentrations of 1 and an
olefin were subjected to the reaction conditions and purification
procedure described above. Using this method, the reaction of 1
with methyl methacrylate, acrylonitrile or methacrylonitrile
afforded the expected cyclopropane products 2b–2d in excellent
yield (92–96%). Likewise, styrene and a variety of its p-substituted
derivatives, including a relatively electron-rich derivative ( p-meth-
oxystyrene), were cyclopropanated readily by 1, although a slightly
elevated temperature (60 8C) was required to obtain a high yield
of the corresponding products 2e–2i (71–90%). Cyclopropane
formation was determined unequivocally for 2e by single-crystal
X-ray diffraction analysis (Fig. 2a).

Next, we turned our attention towards evaluating the ability of 1
to cyclopropanate 1,2-disubstituted olefins. The reaction of equi-
molar quantities of diethyl maleate or diethyl fumarate with 1 was
found to proceed at ambient temperature in C6H6 and exclusively
afforded the same product (2j), as determined by 1H NMR spec-
troscopy, and in identical yield (93%, Fig. 3a). X-ray diffraction
analysis of a single crystal obtained from the reaction of 1 and
diethyl maleate revealed that 2j was the trans-diastereomer
(see Supplementary Fig. S9). Although elevated temperatures

(100–120 8C for two hours) were required, similar results were
obtained when 1 was treated with cis- or trans-stilbene, which
both formed trans-2k as the exclusive product, albeit in modest
yield (up to 39%). In contrast, treatment of 1 with one equivalent
of an 87:13 molar mixture of maleonitrile:fumaronitrile, prepared
via the method of Linstead and Whalley41, at ambient temperature
for one hour afforded an 87:13 ratio of the respective cis:trans pro-
ducts (2m:2l), as determined by NMR spectroscopy (C6D6). The
structure of the cis-diastereomer was confirmed subsequently by
single-crystal X-ray diffraction analysis (Fig. 2b). Whereas the reten-
tion of stereochemistry in the formation of 2m was consistent with a
concerted mechanism42–44, the rapid closure of a transient 1,3-dipole
cannot be ruled out. In contrast, formation of the trans-diastereomeric
cyclopropanes 2j and 2k from their respective cis-olefins is in accord
with a stepwise process that involves a 1,3-dipole intermediate capable
of bond rotation prior to ring closure. Collectively, these results
are similar to those observed with cycloheptatrienylidene, a
carbene that must be generated in situ via photolysis or thermolysis
of the sodium salt of tropone tosylhydrazone45,46.

Building on the aforementioned cyclopropanation of p-methoxy-
styrene, subsequent efforts were directed towards evaluating the
ability of 1 to cyclopropanate electron-rich alkenes. Heating 1
([1]0¼ 0.4 M) in neat n-butyl vinyl ether (19 equiv.) to 100 8C
for two hours followed by purification of the reaction mixture
using silica-gel column chromatography afforded a white solid in
53% yield. The structure of this product was consistent with that
of 2n, as determined by a heteronuclear correlation NMR exper-
iment, in which the 1H signals observed at d¼ 3.49 (1H) and

Table 1 | Summary of cyclopropanations of DAC 1 with
various olefins.*
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* In general, the cycloaddition reactions were performed using equimolar concentrations of 1 and the
olefin indicated in C6H6 for two hours at ambient temperature except where noted. †Isolated yield of
the corresponding cyclopropane product. Where applicable, the stereochemistry of the cyclopropane
product is indicated in parentheses. ‡The reaction was performed at 60 8C for 16 hours. §The
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Figure 2 | X-ray structures of the [2 1 1] cycloaddition products 2e and 2m.

a, ORTEP diagram of 2e with thermal ellipsoids drawn at 50% probability

and H atoms omitted for clarity. Selected distances and angles: C1–C25,

1.497(6) Å; C1–C26, 1.551(6) Å; C25–C26, 1.501(6) Å; C25–C1–C26,

59.0(3)8; C25–C26–C1, 58.7(3)8; C1–C25–C26, 62.3(3)8. b, ORTEP diagram

of 2m with thermal ellipsoids drawn at 50% probability and H atoms

omitted for clarity. Selected distances and angles: C1–C26, 1.518(3) Å;

C1–C27, 1.560(3) Å; C26–C27, 1.536(3) Å; C26–C1–C27, 59.85(12)8;
C26–C27–C1, 58.73(12)8; C1–C26–C27, 61.42(12)8.
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0.84 ppm (2H) (C6D6) were correlated with the 13C signals found at
59.37 and 15.33 ppm, respectively. Similarly, cyclopropanes 2o and
2p were obtained in 43–47% yield by heating 1 for two hours in neat
norbornene (120 8C) or 1-octene (100 8C), respectively. NMR spec-
troscopy and X-ray crystallography identified the structure of 2o as
the exo-isomer (see Supplementary Fig. S11).

Having discovered that DAC 1 was capable of cyclopropanating
electronically diverse alkenes, a number of trisubstituted olefins

were examined next, primarily to clarify the role of sterics. The
introduction of 1 to methyl-3-methyl-2-butenoate, a functionalized
olefin that features a disubstituted b-carbon, resulted in no reaction,
even at elevated temperatures (up to 100 8C). Hence, attack of the
carbene lone pair at the b-position in substituted olefins may be
pivotal in the cyclopropanation mechanism and inhibited by
steric bulk. In light of this result, we reasoned that a 1,1,2-trisubsti-
tuted olefin, such as methyl angelate, should be more prone to cyclo-
propanation. Although ,20% of the cyclopropanated product
formed when an equimolar mixture of methyl angelate and 1 was
heated at 60 8C for 16 hours in C6D6, a 56:44 ratio of methyl tigla-
te:methyl angelate was observed by 1H NMR spectroscopy (see
Supplementary Fig. S1). As a control experiment, methyl angelate
was heated to 100 8C for 24 hours (in the absence of 1), which
resulted in less than 2% isomerization. Collectively, these data are
consistent with a reversible interaction between 1 and methyl ange-
late, which enables scrambling of the olefin’s stereochemistry (see
below for additional discussion).

Bearing in mind that the carbene centre in 1 is in the same oxi-
dation state as the carbon atom in carbon monoxide, we reasoned
that the hydrolysis of the N,N′-diamidocyclopropanes described
above would afford the corresponding cyclopropanones and/or
their derivatives. To test this hypothesis, 2h was treated with
CH3CO2H/HCl. After two hours at 100 8C, hydrocinnamic acid
was obtained in 56% isolated yield (unoptimized). Moreover,
similar results were obtained when the two-step cyclopropanation/
hydrolysis reaction was performed in a single reaction vessel
(Fig. 3b). Considering that N,N′-dimesityl-2,2-dimethylmalona-
mide and its partially hydrolysed derivative 3-(mesitylamino)-2,2-
dimethyl-3-oxopropanoic acid were isolated as by-products from
this reaction, we believe that the hydrolysis of 2h affords a
cyclopropanone intermediate that readily adds water and rearranges
to give the corresponding propionic acid under aqueous con-
ditions39. Regardless, the DAC effectively enabled a formal
anti-Markovnikov hydrocarboxylation of an alkene to a linear

Mes

O O

Mes

RR

R R

j: R = CO2Et
k: R = Ph

1

2j,2k

N NN N
Mes

O O

Mes

CNNC

2m

NC CN

i. 1, C6H6,  
60 °C, 16 h

ii. HCl/AcOH,
H2O, 

100 °C, 2 h

OH

O

a

b

Figure 3 | Stereospecificity of the [2 1 1] cycloaddition with 1 and the

formation of a linear carboxylic acid. a, Treatment of 1 with maleonitrile

afforded the cis-1,2-disubstituted cyclopropane 2m; in contrast, the trans-1,2-

disubstituted cyclopropanes 2j and 2k were obtained when 1 was treated

with diethyl maleate or cis-stilbene, respectively. Although the former is

consistent with a concerted mechanism, the latter examples may reflect a

stepwise cycloaddition process. Conditions for 2j and 2m: room temperature

(r.t.), two hours, C6H6. Conditions for 2k: 100 8C, two hours, neat.

b, Treatment of styrene with 1 followed by hydrolysis of the cyclopropane

product (that is, 2h) under acidic conditions afforded hydrocinnamic acid in

56% isolated yield (unoptimized).
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c, Combining 1 with a variety of aldehydes afforded the corresponding epoxides in good to excellent yields. Conditions: r.t., 2–24 h, C6H6. d, ORTEP diagram

of 4b with thermal ellipsoids drawn at 50% probability and H atoms omitted for clarity. Selected distances and angles: C1–O3, 1.442(3) Å; C1–C25,

1.481(3) Å; O3–C25, 1.450(3) Å; O3–C1–C25, 59.45(13)8; C1–O3–C25, 61.61(14)8; O3–C25–C1, 58.94(13)8.
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carboxylic acid, an industrially useful process that typically requires
transition metals and/or high pressures of carbon monoxide40.

To further expand the utility of the cyclopropanation chemistry
described above and considering the central role of cyclopropyl
ketones in the synthesis of furans1, a,b-unsaturated ketones were
also explored as potential cycloaddition partners for DAC 1.
Treatment of 1 with an equimolar quantity of methyl vinyl ketone
in benzene at ambient temperature for two hours followed by
removal of the solvent and washing of the residue with cold
hexanes afforded a white solid in 96% yield. The lack of a nCO
peak assignable to a ketone moiety in the infrared spectrum (KBr)
and a signal indicative of a shielded olefinic proton (d¼ 3.50 ppm
(C6D6)) in the 1H NMR spectrum of the product were consistent
with the formation of dihydrofuran 3a (Fig. 4a). The structural
assignment of this compound was later confirmed by X-ray crystal-
lography (Fig. 4b). Formally a [4þ 1] cycloaddition, the aforemen-
tioned transformation is unprecedented and may occur via the
Michael addition of 1 with the a,b-unsaturated ketone followed
by ring closure or via a 1,3-rearrangement of a [2þ 1] cycloadduct
intermediate. Analogous results were obtained with 3-methyl-3-
penten-2-one (which afforded a 93% yield of 3b), although no reac-
tion was observed with 4-methyl-3-penten-2-one, even at 100 8C,
presumably because of steric inhibition.

Subsequent attention shifted towards exploring the potential of 1
to react with aldehydes. As shown in Fig. 4c, stirring benzaldehyde
with an equimolar quantity of 1 in C6H6 at ambient temperature for
two hours followed by washing the crude product with cold hexanes
afforded 4a in 96% yield. The structure of 4a was supported by the
disappearance of the 1H NMR signal assigned to an aldehyde moiety
(d¼ 9.63 ppm) and the appearance of a new signal diagnostic of an
epoxide at d¼ 4.03 ppm (C6D6). Analogous results were obtained
with electron-deficient and electron-rich derivatives of benzal-
dehyde (4b and 4c, 84–89% yield); the structure of 4b was
confirmed by X-ray crystallography (Fig. 4d). Likewise, similar reac-
tivity was observed with the aliphatic derivatives cyclohexanecar-
boxaldehyde and acetaldehyde, which afforded the epoxides 4d
and 4e in 63% and 94% yield, respectively. Reflecting the chemos-
electivity of DACs towards aldehydes versus olefins, exposure of 1
to cinnamaldehyde under similar conditions afforded the epoxide
4f in 97% yield. Similarly, treatment of 1 with acrolein in benzene
at ambient temperature for 16 hours yielded epoxide 4g as the

major product and furan 3c as the minor product (5:1), as deter-
mined by 1H NMR spectroscopy. However, heating to 60 8C for
12 hours or stirring this mixture for two weeks at ambient tempera-
ture in solution afforded 3c as the sole product, which was isolated
subsequently in 84% yield (Fig. 4a,c). Thus far, attempts to hydro-
lyse the diamidooxiranes have resulted in a range of products and
further investigation is underway.

Although the conversion of 4g into 3c requires cleavage of the
epoxide C–C bond47, a retro epoxidation reaction followed by
Michael addition would facilitate the formation of the observed
product. To probe for such a retro [2þ 1] cycloaddition, a series
of exchange reactions was performed. Heating a mixture of 4a
and diethyl fumarate (1.15 equiv.) to 80 8C in a sealed vial for 16
hours followed by NMR analysis revealed an 83:17 mixture of
2j:4a (Fig. 5). Similarly, heating a mixture of 2j and benzaldehyde
(1.15 equiv.) afforded the same ratio of the products after the
same amount of time. Although a 5:95 ratio of 2j:4a was observed
after mixing diethyl fumarate, benzaldehyde and 1 (1.15:1.15:1)
for 30 minutes at ambient temperature, an 80:20 ratio of 2j:4a was
obtained on heating this mixture to 80 8C for 16 hours.
Collectively, these results indicate that the cyclopropane and
epoxide cycloadducts of 1 are capable of undergoing formal retro
[2þ 1] cycloaddition reactions under mild conditions.
Additionally, heating 2j to 100 8C in C7D8 resulted in the liberation
of diethyl fumarate as determined by variable-temperature NMR
spectroscopy, although the free carbene 1 was not observed
because of a competitive intramolecular C–H insertion process
that is facilitated at elevated temperatures31. To the best of our
knowledge, these are the first examples of thermally reversible
[2þ 1] cycloadditions that involve an isolable carbene48.

Conclusion
In summary, we report that DAC 1 is capable of participating in
[2þ 1] cycloadditions with a wide range of olefins and aldehydes,
including electron-rich derivatives. Structural and mechanistic
studies support a stepwise addition process, although a cis-cyclo-
propane was observed when maleonitrile was used as the starting
material, which suggests to us that some cycloadditions may be
concerted. Whereas the ability of isolable carbenes to engage in
[2þ 1] cycloaddition chemistry had been limited in scope (that
is, restricted to electron-deficient olefins), the results reported
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or 4a with 1.15 equiv. diethyl fumarate afforded the same product mixture. Conditions: 80 8C, 16 hours, C6D6.
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herein effectively expand the utility of carbenes in the construc-
tion of three-membered carbocycles and oxacycles. Additionally,
1 was found to undergo an unprecedented, formal [4þ 1] cyclo-
addition with a,b-unsaturated ketones to afford dihydrofuran
derivatives rapidly. In light of the broad scope of olefins and alde-
hydes, and recalling that the DAC was constructed from readily
accessible and modular formamidine and malonyl precursors,
we envision that many derivatives of these cycloaddition partners
will be accessible using the methodology described above.
Furthermore, hydrolysis of the diamidocarbene cyclopropane 2h
afforded hydrocinnamic acid, a linear carboxylic acid, via a
formal metal- and carbon monoxide-free hydrocarboxylation of
styrene. Additional efforts to explore the utility of DACs in syn-
thesis and as masked carbon-monoxide equivalents are
in progress.

Beyond their synthetic utility, DACs were also found to enable
the first examples of reversible [2þ 1] cycloaddition reactions that
proceed rapidly at relatively low temperatures, an advantage over
many other dynamic covalent reactions. This surprising discovery
is expected to initiate new fundamental studies and expand the
applications of stable carbenes to include uses as protecting
groups for olefins or aldehydes, or as latent sources of reactive inter-
mediates. Akin to other reversible cycloadditions, such as the Diels–
Alder reaction, reversible [2þ 1] cycloaddition processes also hold
promise for use as the basis of structurally dynamic materials and
reversible covalent inhibitors, and to facilitate applications that
utilize dynamic combinatorial libraries (for example, sensor discov-
ery and development)49,50.

Methods
Detailed descriptions of experimental, spectroscopic and crystallographic methods
and results are provided in the Supplementary Information.

Received 19 July 2011; accepted 9 January 2012;
published online 12 February 2012
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