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Abstract: An asymmetric synthesis of the C14-C26 segment of rhizoxin is described in which the 
three stereogenic centers are derived from a y-lactone; stannylcupration-methylation of a terminal 
alkyne is used to generate an (E)-iedoalkene for SdlIe coupling with a dienylstannane that produces the 
conjugated (E,E;E)-triene unit ofrhizoxin. © 1997 Elsevier Science Ltd. 

The promising antitumor agent rhizoxin (1) 1 has been the subject of  much synthetic interest. 2-4 In the 

preceding Letter we outlined a convergent approach to the synthesis of this 16-membered macrolide and we 

described a stereocontrolled route to a segment representing C3-C13 of 1. 5 Herein, we report an efficient 

synthesis of  the C14-C26 portion of  rhizoxin, to which the previously prepared subunit will be attached. 

Construction of the trienyloxazole moiety 2 was envisioned through Stille coupling 6 of  the vinyltin species 3 

with vinyl iodide 4, a strategy for which good precedent already exists. 3 
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Synthesis of the C14-C19 subunit 4 began from the known y-lactone 5, 7 readily prepared from D- 

glutamic acid. 8 The functionality and stereochemistry present in 5 makes this template ideally suited to 

construction of the three contiguous asymmetric centers of  4 by stereocontrolled hydroxylafion. Thus, 
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exposure of the sodium enolate of 5 to (1R)-(-)-(10-camphorsulfonyl)oxaziridine (CSO) 9 afforded (2R) 

alcohol 6 in 30:1 excess over the (2S) stereoisomer. 10 Methylation of this sterically hindered alcohol proved 

difficult but was accomplished by successive addition of diazomethane to 6 in the presence of boron 

trifluoride. The resultant lactone 7 was reduced to the water-soluble triol 8 which was converted without 

purification to its acetonide 9. The latter underwent oxidation with Dess-Martin periodinane I 1 to aldehyde 10. 
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Our initial plan for elaboration of the trisubstituted alkene moiety of 4 required ketone 11, which was 

readily prepared by a Grignard reaction of 10 with methylmagnesium bromide, followed by Dess-Martin 

oxidation of the resulting secondary alcohol. However, a Takai reaction 12 of I1 with iodoform in the presence 

of chromous chloride furnished a low yield of iodoalkenes as a 2:1 mixture of 12 and its (Z) isomer, 

respectively. Fortunately, an improved and completely stereoselective pathway to 12 was realized via the 

alkyne 13, prepared from 10 by reaction with dimethyl diazomethylphosphonate. 13 Although zirconium- 

catalyzed carboalumination-iodinadon of 13 under Negishi's conditions 14 was unsuccessful, stannylcupration- 

methylation 15 of this alkyne along lines reported by Kocienski, 16 followed by iodination, furnished pure 12 in 

good yield. 
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Selective functionalizadon of the primary alcohol terminus of diol 14, obtained after acidic methanolysis 

of 12, could not be accomplished by tosylation. However, this selectivity was readily achieved by reaction of 

14 with the more sterically demanding mesitylenesulfonyl (Mes) chloride, and the resultant alcohol 15 was 

protected as its silyl ether 16. Stille coupling of 16 with the known stannane 3, 3 prepared by reaction of the 

corresponding iodoalkene with (Me3Sn)2 in the presence of Pd(PPh3)2CI2 as catalyst, afforded the (E,E,E) 

triene 1717 in excellent yield. This material is now available in quantity for coupling with the C3-C13 portion 

of rhizoxin already in hand. 
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