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The successful development of a transition-metal-catalyzed
asymmetric transformation requires the achievement of both
high catalytic activity and high enantioselectivity. It is there-
fore desirable to properly evaluate the relationship between
the catalyst activity and the nature of a ligand on the
transition metal in a given catalytic reaction, and develop its
asymmetric variant by employing a chiral ligand with the
required properties for high activity. In this context, we
demonstrate herein that a rhodium–diene complex is much
more active than its rhodium–bisphosphine counterpart as a
catalyst for intramolecular [4+2] cycloadditions of alkyne-
tethered 1,3-dienes, and that the use of a chiral diene ligand
leads to the development of a highly active and enantiose-
lective asymmetric variant of this reaction.

Since the first report by Livinghouse in 1990,[1] many
rhodium(I) complexes, along with complexes of several other
transition metals,[2] have been shown to catalyze intramolec-
ular [4+2] cycloaddition reactions of alkyne-tethered 1,3-
dienes. Cationic rhodium(I) complexes bearing a bisphos-
phine ligand such as 1,2-bis(diphenylphosphanyl)ethane
(dppe)[3] or 1,4-bis(diphenylphosphanyl)butane (dppb)[4]

have been utilized as highly efficient catalysts for these
reactions, and some asymmetric variants using chiral bisphos-
phine ligands have also been developed.[5] Chung et al., on the
other hand, described the use of [Rh(naphthalene)(cod)]BF4

(cod= 1,5-cyclooctadiene) as an effective catalyst,[6] thereby
demonstrating that a phosphine-free rhodium–diene complex
can also show high activity for these cycloadditions.[7]

On the basis of these precedents, we initially focused on
the head-to-head comparison of several ligands to quantita-
tively evaluate their efficiency in the rhodium-catalyzed
intramolecular [4+2] cycloaddition reaction with alkyne-

tethered 1,3-diene 1a as a model substrate [Eq. (1)]. These
reactions were carried out in the presence of 2 mol% of
rhodium catalyst in dichloromethane at 25 8C in a reaction

calorimeter (Omnical SuperCRC), and the data were ana-
lyzed by the reaction progress kinetic analysis method
developed by Blackmond.[8] The reaction catalyzed by the
Rh–cod complex proceeded very fast, with 97% conversion
being achieved in only 10 min (Figure 1). In contrast, the use
of rhodium–bisphosphine catalysts gave much slower reac-

tions (3–4% conversion after 10 min), thereby establishing
that the Rh–cod complex is at least 20 times more active than
its Rh–dppe and Rh–dppb counterparts under these con-
ditions (Figure 1).

The results of these kinetic studies suggested that the use
of a chiral diene ligand[9–12] would be desirable for the
development of a highly efficient asymmetric variant of this
process.[13] As shown in Equation (2), the reaction of 1a
proceeded smoothly with (S,S)-Ph-bod*[10] as the ligand to

Figure 1. A plot of conversion versus time for the reaction of 1a (initial
concentration: 0.10m) in CH2Cl2 (3.0 mL) in the presence of a
rhodium catalyst (2.0 mm Rh) and AgSbF6 (3.9 mm) at 25 8C.
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give cycloadduct 2a in 87% yield with a high enantioselec-
tivity of 94% ee.[14] A high yield of 2a was also obtained with
(S,S)-Bn-bod* as the ligand,[10,11] although the enantioselec-
tivity was significantly lower (5% ee). The use of a structur-
ally different chiral diene ligand, namely (S,S)-Ph-bnd*,[9c,d]

resulted in only a moderate yield and ee (58% yield, 35% ee).
Substrates with an oxygen or nitrogen atom in the tether

can be employed with high efficiency (90–96% yield, 91–
97% ee ; Table 1, entries 2 and 3) in this reaction, with (S,S)-

Ph-bod* as the ligand, and various substitution patterns on
the alkyne and the 1,3-diene are also tolerated, with the
corresponding cycloadducts being isolated in high yield and
with high ee values (87–95% yield, 83–99% ee ; Table 1,
entries 4–8). The absolute configuration of cycloadduct 2d
(Table 1, entry 4) was established as (3R,6S) by X-ray
crystallographic analysis.[15]

A proposed catalytic cycle for this process with substrate
1a is shown in Figure 2.[1] Initial coordination of 1a to a

cationic RhI–(S,S)-Ph-bod* complex leads to oxidative cycli-
zation to form rhodacyclopentene intermediate A, which
undergoes a suprafacial 1,3-allylic migration of rhodium to
give rhodacycloheptadiene species B. Reductive elimination
of the [4+2] cycloadduct 2a from intermediate B then
regenerates the cationic rhodium(I) complex. On the basis
of this mechanism, the stereo-determining step is the for-
mation of rhodacyclopentene A and the observed stereo-
chemical outcome can therefore be rationalized as shown in
Figure 3. The rhodacyclopentene has a (3S,4R) configuration
rather than a (3R,4S) configuration (complex A’) to avoid
steric repulsion between the propenyl group at the 4-position
and the phenyl group on the olefin of the (S,S)-Ph-bod*

Table 1: The rhodium-catalyzed asymmetric [4+2] cycloaddition of
alkyne-tethered 1,3-dienes 1.

Entry Substrate Product Yield [%] ee [%]

1 87 94

2[a] 90 97

3 96 91

4 87 95

5 89 97

6[a] 95 >99

7 89 87

8[a] 92 83

[a] The reaction was conducted at 0 8C.

Figure 2. Proposed catalytic cycle for the asymmetric [4+2] cycloaddi-
tion of 1a catalyzed by Rh–(S,S)-Ph-bod*.

Figure 3. Rationale for the stereochemical outcome of the asymmetric
[4+2] cycloaddition of 1a catalyzed by Rh–(S,S)-Ph-bod*.
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ligand. This intermediate gives (3R,6S)-2a by a stereospecific
1,3-allylic migration of rhodium and subsequent reductive
elimination.

The high efficiency of the present catalysis with (S,S)-Ph-
bod* as the ligand is highlighted by the reaction of 1b at a
lower catalyst loading [Eq. (3)]. This reaction proceeds

smoothly in the presence of only 0.5 mol% of the Rh–(S,S)-
Ph-bod* catalyst at 0 8C to give cycloadduct 2b in 90% yield
and with 96% ee. In comparison, (R,R)-Me-DuPhos, which is
the best chiral bisphosphine ligand for this reaction reported
to date,[5b] affords 2b in a very sluggish reaction with only 9%
yield and 44% ee with the same catalyst loading.

The present catalyst system also allows us to carry out
intermolecular reactions between 1,3-dienes and alkynes.[6]

Thus, the reaction of trans-1,3-hexadiene with dimethyl
acetylenedicarboxylate proceeds smoothly in the presence
of 5 mol% of the Rh–(S,S)-Ph-bod* catalyst at 25 8C to give
1,4-cyclohexadiene 3a in 72% yield and with 83% ee
[Eq. (4)].[16] Similarly, trans-1,3-decadiene gives the corre-
sponding cycloadduct 3b with 87% ee.

In summary, we have established that a rhodium–diene
catalyst is much more active than its rhodium–bisphosphine
counterpart for the intramolecular [4+2] cycloaddition of
alkyne-tethered 1,3-dienes, and we have developed a highly
active and enantioselective asymmetric variant by employing
a chiral diene ligand. This catalyst system can also be applied
to the intermolecular cycloaddition of 1,3-dienes and alkynes
with high efficiency.

Experimental Section
A solution of alkyne-tethered 1,3-diene 1 (0.20 mmol) in CH2Cl2
(1.7 mL) was added to a mixture of [{RhCl((S,S)-Ph-bod*)}2] (4.0 mg,
10 mmol Rh) and AgSbF6 (6.9 mg, 20 mmol) in CH2Cl2 (0.3 mL). The
resulting mixture was stirred for 1 h at 25 8C and was then passed
through a pad of silica gel with Et2O as eluent. After removal of the
solvent under vacuum, the residue was chromatographed on silica gel
with EtOAc/hexane as eluent to afford compound 2.
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