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CORVENIENT ACCESS TO TWO ENANTIOMERIC OXIRANE SYNTHONS BEARING A QUATERNARY GEM-DIMETHYL
CARBOR CENTER: SYNTHESIS OF 35-(+) and 3R-(-)-2,2-DIMETHYL-3,4~0X0-1-BUTANOL FROM
R-{-)-PANTOLACTONE.

Pierre Lavallée*l R&jean Ruel, Louis Grenier, and Martine Bissonnette

Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1.

ABSTRACT: Starting with the commercially available R(-)-Pantolactone and using three
different pathways, the synthesis of two new and potentially useful enantiomeric hydroxy
epoxide synthons possessing a quaternary gem~dimethyl carbon center is reported.

Over the years, an increasing number of structurally and biologically interesting
natural products possessing a quaternary gem—dimethyl carbon center has been reported. Among
these compounds, one would notice that Aplasmomycin?@, Boromycin?P, Goldinonic Acid2€,
the Bryostatins2d, Acutiphycin?® and Pederol?f are all bearing at least one quaternary
center which is flanked on both sides {a and a') by either one carbonyl group (@) and one

chiral carbinolic center (¢') or two chiral carbinolic centers (a and «') {Scheme 1).

Enantiomeric approaches to these challenging natural products, or fragments thereof,
could represent a certain degree of difficulty comsidering: a) the limited availability of
readily accessible chiral starting materials possessing a quaternary gem-dimethyl center, and
b) the existing methodology for the construction of such a center3 ad jacent to chiral carbi-

nolic appendages.
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It then came to our attention that the commercially available R(-)-Pantolactone 1,
a degradation product of pantothenic acid, was indeed an ideal precursor that would allow us to
develop a geuneral and versatile enantio~divergent synthetic strategy. Supplementing to the
already flourishing chiron pool*, we describe here two short and efficient routes to the enan-

tiomeric 4-hydroxy oxiranes 4 and lla from (-)-1.

In the first and quite expeditious sequence (see Scheme 2 for experimental details),
tosylation of 1 followed by reduction of 2 [mp 98-99°C, [a]%s = 22.1° (c 2, CHCRy)] with
excess DIBAH at 0°C and quenching with Na, 50, 8 10H,0 5 gave the nicely crystalline diol 3 [mp
79-80°C, [a]3® + 4.9° (e 2, CHCLy)]. Treatment of 3 with a premixture (4h, 25°C) of K,CO, in
MeOH provided, with inversion of configuration at C-3, the (+)-hydroxy oxirame 4 ([a]%s + 16.0°
(¢ 2, EtOAc)) in over 90% yield after distillation (bp 70°C/l.3 mm) [Phenylurethane derivative,

mp 48°C, [a]§5 + 10.3° (c¢ 2, EtOAc)].

In the second sequence (Scheme 2), ]

~

excess BH eMe, S-cat.NaBH 63 to the corresponding triol 57 [oil, {a]2% - 15.0° (e 2, EtOH)].
2 y g 2 i)

was reduced with either excess LiAth or with

Formation of the acetonide § proceeded very rapidly (but only when boron-free 5 was used)6b
to afford a 9:1 mixture (GLC) of § and dioxane ketal 7 as confirmed by various methods .8
Alternatively, J was converted 9 nearly exclusively to the 1,3-benzylidene 8a, from which the
derivatives 8b (oil) and 8c [mp 81-82°C, [a]%S - 18.6° (c 2, CHCzs)] were obtained as usual
(RSOZCZ, pyr. 25°C, 80%). Surprisingly, when either 8c (or 8b) was submitted to various acidic
or hydrogenolysis conditions required for the cleavage of the benzylidene acetal, none of the
expected sulfonate diol 9 could be isolated from the complex reaction mixture. Only ozono-
1ysisl® gave, as expected, a mixture of 10a and 10b (major), the later being converted

(> 80%) (via 1,3-acyl migration) to 10a under mild acidic conditions during work-up (NaHSOa).
Alternatively, 10a was also obtained in 3 steps (60%) from purified 6 (j. Scheme 2).
Unfortunately, basic treatment of pure l0a (MeONa or KZCOQ/MeOH, 0° to 25°C) gave an
inseparable (flash, distillation) mixture of the desired oxirame lla (major) and 12a.

Even quite delicate conditions (k, 1°, Scheme) invariably would give 11b ([a]%s ~ 11.2°

(e 3.7, CHCza) in 80-85% yield (and easily debenzoylated to lia) in addition to 10-15% of
A12b ([a]%s + 105.4° (e 1.7, CHCQS)) after a careful chromatographic separation, which

by no means made this sequence convenient.

Finally, a more practical and efficient sequence was devised. Treatment of 2 with
3-pentanone (¢, Scheme) gave exclusively the 1,2-diol 3-pentylidenell derivative 13 [)90%, bp
69°C/15 mm, [a]g® - 4.6° (c 2.1, CHCy,)] which, after benzylation and mild acid hydrolysis of
the dioxolane ketal yielded the crystalline benzyl diol 14 [85%, mp 55°C, [«]5 - 9.4° (c 2,
EtOAc)] . Sequential treatment of 14 with NaH and Ts-imidazolel!? led to the formation of the
benzyl oxirane 13 [80%, bp 96-97°/0.25 mm, [a]§® - 9.7° (c 2.7, EtOAc); (+)-15 derived
from (+)-4: [a]%s + 10.2° (¢ 2, EtOAc)] and subsequent hydrogenolysis of the benzyl group gave
the desired (-)-hydroxy oxirane lla in nearly quantitative yield!? ([a]§% -15.2° (c 1.8, EtOAc);

phenyluretane derivative: mp 48°C, [a]%5 -10.5° (e 1.1, EtOAc)).
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Reagentsl#: (a) TsCL, DMAP cat., pyr., rt (95%Z). (b) 1° DiBAH, 3 equiv., THF, 0°C; 2°
N3280“010H205 (80%). (c) K,C03, MeOH, rt (90%2). (d) 1° LiAlH,, THF, reflux; 2° N3250“010H205
(95%). (e) BHyeMe,S, NaBl, cat., THF, reflux (807%, boron-free)6b. (f) acetone, p-TsOH cat.,
rt (100Z). (g) PhCH(OMe)z, POCgjcat., CH,C4,, reflux?. (h) RS0,C4, pyr. rt (80% from 5).

(1) 0y, ClCHZC}IzCl, AcOH cat., 0°C (95%). (j)1° BzCR, pyr., rt; 2° HCL IM-THF (1l:1), rt; 3°
TsCL, pyr. rt (60%Z). (k) 1° NaH, DMF-THF (1:1), -20°C; 2° cat. MeONa, MeOH (80%). (&)
3-pentanone, p-TsOH cat., THF, reflux (90%). (m) 1° NaH, PhCH,Br, DMF; 2° 80Z aq. AcOH,
reflux; 3° cat. MeONa, MeOH (85%Z). (n) 1° NaH, 2.5 equiv.; 2° Ts-imidazole, THF-DMF (1:1)
(80%). (o) H,, 20% Pd(OH)2/C, 95% EtOH, rt (90%).
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