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Four NNO-tridentate ketiminate derivatives (HL-H, FL-H, OMeL-H and tBuL-H)were prepared through the conden-
sation reaction of 1-(4-chlorophenyl)-4-(4-X-benzoyl)-3-methyl-1H-pyrazol-5(4H)-one (X=H, F, OMe, tBu)
with N,N-dimethylenediamine (1.1 molar equiv) under reflux condition. Further reaction of AlMe3 (1.2 molar
equiv) with HL-H, FL-H, OMeL-H and tBuL-H, respectively, affords penta-coordinated mono-adduct aluminum
complexes [(HL)AlMe2] (1), [(FL)AlMe2] (2), [(OMeL)AlMe2] (3), and [(tBuL)AlMe2] (4) in high yield. Exper-
imental results indicate complexes 1–4 are active catalysts for ring-opening polymerization of L-lactide (L-LA) in
the presence of benzyl alcohol (BnOH). Al complex 2 catalyzes efficiently not only in a “living” fashion but also an
“immortal” manner, giving polymers with the expected molecular weights and narrow PDIs.

© 2012 Elsevier B.V. All rights reserved.
Over the past two decades, there has been considerable attention
focused on the development of catalytic systems for ring-opening
polymerization (ROP). ROP using metal complexes provides a prom-
ising method to prepare biodegradable polymers, such as poly(ε-
caprolactone) (PCL) and poly(lactide) (PLA) aswell as their copolymers.
These metal complexes have been mainly designed to realize the single
active site for minimizing the side reaction, and a variety of catalytic
systems supported by various ancillary ligands such as β-diketiminate,
Schiff base, amino-bis(phenolate), bisphenolate [1], anilido-aldiminate
[2], and benzotriazole phenolate [3] have been reported to achieve
great catalytic activities with living properties. For instance, NNO-
tridentate Schiff-base zinc alkoxides demonstrated the excellent
catalytic activity (0 °C, 6 min) and the greater controlled manner
(PDI≦1.10) toward the polymerization of L-lactide (L-LA), and their
activities are dramatically affected by the substituents on the imine
carbon of the NNO-ligands [4].

Encouraged by the excellent catalytic systems derived from NNO-
tridentate ligands, our current interest has been to design and to
prepare NNO-tridentate ketiminate ligands bearing aluminum, mag-
nesium and zinc alkoxides and to apply these complexes as initiators
for ROP of L-LA [5]. Most recently, the pyrazole containing ketiminate de-
rivative, (4Z)-4-{[(2-(dimethylamino) ethylamino](phenyl)methylene}-
3-methyl-1-phenyl-1H-pyrazol-5(4H)-onewas successfully synthesized
via one-step condensation, and magnesium and zinc benzylalkoxides
fax: +886 4 22862547.
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incorporating such a ligand catalyzes the ROP of LA with not only good
catalytic activities in a controlled character but also the excellent stereo-
selectivity (Pr=0.87) [6]. However, no aluminum complex of NNO-
tridentate ketiminate ligands has been isolated to date, and the electronic
effect of the substituents on the NNO-tridentate ketiminate derivatives
might result in dramatic differences of polymerization activity and con-
trolled character. Herein, we report the synthesis, crystal structure and
ROP catalytic studies of novel aluminum derivatives based on NNO-
tridentate ketiminate ligands of this kind.

The synthetic routes of NNO-tridentate ketiminate ligands (L-H)
and their Al complexes (1–4) are outlined in Scheme 1. According
to the previous literatures [7], pyrazole containing ketiminate ligands
can be prepared via two-step synthesis starting from 1-phenyl-pyrazol-
5-one and benzoyl chloride derivatives as shown in Scheme 1(a). Four
NNO-ketiminate derivatives with 4-substitutited phenyl group (HL-
H, FL-H, OMeL-H, and tBuL-H) were prepared in moderate to high yield
(≧70%) on condensation of diketone (L')withN,N-dimethylenediamine
under refluxing absolute ethanol. These ligands were isolated as pale
yellow solids and were characterized by 1H, 13 C NMR and mass
spectra as well as microanalyses. For instances, the 1H NMR spectra
of OMeL-H displayed resonances at δ 3.24 ppm for the methylene
protons of –NHCH2CH2, and signals of methylene (δ=2.47 ppm) or
methyl (δ=2.21 ppm) protons of –CH2CH2N(CH3)2, indicating the
formation of the desired NNO-tridentate ketiminate ligand. The
broad N–H signal at the down field of ~11.2 ppm indicates a hydro-
gen bond between N–H and O(carbonyl), which was further con-
firmed by X-ray structural determination. Single crystals suitable
for X-ray determination of compound OMeL-H were obtained from a
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Scheme 1. Synthetic routes of ligands L–H and complexes (1)–(4).
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saturated EtOH solution. The solid-state structure of OMeL-H [8]
(Fig. 1) shows an intramolecular hydrogen bond of N―H…O between
the amine and amide groups. The distance of O…H (1.994(4) Å) is sub-
stantially shorter than the Van der Waals distance of 2.72 Å for the O
and H atom. The six-membered ring (O(1), C(14), C(13), C(5), N(3),
Fig. 1. ORTEP drawing of OMeL–H with probability ellipsoids drawn at level 50%. Selected
bond lengths/Å and angles/deg: N(3)–C(5) 1.321(2), C(5)–C(13) 1.403(3), C(13)–C(14)
1.443(2), O(1)–C(14) 1.245(2), N(2)–C(14) 1.382(2), N(1)–N(2) 1.411(2), N(1)–C(15)
1.310(2), C(13)–C(15) 1.431(3), O(1) …H(3A) 1.994(4), N(3)–H(3A) …O(1) 138.8(3).
H(3A)) formed from the N―H…O hydrogen-bond is almost coplanar
with mean deviation of 0.0454 Å. Complexes 1–4 were further synthe-
sized via alkane elimination in toluene. Treatment of the ligand (L-H)
with AlMe3 (1.2 molar equiv) yields the mono-adduct aluminum
complex (1: [(HL)AlMe2] [9]; 2: [(FL)AlMe2] [10]; 3: [(OMeL)AlMe2]
[11]; 4: [(tBuL)AlMe2] [12]) in high yield, respectively. The formation
of expected complexes 1–4 were demonstrated by the disappear-
ance of the N-H signal of the L-H group at ~11.2 ppm and the ap-
pearance of the resonance for methyl protons of Al-Me in the
region of −0.78 ppm for 1, −0.79 ppm for 2 and 3 in NMR spectra.
All these compounds were isolated as white crystalline solids and
were characterized by spectroscopic studies as well as microanaly-
ses. The structures of complexes 2 and 3 were further verified with
X-ray single crystal measurements.

Suitable crystals of complexes 2 and 3 suitable for X-ray structural
determinations were grown from their toluene/hexane solutions.
Oak Ridge thermal-ellipsoid plots (ORTEP) display selected bond
lengths and angles of the molecular structures of 2 [13] and 3 [14]
in Figs. 2 and 3, respectively. The molecular structures of compounds
2 and 3 are isostructural, except either a fluoro (−F) or a methoxy
(−OMe) substituent at the 4-position of the phenyl group. Both
complexes exhibit a monomeric feature with a penta-coordinated
Al center, containing one six- and one five-membered chelating
ring. The geometry around Al atom is distorted from trigonal–bipy-
ramidal environment with one oxygen atom, two nitrogen atoms
from the NNO-tridentate ketiminate ligand, and two C atoms from
two methyl groups. Their principal structural features include keti-
minate nitrogen atom N(2) and carbon atoms C(1), C(2) occupying
the equatorial plane; the angles (O(1)―Al(1)―N(1)) formed by
the axial bonds are 166.76(7)° for 2 and 166.13(5)° for 3, respec-
tively. The distances between the Al atom and atoms O(1), N(1),
N(2), C(1) and C(2) are 1.9152(15), 2.2232(18), 2.0405(17),
1.970(2) and 1.976(2) Å for 2, which are all longer than bond
lengths observed for the four-coordinated aluminum complex bear-
ing a NO-bidentate ketiminate derivative [15]. In comparison, the
Al-containing bond distances of Al(1)―O(1)=1.8942(12) Å, Al(1)―
N(1)=2.1896(14) Å, Al(1)―N(2)=2.0403(13) Å, Al(1)―C(1)=
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Fig. 2. ORTEP drawing of complex 2 with probability ellipsoids drawn at level 50%.
Selected bond lengths/Å and angles/deg: Al(1)–O(1) 1.9152(15), Al(1)–N(1) 2.2232(18),
Al(1)–N(2) 2.0405(17), Al(1)–C(1) 1.970(2), Al(1)–C(2) 1.976(2), O(1)–Al(1)–N(1)
166.76(7), O(1)–Al(1)–N(2) 89.09(6), N(1)–Al(1)–N(2) 77.95(7), O(1)–Al(1)–C(1)
93.05(9), O(1)–Al(1)–C(2) 91.66(9), N(1)–Al(1)–C(1) 95.10(8), N(1)–Al(1)–C(2)
92.70(8), N(2)–Al(1)–C(1) 116.17(9), N(2)–Al(1)–C(2) 120.96(9), C(1)–Al(1)–C(2)
122.71(10).

Fig. 3. ORTEP drawing of complex 3 with probability ellipsoids drawn at level 50%.
Selected bond lengths/Å and angles/deg: Al(1)–O(1) 1.8942(12), Al(1)–N(1) 2.1896(14),
Al(1)–N(2) 2.0403(13), Al(1)–C(1) 1.9826(16), Al(1)–C(2) 1.9923(16), O(1)–Al(1)–N(1)
166.13(5), O(1)–Al(1)–N(2) 89.45(5), N(1)–Al(1)–N(2) 79.26(5), O(1)–Al(1)–C(1)
96.60(6), O(1)–Al(1)–C(2) 89.16(6), N(1)–Al(1)–C(1) 94.90(6), N(1)–Al(1)–C(2)
91.55(6), N(2)–Al(1)–C(1) 110.55(6), N(2)–Al(1)–C(2) 128.28(7), C(1)–Al(1)–C(2)
120.96(7).

Table 1
Ring-opening polymerization of L-lactide (L-LA) catalyzed by complexes 1–4 in the
presence of BnOH.

Entry Cat. [L-LA]0/[Cat.]0/
[BnOH]0

t
(h)

Conv.
(%)a

Mn
(calcd.)b

Mn
(obsd.)c

Mn
(NMR)d

PDIe

1f 1 100/1/2 14 93 6800 7700 7400 1.16
2f 2 100/1/2 14 91 6600 7100 6300 1.16
3f 3 100/1/2 14 91 6700 6000 6200 1.20
4f 4 100/1/2 14 90 6600 6300 6100 1.15
5f 2 50/1/2 14 91 3400 3500 3200 1.23
6f 2 200/1/2 14 93 13500 15100 11000 1.22
7f 2 300/1/2 14 92 20000 18800 14400 1.13
8g 2 200/1/10 9 92 2800 2100 2900 1.17
9g 2 400/1/20 8 93 2800 2300 2900 1.14
10h 2 1000/1/50 12 92 2800 2400 2700 1.13

a Obtained from 1H NMR determination.
b Calculated from the molecular weight of L-LA times [L-LA]0/[BnOH]0 times conver-

sion yield plus the molecular weight of BnOH.
c Obtained from GPC analysis times 0.58 [20].
d Obtained from 1H NMR analysis.
e Obtained from GPC analysis.
f 0.1 mmol complexes, 10 mL toluene, 110 °C.
g 0.05 mmol complexes, 10 mL toluene, 110 °C.
h 0.05 mmol complexes, 20 mL toluene, 110 °C.
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1.9826(16) Å andAl(1)―C(2)=1.9923(16) Å in3 are all similar to those
found in complex 2 and other aluminum complexes [16–18]. The six-
membered rings, Al(1)O(1)C(15)C(14)C(7)N(2), consisting of an Al
center coordinated by the oxygen atom O(1) and nitrogen atom N(2)
of the ketiminate ligand are nearly coplanar with mean deviation of
0.0840 Å for 2 and 0.0202 Å for 3. It is interesting to note that the
torsion angles between the six-membered chelating ring and the
aromatic ring attached to the carbon atom C(7) are 91.2° for 2
and 88.3° for 3, respectively.

On thebasis of lactone polymerizations catalyzedwithO,O-bidentate
dipyrazolate aluminum complex [16], dimethyl aluminum anilido-
oxazolinate [17] or anilido-pyrazolate complexes [18], mono-adduct
Al methyl complexes 1–4 have the potential to perform as catalysts
toward the ROP of L-lactide (L-LA) in the presence of benzyl alcohol
(BnOH). Similar conditions following our previous studies [2c] were
first utilized to examine the catalytic activities of L-LA polymerizations
using 1–4 as catalyst precursors under dry N2. Representative results
of L-LA polymerizations under varied conditions are listed in Table 1.
It was found that a great catalytic activity and a “controlled” character
were achieved with a Al:BnOH molar ratio of 1:2 in toluene at 110 °C.
Experimental results indicated that complexes 1–4 exhibited good
activities and is somewhat higher than the activity of [(MMPEP)
Al(μ-OBn)]2, which required 48 h to reach 87% conversion [19]. Among
them, complex 2 showed the greater “controlled” character than
other complexes. As a result, polymerizations catalyzed by 2 were
systematically investigated the “living” character (Table 1, entries
2, 5–7). The monomer conversion attained ≧91% in toluene within
14 h with [L-LA]0/[BnOH]0 ratio in a range 25–150. As depicted in
Fig. 4, a linear relationship was demonstrated between actual mo-
lecular weight Mn (Mn(GPC) value corrected by a factor of 0.58)
and [L-LA]0/[BnOH]0, and the PDIs of PLLAs catalyzed by 2 range
from 1.13 to 1.23, which indicate that polymerizations proceed in
a “living” fashion. The 1H NMR spectrum of PLLA-25 (25 indicate
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Fig. 4. Polymerization of L-LA catalyzed by 2 in toluene at 110 οC. The relationship between
Mn(■)(PDI(●)) of polymer and the initial molar ratio [L-LA]0/[BnOH]0 is shown.
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the [L-LA]0/[BnOH]0 ratio, Fig. 5) displays that the PLLA chain is
capped by one benzyl ester and one hydroxyl chain end with the
integration ratio ~5:1 between Ha and Hd. Based on the 1H NMR
spectrum of PLLA, it was believed that the [(L)AlMe2]/BnOH system
could result in situ formation of a metal-benzylalkoxy species, and
the insertion of an benzylalkoxy group into L-LA occurred to initiate
the polymerization. Complex 2 catalyzes the ROP of L-LA in not only
a “living” fashion but also an “immortal” manner. The “immortal”
character was further investigated using excess equiv. ratios of
BnOH (up to 50 equiv.) as the chain transfer agent (entry 8–10).
For instance, 50-fold BnOH can be added to [L−LA]0/[Al]0=1000
for 12 h, producing a narrow PDI polymer with Mn only ~1/5 that
for the addition of [L−LA]0/[Al]0/[BnOH]0=200/1/2 (Table 1, entry
10 vs 6). It is worthy of note that complex 2 in the presence of excess
amounts of BnOH (>10 equiv.) showed the improved catalytic activity
(conv. ≧92%; t≦12 h) and the better controlled behavior (PDIb1.20) at
110 °C (Table 1, entries 8–10). The “immortal” character of complex 2
Fig. 5. 1H NMR spectrum of PLLA-2
provides an efficient way by using only small amounts of catalyst to
synthesize PLLA with a narrow PDI, and the metal residues are eventu-
ally reduced in the isolated polymer.

In conclusion, three novel aluminum complexes bearing NNO-
tridentate ketiminate ligands have been synthesized and structurally
characterized by spectroscopic studies as well as X-ray single crystal
determinations. Experimental results indicate that Al complex 2 cata-
lyzes the ROP of L-LA in the presence of BnOH with the “living” and
“immortal” characters. The “immortal” manner of 2 has paved a
way to synthesize as much as 50-fold polymer chains of PLLA with a
narrow PDI in the presence of small amounts of catalyst.
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