

Accepted Article

Title: Schottky barrier-induced surface electric field boosts universal reduction of NOx- in water to ammonia

Authors: Peng Gao, Zhong-Hua Xue, Shi-Nan Zhang, Dong Xu, Guang-Yao Zhai, Qi-Yuan Li, Jie-Sheng Chen, and Xin-Hao Li

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202107858

Link to VoR: https://doi.org/10.1002/anie.202107858

WILEY-VCH

COMMUNICATION

WILEY-VCH

Schottky barrier-induced surface electric field boosts universal reduction of NO_x⁻ in water to ammonia

Peng Gao,^[a] Zhong-Hua Xue,^[a, b] Shi-Nan Zhang,^[a] Dong Xu,^[a] Guang-Yao Zhai,^[a] Qi-Yuan Li,^[a] Jie-Sheng Chen^[a] and Xin-Hao Li*^[a]

 [a] P. Gao, Z. H. Xue, S. N. Zhang, D. Xu, G. Y. Zhai, Q. Y. Li, Prof. J. S. Chen, Prof. X. H. Li School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 (P. R. China) *E-mail: xinhaoli@sjtu.edu.cn
[b] Z. H. Xue Department of Applied Chemistry

Department of Applied Chemistry Anhui Agricultural University Hefei 230036 (P. R. China)

Abstract: NO_x reduction acts a pivotal part in sustaining globally balanced nitrogen cycle and restoring ecological environment, ammonia (NH₃) is an excellent energy carrier and the most valuable product among all the products of NOx⁻ reduction reaction, the selectivity of which is far from satisfaction due to the intrinsic complexity of multiple-electron NOx-to-NH3 process. Here, we utilize the Schottky barrier-induced surface electric field, by the construction of high density of electron-deficient Ni nanoparticles inside nitrogenrich carbons, to facilitate the enrichment and fixation of all NOx⁻ anions on the electrode surface, including NO3⁻ and NO2⁻, and thus ensure the final selectivity to NH₃. Both theoretical and experimental results demonstrate that NOx⁻ anions were continuously captured by the electrode with largely enhanced surface electric field, providing excellent Faradaic efficiency of 99 % from both electrocatalytic NO3and NO₂⁻ reduction. Remarkably, the NH₃ yield rate could reach the maximum of 25.1 mg h⁻¹ cm⁻² in electrocatalytic NO₂⁻ reduction reaction, outperforming the maximum in the literature by a factor of 6.3 in neutral solution. With the universality of our electrocatalyst, all sorts of available electrolytes containing NOx⁻ pollutants, including seawater or waste water, could be directly used for ammonia production in potential through sustainable electrochemical technology.

Over the past century, a massive amount of NO_x was discharged into the ecosystems worldwide owing to the combustion of nitrogencontaining fuels and drainage of N-rich industrial and agricultural sewage, resulting in the pollution of NO_x⁻ species in water, including NO₃⁻ and NO₂⁻, with adverse cascade effects on the environment and human health.^[1] Therefore, the management of soluble NO_x⁻ anions is essential to address these severe issues and maintain a globally balanced nitrogen cycle.^[2] Traditional methods for NO_x⁻ degradation mainly include biological nitrogen remediation, reverse osmosis and ion exchange, which still suffer from the disadvantages of inert kinetics, harsh conditions, complicated processes and high cost.^[3]

Selective reduction of NO_x⁻ by using reusable heterogeneous catalysts and sustainable electricity to generate harmless nitrogen gas or useful ammonia-regarded as an energy carrier promise the blue print of NO_x⁻ reduction without the involvement of reductants and other additives.^[4] Recent successes in selective reduction of NO₃⁻ on noble metal nanocatalysts could achieve high Faradaic efficiencies for ammonia production in various acid or basic solutions.^[5] Considering the requirements of zero emission for NO_x⁻ reduction, further boosting the selectivity to ammonia in neutral catalytic system without adding

acid or base still remains challenging. From the aspect of selectivity, the reduction of toxic NO₂⁻ is more urgent to be removed from water.^[6] The selectivity of ammonia in both NO₃⁻ and NO₂⁻ reduction reactions on reported transition metal-based nanocatalysts was still far from satisfaction. As a result, it is of great practical significance to develop powerful, cheap and durable nanocatalysts for universal reduction of soluble NO_x⁻ anions, including NO₃⁻ and NO₂⁻, with high Faradaic efficiencies and high yields of ammonia especially in neutral solution.

Herein, we present the concept-new application of Schottky barrierinduced surface electric field in a dyadic electrocatalyst to universally boost the capture and electrocatalytic activation of all NOx⁻ in water for selective production of ammonia. We developed a sulfur-diffusion method to successfully integrate record-high density of metallic Ni nanoparticles (35 wt. %) inside nitrogen-rich (10.2 at. %) carbon support (Ni/NC-sd) without consuming their nitrogen contents, as confronted by conventional carbothermal methods with a tradeoff between metal and nitrogen dopant contents (Ni/NC-ct).^[7] The wellmaintained rectifying contact of nickel/nitrogen-rich carbon interface with electron-deficient Ni and electron-rich carbon afford us the ability to elevate the electric field density of the catalyst surface by merging more Ni/NC heterojunctions together.[8] The experimental and theoretical results demonstrate the key role of more pronounced surface electric field in Ni/NC-sd in capturing and enriching all NOxanions for highly selective production of ammonia, providing the stateof-the-art Faradaic efficiencies and yields of ammonia from the reduction of NO3⁻ and NO2⁻ for real-life uses at wide concentration range even in electrolyte-free water.

In order to integrate more Ni nanoparticles in/on carbon support without scarifying the nitrogen concentration, we developed a sulfurdiffusion method (Figure 1a) to transform Ni plates to tiny Ni nanoparticles inside the as-formed nitrogen-rich carbons (Figure 1b) from thermal condensation of dicyandiamide as presented in Figure S1. Such a sulfur-diffusion path uses the low-temperature reaction between Ni metal plate and ammonium sulfate to give Ni₃S₂ followed by high-temperature decomposition of Ni₃S₂ back to metallic Ni (Figure 1c and Figure S2) with all the S species released to N₂ gas flow (Figure S3).^[9] The Ni contents of Ni_x/NC-sd samples (Figure 1d and Table S1) could be gradually increased by adding more ammonium sulfate in the precursor without consuming the reductive nitrogen dopants (Figure S4 and Table S1) and changing the mean sizes of Ni nanoparticles (Figure S5) and surface areas of the hybrids (Figure S6). Indeed, the as-obtained Ni_x/NC-sd samples exhibit constant nitrogen contents of 10.2 at. % (Figure 1d), which is 3.3 times

COMMUNICATION

Figure 1. Fabrication and structures of Ni_x/NC-sd catalysts. (a) Synthetic process of typical Ni/NC-sd catalyst. (b) Transmission electron microscopy (TEM) image of Ni₃₅/NC-sd. (c) High-resolution TEM (HRTEM) image of Ni₃₅/NC-sd. (d) The Ni contents (wt. %, demonstrated by inductively coupled plasma (ICP-AES) analysis) and N contents (at. %, demonstrated by X-ray photoelectron spectroscopy (XPS) analysis) of Ni_x/NC-sd samples. (e) N 1s XPS spectra of Ni₃₅/NC-sd and Ni₃₅/NC-sd. (f) Ni 2p XPS spectra of Ni₃₅/NC-ct and Ni metal plate. (g) The metal and N contents of Ni₃₅/NC-sd and those bench-marked transition metal/NC nanocomposites in the literature.

that of Ni_x/NC-ct sample with most of pyridinic nitrogen atoms consumed (Figure 1e) by carbothermal reduction of Ni (II) species (Figure S7) even in the presence of similar dosage of dicyandiamide, reflected by the higher work function of Ni₃₅/NC-sd according to the ultroviolet photoelectron spectroscopy (UPS) results (Figure S8). The HRTEM image (Figure 1c) clearly shows the formation of a highly coupled interface of Ni metals and carbon layers.

The formation of a rectifying contact with spontaneous electron flowing at the Ni/NC interface is further confirmed by the shift of Ni 2p XPS peak of typical Ni₃₅/NC-sd of 2.7 eV to higher binding energy as to that of with bare Ni metal centered at 852.3 eV (Figure 1f). The extended X-ray absorption fine structure analysis results of typical Ni35/NC-sd sample present strong Ni-Ni peak at 2.18 Å without detectable signal of any nitride/carbide/oxide component (Figure S9 and Table S3), which doubly confirm the formation of electrondeficient Ni metal nanoparticles due to the electron exchange at the interface without changing the oxidation state of Ni metal. As a control sample with the same Ni loading but less N dopant left during the carbothermal process, the Ni₃₅/NC-ct sample only exhibits a slightly positive shift of 0.6 eV (Figure 1f), again speaking for the advantage of our sulfur-diffusion method for simultaneously maintaining the strong interactions of a large amount of Ni nanoparticles with the Nrich carbon support against conventional carbothermal methods. Surprisingly, we could increase the content of Ni metal nanoparticles as high as 35 wt. % in the Ni₃₅/NC-sd sample with a nitrogen content of 10.2 at. % (Figure 1g), far surpassing the contents of the metal and N components of bench-marked transition metal/NC nanocomposites in the literature (Table S2).

Enlightened by the success in integrating high density of electrondeficient Ni nanoparticles in N-rich carbon support, we initially evaluated the performance of as-formed Ni_x/NC-sd materials as multifunctional catalysts for NO_3^- and NO_2^- reduction under ambient conditions in neutral electrolyte. The largely increased current densities in the LSV curves (Figure 2a) of the Ni35/NC-sd electrocatalyst after the addition of 0.3 M NaNO3 or NaNO2 to the neutral Na₂SO₄ electrolyte directly indicate the electrocatalytic activity for NOx⁻ reduction. The ¹H NMR analysis results on the reduction products only give obvious signals of ammonia (Figure 2b and Figure S10), demonstrating the high activity and selectivity to ammonia of the Ni₃₅/NC-sd electrocatalyst for reduction of both NO₃⁻ and NO₂⁻. Blank experiments without the addition of NaNO₃, NaNO₂ or a working voltage could not generate detectable amount of ammonia (Figure S11), eliminating the possible interference of electrolyte and external environment on the quantification results. The ¹⁵N isotopic labeling experiments (Figure 2b) further confirm the real role of Ni₃₅/NC-sd as an efficient electrocatalyst for selectively reducing ¹⁵NO₃⁻ and ¹⁵NO₂⁻ to pure ¹⁵NH₃. Remarkably, the Ni₃₅/NC-sd catalyst could offer a NH₃ yield rate of 1.2 mg h⁻¹ cm⁻² at -0.5 V versus RHE, outperforming the acid-etched Ni/NC-sd-H⁺, bare nitrogen-doped carbons (NC) and Ni powder electrocatalysts by a factor of 8, 6 and 3 (Figure 2c and Figure S12), respectively. It should be noted that the Ni₃₅/NC-ct catalyst with a similar Ni loading and interfacial nanostructure could only give a NH₃ yield rate of 0.6 mg h⁻¹ cm⁻² under fixed conditions (Figure S13). More importantly, the Ni₃₅/NC-sd catalyst with more pronounced charge redistribution at the interface also gives the highest Faradaic efficiency of 99 % for NO3⁻ reduction (Figure 2c) among all control samples (Figure S14), rather speaking for the key importance of the well-maintained nitrogen dopant concentrations of carbon support in our sulfur-diffusion method to boosting the interfacial synergy for NOxselective reduction.

COMMUNICATION

Figure 2. Electrocatalytic performance of Ni_x/NC-sd samples for NO_x⁻ reduction. (a) Linear sweep voltammogram (LSV) curves of Ni₃₅/NC-sd electrode in electrolyte with and without 0.3 M NO₃⁻ or NO₂⁻. (b) ¹H NMR spectra of the resultant electrolyte using ¹⁵NO₃⁻, ¹⁴NO₃⁻, ¹⁵NO₂⁻ and ¹⁴NO₂⁻ as the nitrogen source. (c) NH₃ yield rates and Faradaic efficiencies of bare NC, Ni powder, Ni₃₅/NC-sd and Ni₃₅/NC-ct electrodes for NO₃⁻ reduction. (d) NH₃ yield rates of Ni_x/NC-sd electrodes for NO₃⁻ reduction. (e) Ni 2p XPS spectra of Ni_x/NC-sd samples. (f) The turnover frequency (TOF) values of Ni_x/NC-sd electrodes for NH₃ generation via NO₃⁻ and NO₂⁻ reduction. (g) The i-t curves of Ni_x/NC-sd electrodes for NO₃⁻ reduction. Standard conditions: All electrodes with the same catalyst loadings of 2.0 mg cm⁻² were measured at -0.5 V versus RHE in 0.5 M Na₂SO₄ electrolyte with 0.3 M NO₃⁻ or NO₂⁻.

Indeed, the change in densities of Ni/NC heterojunctions of Ni_x/NCsd catalysts dominates the NO_x⁻ reduction process. It is reasonable that merging more Ni/NC active centers in one catalyst will increase the yields of ammonia accordingly as presented in Figure 2d. The electron densities of the Ni nanoparticles in all Ni_v/NC-sd samples are nearly the same without obvious shift of Ni 2p XPS peaks (Figure 2e) again due to the well-maintained nitrogen concentrations of carbon support in our sulfur-diffusion method. Even with similar electron densities and interfacial structures of Ni/NC heterojunctions, the intrinsic activities of Ni_x/NC-sd as indicated by corresponding turnover frequency (TOF) values are gradually promoted by elevating the densities of Ni/NC heterojunctions with similar trends of Ni₃₅/NC-sd > Ni₂₈/NC-sd > Ni₁₄/NC-sd for NO₃⁻ and NO₂⁻ reduction reactions (Figure 2f and Figure S15). Increasing the densities of Ni/NC heterojunctions in Ni_x/NC-sd catalysts also gives even faster increases in reduction current densities of NO3⁻ (Figure 2g). With the known concentrationdependent current output for NO_3^- reduction on the Ni_{35}/NC -sd electrocatalyst (Figure S16), we could directly connect the gradually enhanced NO3⁻ reduction activity (Figure 2h) and most importantly the selectivity to ammonia (Figure 2i and Figure S17) with the surfaceinduced in situ enrichment of NO3⁻ near the electrocatalyst surface.

To further explore the surface-induced enrichment behaviour of NO₃⁻ anions on Ni₃₅/NC-sd catalyst, the surface charges of various Ni_x/NC-sd samples are carefully analyzed using Kelvin probe force microscopy techniques (Figure 3a).^[10] With similar heights (Figure S18), the Ni₃₅/NC-sd with more Ni/NC heterojunctions integrated inside exhibits more negative the contact potential difference (Δ V) between the Si substrate and the sample (-0.148 V), which is two

times of the value of Ni₁₄/NC-sd sample (Figure 3b). It is reasonable that merging more Ni/NC heterojunctions into one sample enlarges the negatively charged surface field located on the carbon support via accepting more electrons from the Ni nanoparticle-based electron donors as already demonstrated in Figure 1f and 2c.

The Schottky barrier-induced surface electric field effectively enhances the adsorption of NOx⁻ anions. We use finite-element numerical method to estimate the quantitative impact of the surface electric field of negatively charged carbon support and positively charged Ni nanoparticle surface on the surface-adsorbed anion concentration.^[11] As compared with the negligible effect of neutral surface (Figure S19), the charged electrode with localized electric field could largely increase the NOx anions density in the Helmholtz layer of the electrical double layer adjacent to the positively charge surface with a size of 30×10 nm to mimic the electron-deficient Ni nanoparticles (Figure 3c) on the basis of the calculated number of electrons donated from Ni metal cluster to NC support by the density functional theory (DFT) calculation (Figure S20 and S21)^[12], whilst the NOx⁻ anions density adjacent to the negatively charged support surface is depressed accordingly. More importantly, the calculated surface adsorbed NOx⁻ anions density on the mimicked Ni surface could increase from 1 to 1.63 mM just simply by introducing a slight amount of positive charges (0.03 C/m²), theoretically demonstrating the key role of Schottky barrier-induced surface electric field in enhancing the adsorption of NOx⁻ anions as already observed in previous reaction process (Figure 2e-g).

Both experimental and theoretical results demonstrate the key role of surface electric field induced by Schottky barrier in universally

COMMUNICATION

Figure 3. Effect of surface electric field of Ni_x/NC -sd samples on NO_x^- capture. (a) Surface Electric field distribution of Ni_x/NC -sd samples measured using Kelvin probe atomic force microscopy. (b) Surface potential values extracted across the lines in a. (c) The NO_x^- anions distribution on the surface of electrode, which is shown as a color map. The size and direction of each arrows represent the density and position of NO_x^- anions. (d) The NO_x^- anions density in the Helmholtz layer of the electrical double layer under different surface charge density, the Helmholtz layer is taken as the radius of hydrated NO_3^- anion (0.34 nm).^[13]

Figure 4. Activity and stability of Ni₃₅/NC-sd electrocatalyst. Electrocatalytic performance of the Ni₃₅/NC-sd electrocatalyst and state-of-the-art non-noble metal based electrocatalysts in the literature for (a) NO₃⁻ and (b) NO₂⁻ reduction to NH₃ (Table S4-S5). (c) NH₃ yield rates and Faradaic efficiencies of Ni₃₅/NC-sd electrode for NO₃⁻ and NO₂⁻ reduction in 0.5 M Na₂SO₄ electrolyte with different concentrations of NO₃⁻ and NO₂⁻. (d) NH₃ yield rates and Faradaic efficiencies of five runs of NO₃⁻ reduction over a reused Ni₃₅/NC-sd electrode for two hours in 0.5 M Na₂SO₄ electrolyte with 0.3 M NO₃⁻. (e) NH₃ yields and Faradaic efficiencies of Ni₃₅/NC-sd electrode for NO₂⁻ reduction in pure 0.3 M NO₂⁻ solution. Standard conditions: All electrodes with the same catalyst loadings of 2.0 mg cm⁻² were measured at -0.5 V versus RHE.

promoting the electrocatalytic NO_x⁻ reduction processes. As the bestin-class catalyst in this work, the Ni₃₅/NC-sd electrocatalyst provides satisfied Faradaic efficiencies of 99 % for electrocatalytic reduction of NO₃⁻ (Figure 4a) and NO₂⁻ (Figure 4b) in neutral solution under optimized catalyst loadings (2.0 mg cm⁻², Figure S22) and working potentials (at -0.5 V versus RHE, Figure S23-S24). The ammonia generation yield rate on the Ni₃₅/NC-sd electrocatalyst could reach a maximum of 5.1 mg h⁻¹ cm⁻² and 25.1 mg h⁻¹ cm⁻² for electrocatalytic NO₃⁻ (Figure 4a) and NO₂⁻ (Figure 4b) reduction, respectively, far outperforming the values of state-of-the-art non-noble metal-based electrocatalysts in the literature (Figure 4a-b and Table S4-S5).

Besides very high activity, the Ni₃₅/NC-sd electrocatalyst could also provide excellent Faradaic efficiencies between 96-99 % to ammonia for the reduction of a wide range of concentrations of NO3⁻ (Figure S16) or NO2⁻ (Figure S25) from 5 mM to 0.5 M (Figure 4c). Surprisingly, the yield rate of ammonia on the Ni₃₅/NC-sd electrocatalyst in 5 mM NO2⁻ solution (0.4 mg h⁻¹ cm⁻²) is one fifth of that in 0.5 M NO2⁻ solution (2.0 mg h⁻¹ cm⁻²), indicating the ability of our catalyst surface to capture NO2⁻ anions to accelerate the following reduction process. Similar trend of the enrichment phenomenon on the catalyst surface is also observed for the reduction of diluted NO3⁻ solution. Moreover, such a high activity of the Ni35/NC-sd electrocatalyst could be consistently reproduced during following five circles of reuses (exemplified with NO3⁻ reduction in Figure 4d and Figure S26) accompanied with well-maintained nanostructures, rather speaking for the great potential of our Ni35/NC-sd material as powerful and durable catalyst for electrocatalytic removal of NOx⁻ anions in practical water system and ammonia production. We thus further explore the possibility of applying our electrocatalyst to NO_x⁻ removal, rather than the way in various electrolyte in the literature. Taking the removal of toxic NO2⁻ anions as an example, we could gradually reduce pure 0.3 M NaNO₂ solution into ammonia (Figure 4e) with good Faradaic efficiencies (81-92 %) and give an ammonia yield of 53.7 mM within 168 h

In summary, we have demonstrated the key role of Schottky barrierinduced surface electric field in boosting the NO_x reduction in water for highly efficient ammonia production. The tunable amounts of Ni nanoparticles inside nitrogen-rich carbon support on the basis of our sulfur-diffusion synthetic method afford us the ability to gradually

COMMUNICATION

enhance the surface electric field for enriching and fixation of NO_x anions on electron-deficient Ni surface, ensuring the final Faradaic efficiency and yield rate for ammonia production. More importantly, this strategy of inducing the surface electric field by increasing the density of metal nanoparticles and thus the rectifying interfaces in various cheap and stable nanocarbons could largely widen the potential applications of durable Mott-Schottky catalysts with enhanced novel functions to a great extent in electric power storage, water purification, and even electrochemical organic synthesis.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21931005, 21720102002, and 22071146), Shanghai Science and Technology Committee (19JC1412600 and 20520711600) and the SJTU-MPI partner group. The authors thank the Shanghai Synchrotron Radiation Facility for providing beam time (BL14W1).

Key Words: Schottky barrier \cdot surface electric field \cdot sulfur-diffusion $\cdot NO_x$ removal \cdot heterogeneous catalysis

- a) J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, *Science* 2018, 360, eaar6611; b) J. N. Galloway, J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling, B. J. Cosby, *BioScience* 2003, 53, 341-356; c) J. A. Camargo, Á. Alonso, *Environ. Int.* 2006, 32, 831-849.
- [2] a) D. E. Canfield, A. N. Glazer, P. G. Falkowski, *Science* 2010, 330, 192-196; b) V. Rosca, M. Duca, M. T. de Groot, M. T. M. Koper, *Chem. Rev.* 2009, 109, 2209-2244; c) C. Tang, S. Z. Qiao, *Chem. Soc. Rev.* 2019, 48, 3166-3180; d) Y. C. Zeng, C. Priest, G. F. Wang, G. Wu, *Small Methods* 2020, 4, 2000672; e) M. Duca, M. T. M. Koper, *Energy Environ. Sci.* 2012, 5, 9726; f) Z. H. Xue, S. N. Zhang, Y. X. Lin, H. Su, G. Y. Zhai, J. T. Han, Q. Y. Yu, X. H. Li, M. Antonietti, J. S. Chen, *J. Am. Chem. Soc.* 2019, 141, 14976-14980; g) G. Y. Zhai, D. Xu, S. N. Zhang, Z. H. Xue, H. Su, Q. Y. Yu, H. H. Wang, X. Lin, Y. X. Lin, L. H. Sun, X. H. Li, J. S. Chen, *Adv. Funct. Mater.* 2020, 30, 2005779.
- [3] a) S. Ghafari, M. Hasan, M. K. Aroua, *Bioresour. Technol.* 2008, 99, 3965-3974; b) P. Tavares, A. S. Pereira, J. J. G. Moura, I. Moura, *J. Inorg. Biochem.* 2006, 100, 2087-2100; c) J. C. Fanning, *Coord. Chem. Rev.* 2000, 199, 159-179; d) S. Samatya, N. Kabay, Ü. Yüksel, M. Arda, M. Yüksel, *React. Funct. Polym.* 2006, 66, 1206-1214; e) C. A. Clark, C. P. Reddy, H. Xu, K. N. Heck, G. H. Luo, T. P. Senftle, M. S. Wong, *ACS Catal.* 2019, 10, 494-509.
- [4] a) Y. T. Wang, W. Zhou, R. R. Jia, Y. F. Yu, B. Zhang, *Angew. Chem. Int. Ed.* 2020, 59, 5350-5354; b) G. F. Chen, Y. F. Yuan, H. F. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. P. Wu, J. Lu, H. H. Wang, *Nat. Energy* 2020, 5, 605-613; c) R. R. Jia, Y. T. Wang, C. H. Wang, Y. F. Ling, Y. F. Yu, B. Zhang, *ACS Catal.* 2020, 10, 3533-3540; d) Y. T. Wang, C. B. Liu, B. Zhang, Y. F. Yu, *Science China Materials* 2020, 63, 2530-2538; e) J. X. Liu, T. T. Cheng, L. Q. Jiang, A. G. Kong, Y. K. Shan, *ACS Appl. Mater. Inter.* 2020, 12, 33186-33195; f) J. Y. Zhu, Q. Xue, Y. Y. Xue, Y. Ding, F. M. Li, P. J. Jin, P. Chen, Y. Chen, *ACS Appl. Mater. Inter.* 2020, 12, 9, P. H. van Langevelde, I. Katsounaros, M. T. M. Koper, *Joule* 2021, 5, 290-294.

[5] a) E. Pérez-Gallent, M. C. Figueiredo, I. Katsounaros, M. T. M. Koper, *Electrochim. Acta* 2017, 227, 77-84; b) X. B. Fu, X. G. Zhao, X. B. Hu, K. He, Y. N. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski, Y. J. Kang, *Appl. Mater. Today* 2020, 19, 100620; c) J. Li, G. M. Zhan, J. H. Yang, F. J. Quan, C. L. Mao, Y. Liu, B. Wang, F. C. Lei, L. J. Li, A. W. M. Chan, L. P. Xu, Y. B. Shi, Y. Du, W. C. Hao, P. K. Wong, J. F. Wang, S. X. Dou, L. Z. Zhang, J. C. Yu, *J. Am. Chem. Soc.* 2020, 142, 7036-7046; d) Y. H. Wang, A. Xu, Z. Y. Wang, L. S. Huang, J. Li, F. W. Li, J. Wicks, M. C. Luo, D. H. Nam, C. S. Tan, Y. Ding, J. W. Wu, Y. W. Lum, C. T. Dinh, D. Sinton, G. F. Zheng, E. H. Sargent, *J. Am. Chem. Soc.* **2020**, 142, 5702-5708.

- [6] a) C. H. Wang, W. Zhou, Z. J. Sun, Y. T. Wang, B. Zhang, Y. F. Yu, J. Mater. Chem. A 2021, 9, 239-243; b) D. P. He, Y. M. Li, H. Ooka, Y. K. Go, F. M. Jin, S. H. Kim, R, Nakamura, J. Am. Chem. Soc. 2018, 140, 2012-2015.
- [7] a) H. Su, L. H. Sun, Z. H. Xue, P. Gao, S. N. Zhang, G. Y. Zhai, Y. M. Zhang, Y. X. Lin, X. H. Li, J. S. Chen, *Chem. Commun.* 2019, 55, 11394-11397; b) P. F. Zhang, L. Wang, S. Z. Yang, J. A. Schott, X. F. Liu, S. M. Mahurin, C. L. Huang, Y. Zhang, P. F. Fulvio, M. F. Chisholm, S. Dai, *Nat. Commun.* 2017, 8, 15020; c) J. S. Meng, C. J. Niu, L. H. Xu, J. T. Li, X. Liu, X. P. Wang, Y. Z. Wu, X. M. Xu, W. Y. Chen, Q. Li, Z. Z. Zhu, D. Y. Zhao, L. Q. Mai, *J. Am. Chem. Soc.* 2017, 139, 8212-8221.
- [8] a) X. H. Li, M. Antonietti, *Chem. Soc. Rev.* 2013, 42, 6593-6604; b) Y. X. Lin, S. N. Zhang, Z. H. Xue, J. J. Zhang, H. Su, T. J. Zhao, G. Y. Zhai, X. H. Li, M. Antonietti, J. S. Chen, *Nat. Commun.* 2019, 10, 4380; c) H. Su, K. X. Zhang, B. Zhang, H. H. Wang, Q. Y. Yu, X. H. Li, M. Antonietti, J. S. Chen, *J. Am. Chem. Soc.* 2017, 139, 811-818.
- [9] a) C. Buchmaier, M. Glänzer, A. Torvisco, P. Poelt, K. Wewerka, B. Kunert, K. Gatterer, G. Trimmel, T. Rath, *J. Mater. Sci.* 2017, 52, 10898-10914; b) G. Kullerud, R. A. Yund, *J. Petrol.* 1962, 3, 126-175.
- [10] a) R. T. Chen, S. Pang, H. Y. An, J. Zhu, S. Ye, Y. Y. Gao, F. T. Fan, C. Li, *Nat. Energy* **2018**, 3, 655-663; b) X. J. Chen, Y. Xu, X. G. Ma, Y. F. Zhu, *Natl. Sci. Rev.* **2020**, 7, 652-659; c) Y. Guo, W. X. Shi, Y. F. Zhu, *EcoMat* **2019**, 1, e12007.
- a) M. Liu, Y. J. Pang, B. Zhang, P. D. Luna, O. Voznyy, J. X. Xu, X. L. Zheng, C. T. Dinh, F. J. Fan, C. H. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, *Nature* **2016**, 537, 382-386; b) P. Liu, B. Chen, C. W. Liang, W. T. Yao, Y. Z. Cui, S. Y. Hu, P. C. Zou, H. Zhang, H. J. Fan, C. Yang, *Adv. Mater.* **2021**, 33, 2007377.
- [12] Z. H. Xue, J. T. Han, W. J. Feng, Q. Y. Yu, X. H. Li, M. Antonietti, J. S. Chen, Angew. Chem. Int. Ed. 2018, 57, 2697-2701.
- [13] V. G. Volkov, S. Paula, D. W. Deamer, *Bioelectrochem. and Bioenerg.* 1997, 42, 153-160.

5

COMMUNICATION

Entry for the Table of Contents

We initially discovered the conceptual application of the tunable surface electric field induced by Schottky barrier boosts the reduction of NO_x ⁻ in water for highly efficient ammonia production. The tunable amounts of Ni nanoparticles inside nitrogen-rich carbon support on the basis of our sulfur-diffusion synthetic method could afford us the ability to gradually enhance the surface electric field for enriching and fixation of NO_x ⁻ anions on electron-deficient Ni surface, rendering high Faradaic efficiency of 99 % for ammonia production from both electrocatalytic NO_3 ⁻ and NO_2 ⁻ reduction.