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We synthesized various pH-responsive fluorescent deoxyuridine derivatives (1a-g). These fluorescent
nucleosides exhibited distinctive fluorescence at 470-600 nm in aqueous solvents containing methanol
only at acidic to neutral pH values. In particular, 1f exhibited strong fluorescence only at pH range of
3.1-7.2 with a pK; of 6.1. Such pH-sensitive fluorescent nucleosides can be used as ‘on-off’ fluorescence

switch for monitoring pH change in biological systems, particularly for cancer cell detection.
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Monitoring intracellular pH is important for better understand-
ing of physiological and pathological processes in living cells. Many
cellular events such as cell growth,' apoptosis,? endocytosis,> ion
transport, and many other cellular processes involve protonation
and deprotonation of biomolecules with accompanying small pH
changes in the microenvironment and various methods for moni-
toring pH in a cell have been proposed. Among these, fluorescent
probes are very attractive because they are simple, highly sensi-
tive, non-invasive, and nondestructive to cells. Actually, many
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pH-responsive fluorescent molecules have been developed.®
Particularly, fluorescent molecular ‘on-off’ switch to detect acidic
pH sites is very important for detecting cancer cell (pH ca.6). While
several pH-sensing fluorescent molecules are known,® pH-respon-
sive fluorescent nucleosides, to our knowledge, have not been re-
ported. To date, numerous efforts to impart useful fluorescence
features upon non-emissive natural nucleobases have been re-
ported.® Many previous approaches involved the linking of natural
nucleobases to fluorescent aromatic or heteroaromatic chromoph-
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Figure 1. Structures of fluorescent pH-responsive nucleosides.
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5-arylethynylated uracil derivatives have been reported.” In this
study, we have designed highly pH-sensitive fluorescent 2’'-deoxy-
uridine derivatives 1 that are m-conjugated with anthracene chro-
mophore containing electron donating anilino group through an

NgN©) i) ethynyl linker. By changing the substituent of the N-alkyl group

HOL o A 1 (25%) on the aniline moiety, a new family of fluorescent pH probes with
N 7O b: (54%) tunable pK, values were designed. The fluorescent switching func-
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Figure 2. Fluorescence spectra of (a) 1a (2.5 uM) and (b) 1f (2.5 uM) at various pHs (2.5-9.3) in aqueous solvents containing methanol (H,0:MeOH:DMF = 50:49:1). (c)
Fluorescence response of 1a-g versus pH as measured by fluorescence plate reader in aqueous solvents containing methanol (H,O:MeOH:DMF = 50:49:1). (d) Fluorescence
color image of 1a, 1b and 1f at various pHs. The sample solutions were illuminated with 365 nm transilluminator.
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dependent fluorescent nucleosides described here indicate pH
changes in the local environment by incident appearance of
fluorescence. These newly developed ‘on-off’ switching fluorescent
nucleosides can be used for monitoring pH in the surrounding
microenvironment of biological organelles and nucleic acids as
well as specific acidic sites (pH ca.6) in a cancer cell.

The synthetic route of pH-responsive fluorescent nucleosides,
1a-g, is outlined in Scheme 1. Secondary arylamines 2b-f were
prepared from 1,4-diiodobenzene according to the protocol of
Fukuyama et al.!® The palladium-catalyzed Sonogashira cross-
coupling reaction'! of 2b—f with TMS-acetylene followed by depro-
tection with TBAF yielded compounds 3b-f. The second Sonogashira
coupling reaction of 9-iodo-10-bromoanthracene 4 with corre-
sponding 4-ethynylaniline derivatives 3b-f afforded bromoanthra-
cene derivatives 5b-f, respectively. Compounds of general
structure 5 were then coupled with 5-ethynyl-2’-deoxyuridine 6
using Pd(PPhs), to yield pH-responsive fluorescent nucleosides
1b-f. Compounds 1a and 1g containing anilino and N,N-dimethy-
lanilino moieties were also prepared from commercially available
4-ethynylaniline and 4-ethynyl-N,N-dimethylaniline, respectively,
by a similar route.!?

The photophysical properties of the newly synthesized
nucleosides 1a-g were examined. Initially, we measured the fluo-
rescent spectra of the aniline derivative 1a, which has no substitu-
ent in the N-alkyl group at pH ranging from 2.5 to 9.1. As shown in
Figure 2a, compound 1a showed a pH-sensitive fluorescence emis-
sion at acidic pH range. Upon excitation of 1a at 470 nm with acidic
pH (<4), a strong fluorescence emission at 470-600 nm was ob-
served. In contrast, at increasing pH, the fluorescence intensities
rapidly decreased, and finally a very weak emission was observed
in neutral and alkaline pH (>5) region. The pK, of 1a was obtained
from the change in fluorescence intensities as a function of pH
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using the Henderson-Hasselbalch equation,’® log[(Fmax — F)/
(F — Fmin)] = PH — pK,, where F is the observed fluorescence inten-
sity at a fixed wavelength and F,,x and Fyy;, are the corresponding
maximum and minimum intensities, respectively, that yielded pK,
value of 3.9. Since aniline derivative 1a exhibited highly sensitive
fluorescence emission, other N-alkylaniline derivatives, which are
estimated to have different pK,s,'* were examined. As a result,
most other N-alkylated aniline derivatives, 1b-e and 1g, exhibited
strong fluorescence emissions below pH 5 with pK;, of 3.7, 3.7, 3.9,
3.5 and 3.0, respectively (Table 1). Interestingly, in the case of N-
(tert-butyl)aniline derivative 1f, the fluorescence emission was ob-
served at a higher pH range than that of other nucleosides. As
shown in Figure 2b, 1f exhibited more than a 250-fold increase
in the fluorescence intensity within the pH range of 4.8-8.2 with
a pK, of 6.1. We also measured the fluorescence response of the
newly synthesized fluorescent nucleosides 1a-f to pH variation
by means of fluorescence plate reader. As indicated in Figure 2c,
these fluorescent nucleosides showed a sigmoidal correlation be-
tween fluorescence intensity and pH. These results indicated that
1f emits strong fluorescence at higher pH than other nucleosides
1a-e and 1g as visualized by the fluorescence color image shown
in Figure 2d.

The pH-dependent fluorescent behavior was attributable to the
protonation/deprotonation equilibrium of the aniline moiety. The
mode of protonation/deprotonation of 1a-g with varying pHs
was also investigated by UV spectrometric titration. Figure 3a
shows a change of UV-vis absorption spectra of 1a at various
pHs. The absorption intensity of 1a at 441 and 468 nm gradually
red-shifted to 453 and 476 nm, respectively, as pH increased from
2.5 to 9.1. A similar red-shift of the absorption peak by increasing
pH was also obtained from N-(tert-butyl)aniline derivative 1f
(Fig. 3b) and other N-alkylaniline derivatives 1b-d (Table 1). Such
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Figure 3. UV-vis absorption of (a) 1a (2.5 uM) and (b) 1f (2.5 uM) at various pHs in aqueous solvents containing methanol (H,O:MeOH:DMF = 50:49:1).

(b)

Figure 4. The living cultured cells were stained with (a) 1f and (b) 1b. Huh-7 cells on a chamber slides were incubated with 1 uM of 1f and 1b in RPMI medium supplemented
with 10% FBS at 37 °C for 2 h. After washing three times with phosphate buffered saline (PBS), fresh medium was added and cells were observed by fluorescence microscope.
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red-shift of the UV absorption suggests the formation of free amine
from the protonated anilinium ion with increasing pH. Due to the
efficient photo-induced electron transfer (PET) from the aniline
moiety to the anthracene fluorophore, almost no fluorescence
emission was observed in a neutral to basic pH region.® The fluo-
rescence and absorption behaviors of these compounds are revers-
ible with changing pH, supporting a protonation-deprotonation
process.

Next, a preliminary study of the newly synthesized fluorescent
nucleosides in living cells was carried out by means of fluorescence
microscopy. We treated human hepatoma cell line Huh-7 with
structurally similar two nucleosides, N-methylanilino derivative
1b (pK, 3.9) and N-(tert-butyl)anilino derivative 1f (pK, 6.1), at
37 °C for 2 h. As shown in Figure 4, N-(tert-butyl)anilino derivative
1f was penetrated into cell membranes and exhibited strong green
fluorescence in the cytosol. In contrast, extremely weak fluores-
cence emission was observed when the cell was treated with N-
methylanilino derivative 1b. We observed a large difference in
fluorescence behavior between these two fluorescent nucleosides
1b and 1f, which is the indication of the capability of 1f to discrim-
inate acidic site of human hepatoma cell.

In conclusion, we have succeeded in the design and synthesis of
highly pH-sensitive fluorescent uridine derivatives 1a-g. In partic-
ular, N-(tert-butyl)aniline derivative 1f emitted strong fluorescence
at 470-600 nm at pH below ca.6.8 with a pK; of 6.1. The result indi-
cated that newly synthesized fluorescent nucleoside 1f can be used
for monitoring pH change under physiological conditions. These
newly synthesized pH-dependent fluorescent nucleosides can be
used as fluorescence ‘on-off’ switch for probing acidic sites in a cell.
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