C-H Activation

Room-Temperature ortho-Alkoxylation and -Halogenation of N-Tosylbenzamides by Using Palladium(II)-Catalyzed C—H Activation

Florent Péron,^[a, b] Christine Fossey,^[a, b] Jana Sopkova-de Oliveira Santos,^[a, b] Thomas Cailly,^[a, b] and Frédéric Fabis*^[a, b]

Abstract: The *N*-tosylcarboxamide group can direct the room-temperature palladium-catalyzed C—H alkoxylation and halogenation of substituted arenes in a simple and mild procedure. The room-temperature stoichiometric cyclopalladation of *N*-tosylbenzamide was first studied, and the ability of the palladacycle to react with oxidants to form C—X and C—O bonds under mild conditions was demonstrated. The reaction conditions were then adapted to promote room-tem-

Introduction

Over the past four decades, the development of transitionmetal-catalyzed transformations has profoundly revolutionized organic chemistry. Among them, Pd-catalyzed cross-coupling reactions are probably the most prominent examples of such a progress, finding applications in all the areas in which organic chemistry is involved.^[1] More recently, transition-metal-catalyzed C-H bond functionalization has emerged as a new and promising method for more atom-economical transformations extending the scope of this chemistry.^[2] In this field, the aromatic C(sp²)-H functionalization has been successfully applied to the formation of C-C, C-N, C-O, and C-X bonds using, in most cases, a directing group to enhance regioselectivity in the ortho position.^[3] However, these reactions generally require the use of harsh reaction conditions: high temperature and/or acidic conditions.^[4] More recently, the development of milder reaction conditions has become the subject of deep investigations.^[5,6] To date, the most prominent examples of groups able to direct mild C-H activation reactions can be divided in two main categories: amino and carbonyl-based derivatives. Thus, C-C, C-X, and C-O bonds have been formed at the ortho po-

```
[a] Dr. F. Péron, Dr. C. Fossey, Prof. Dr. J. Sopkova-de Oliveira Santos,
Dr. T. Cailly, Prof. Dr. F. Fabis
Normandie Université (France)
[b] Dr. F. Péron, Dr. C. Fossey, Prof. Dr. J. Sopkova-de Oliveira Santos,
```

Dr. T. Cailly, Prof. Dr. F. Fabis Université de Caen Basse-Normandie CERMN (EA 4258 - FR CNRS 3038 INC3M - SF 4206 ICORE) UFR des Sciences Pharmaceutiques Bd Becquerel, CS 14032 Caen cedex 5 (France) Fax: (+ 33) 231566803 E-mail: frederic.fabis@unicaen.fr

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201303923. perature *ortho*-alkoxylations and *ortho*-halogenations of *N*-tosylbenzamides using palladium as catalyst. The scope and limitation of both alkoxylations and halogenations was studied and the subsequent functional transformation of the *N*-tosylcarboxamide group through nucleophilic additions was evaluated. This methodology offers a simple and mild route to diversely functionalized arenes.

sition of azo compounds,^[7] anilides,^[8] ureas,^[9] and carbamates.^[10] Ketones^[11] and imines^[12] have been used to perform the mild formation of C-C and C-O bonds, whereas N-methoxy-^[13] and *N*-pivaloyloxybenzamide^[14] groups have been used to create both C--C and C--N bonds leading to heterocycles such as phenanthridin-6(5H)-ones and isoquinolinones at room temperature. Most of these transformations are directing-group dependent and groups able to direct multiple C-H transformations at room temperature are still needed. The Ntosylcarboxamide group has recently been described in the synthesis of isoindolinone derivatives through C-H activation reactions,^[15] and by our group as a transformable group able to direct ortho C-H arylation.^[16] In these examples, the reactions were all performed between 120 and 130°C. During the investigations of this directing group in other C-H transformations, we found that ortho-alkoxylation could occur at room temperature. Herein, we wish to report our investigations on the use of N-tosylbenzamides in room-temperature C-H alkoxylation and halogenation.

Results and Discussion

In aromatic C–H activation reactions using Pd^{II} as a catalyst, the insertion of the metal in the C–H bond leading to a palladacycle is commonly accepted as the determining step.^[17] We started by screening various solvents to evaluate the cyclopalladation reaction at room temperature starting from the *N*-tosylbenzamide **1a** and using stoichiometric amounts of [Pd(OAc)₂] (Table 1). In all cases the reactions were stopped after 18 h, and the ratio of **1a/2a** was determined by ¹H NMR spectroscopy (Table 1). In solvents commonly used in C–H activation reactions (Table 1, entries 1–6), a partial conversion of **1a** in a nearly 1:1 ratio was observed. But using MeOH as the solvent, we were pleased to see that the reaction was almost

Chem. Eur. J. **2014**, 20, 1–8

Wiley Online Library

These are not the final page numbers! 77

complete.^[13b, 14a,b, 18] The use of other alcohols as solvents did not improve the conversion, whereas performing the reaction in CD₃OD allowed us to monitor the formation of palladacycle **2a** by recording NMR spectra at different times (Figure 1).^[19]

Figure 1. Formation of 2a in CD₃OD monitored by using ¹H NMR spectroscopy.

To confirm the structure of palladacycle 2a, the reaction was repeated using a slight excess of $[Pd(OAc)_2]$ (1.1 equiv) in MeOH (Scheme 1). Unfortunately, attempts to characterize 2ain a pure form failed and the exact nature of the ligands L was not established. Nevertheless, the crude palladacycle 2a, was stirred in MeCN at room temperature for 0.25 h to afford a characterizable palladacycle. Thus, palladacycle 2b was isolated in 94% yield and suitable single-crystals for X-ray analysis were obtained from slow evaporation in MeCN. The obtained ORTEP plot for 2b is depicted in Scheme 2.

Scheme 1. Synthesis of palladacycle 2b (yield of isolated 2b).

Scheme 2. X-ray structure of palladacycle 2b.

The reactivity of **2b** in MeOH at room temperature toward various additives commonly used in C–H activation reactions was then investigated. Thus, palladacycle **2b** was treated at 25 °C for 0.25 h with PhI(OAc)₂, *N*-iodosuccinimide (NIS), or IOAc^[20] and ¹H NMR spectra of the crudes were recorded (Table 2). By using PhI(OAc)₂, a full conversion to the corresponding methoxylated derivative **3a** was observed, and the use of NIS and IOAc led quantitatively to the iodinated compound **4a**. Taken together, these results with stoichiometric amounts of [Pd(OAc)₂] indicates that both the formation of the

2

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

palladacycle and the subsequent functionalization can be performed at room temperature in MeOH with $PhI(OAc)_2$, NIS, and IOAc.

The catalytic methoxylation at room temperature was then investigated by using $[Pd(OAc)_2]$ (10 mol%) and $Phl(OAc)_2$ (1 equiv) in MeOH (Table 3). Starting from **1 a**, we observed the

clean formation of the expected methoxylated compound **3** a isolated in 95% yield. The scope of the reaction was further studied with various substituted *N*-tosylbenzamides **1** b–o. The methoxylated compounds were easily obtained by using *ortho-* and *meta-*substituted starting materials and the reactions were generally completed within 24–48 h. In the case of deactivated starting material **1** d and **1** i, total conversion was never observed resulting in lower yields even if an extended reaction time was used for **3** d. Starting from *para-*substituted substrates **1** j–n, the decreased yields of the isolated products were due in all cases to the formation of dimethoxylated compounds. Substantial amounts of dimethoxylated derivatives

were isolated starting from **1***j*,**k**,**n**. The unsubstituted *N*-tosylbenzamide **1o** showed a similar reactivity affording a mixture of di- and monomethoxylated derivatives, thus **3o** was isolated in 76% yield.

Compound **1b** was then evaluated toward alkoxylation using EtOH and *i*PrOH as solvents (Scheme 3). Thus, using the same protocol, the corresponding ethoxy and isopropoxy de-

Scheme 3. Catalytic room-temperature alkoxylation of *N*-tosylbenzamide 1b (yield of isolated 1b).

rivatives **3 p,q** were isolated in 69 and 60% yields, respectively. In both cases, the total completion was not observed even if the reaction times or the amount of $Phl(OAc)_2$ were increased. The use of *t*BuOH as solvent under the same conditions did not afford the corresponding alkoxylated derivative. As previously reported,^[8c,21] only starting material was recovered unchanged even if the temperature of the reaction was increased (result not shown).

We then turned our attention to the room-temperature catalyzed ortho-halogenation. Unlike the methoxylation, the conditions of halogenation had to be optimized for the catalytic process to work in MeOH. Therefore, starting from 2-methyl-Ntosylbenzamide 1b and using NIS as the halogenating agent, the reaction had to be performed in the presence of trifluoroacetic acid (TFA)^[7,8b,22] to afford the corresponding ortho-iodinated product **4b** with a good conversion (Table 4). Regarding the acidic conditions used for iodination with NIS, we found that iodination can be performed using IOAc.^[20] Thus, under these neutral conditions, 2-chloro and 2-fluoro-N-tosylbenzamides 1a,e were iodinated in high yields. These conditions were successfully applied to 3-bromo- and 3-methyl-N-tosylbenzamides 1 f,g affording the ortho-iodinated derivatives 4d,e in good yields. As for the methoxylation, starting from the deactivated 3-trifluoromethyl-N-tosylbenzamide (1i) the reaction did not go to completion and a lower yield was isolated. We then studied the catalytic ortho-iodination from parasubstituted substrates. Thus, using 1k, 1l, 1n, or 1m, the reaction led to inseparable mixtures of starting material, ortho-iodinated and ortho-diiodinated products (results not shown). For example, the 4-NO₂ derivative 4g was isolated in only 11% yield.

The room-temperature catalytic bromination was then evaluated by using *ortho-* and *meta-*substituted starting materials (Table 5). Thus, by treating **1a**, **1b**, **1f**, and **1g** with *N*-bromosuccinimide (NBS) and TFA we were pleased to isolate after

Chem. Eur. J. 2014 , 20, 1–8	www.chemeurj.org

3

These are not the final page numbers! **77**

Full Paper

[a] Yields of the isolated products. [b] Reaction conditions: IOAc 1.5 equiv (generated from PhI(OAc)₂ 0.75 equiv and I₂ 0.75 equiv).^[20] [c] Reaction conditions: NIS 1.2 equiv, TFA 10 equiv

complete conversion the expected ortho-brominated derivatives 5a-d in good yields. The same reaction conditions were then applied to perform chlorination (Table 6). Therefore, by replacing NBS by N-chlorosuccinimide (NCS), compound 1b was ortho-chlorinated to give 6a along with the ortho-methoxylated derivative 3b in a ratio of 87:13. Similar results were observed by using *meta*-substituted starting materials **1 f** and **1 g**. It appears that using NCS in MeOH leads to a competition between chlorination and methoxylation. These results taken to-

gether with the clean halogenation reactions observed with NBS, NIS, and IOAc indicates that NCS behaves differently. Therefore, we can hypothesize that either NCS is playing the role of Phl(OAc)₂ to form a pro-methoxylation active species and/or that a competition between C-O and C-Cl bond formation takes place at the reductive-elimination step.

Finally, the ability of the N-tosylcarboxamide group to give valuable synthetic intermediates through functional transformations was evaluated (Scheme 4). Starting from 3 f, the N-tosylcarboxamide group was first methylated^[15,23] to give 7, which was submitted to various nucleophilic additions. Thus, using MeMgBr (2 equiv), the addition of two methyl groups was observed and compound 8 was isolated in 90% yield. The use of NaOH and MeONa as nucleophiles gave the corresponding carboxylic acid 9 and ester 10 in 71 and 82% yields, respectively. Reduction with LiAlH₄ afforded the expected benzylic alcohol 11 in 90% yield. Interestingly, phosphorus ylide 12 was obtained in 86% yield by treating 7 with methyltriphenylphosphonium bromide. Ylide 12 was then further treated with benzaldehyde to afford a mixture of Z and E alkenes 13 in 81% yield.

Conclusion

We have found that the palladium-catalyzed ortho-alkoxylation and ortho-halogenations of N-tosylbenzamides can be performed in good yields at room temperature using methanol as the solvent. Both alkoxylation using PhI(OAc)₂ and iodination with IOAc, generated from the mixture I₂/PhI(OAc)₂, occurred in very mild conditions using a simple procedure. However, the alkoxylation reaction scope seems to be limited to the use of non-hindered alcohols. With regard to the halogenation reactions, the use of para-substituted starting materials led to complex mixtures, whereas the use of NCS afforded both chlorinated and methoxylated derivatives. Furthermore, the ability of the *N*-tosylcarboxamide group to be transformed in a variety of relevant functional groups has been highlighted. These results could serve in the development of other C-H activation

www.chemeuri.org

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

KR These are not the final page numbers!

Scheme 4. N-methylation and subsequent functional transformations of 3 f.

reactions and find applications in the synthesis of functionalized arenes under mild conditions.

Experimental Section

Syntheses

General procedure A for the preparation of substituted *N*-tosylbenzamides 1 a–o: A round-bottom flask under N₂ was filled with *p*-toluene sulfonamide (1 equiv), EtOAc (2 mLmmol⁻¹), NEt₃ (2.5 equiv), and 4-dimethylaminopyridine (DMAP; 0.005 equiv). A solution of acyl chloride (1.1 equiv) in PhMe (0.8 mLmmol⁻¹) was added through a syringe over 15 min. The mixture was stirred for 1 hour at 55 °C under N₂, cooled to room temperature and quenched with an aqueous solution of hydrochloric acid (0.5 m, 3 mLmmol⁻¹). The resulting mixture was then extracted with EtOAc (3 times). The combined organic layers were dried on MgSO₄, filtered and evaporated. The crude was purified by passing through a pad of silica gel eluting with CH₂Cl₂.

2-Fluoro-N-(4-methylbenzenesulfonyl)benzenecarboxamide (1 e): Starting from 2-fluorobenzoyl chloride (2.43 g, 15.3 mmol), using general procedure A, N-tosylbenzamide 1e was obtained as a white solid (3.93 g, 92% yield). M.p. 137–138 °C. ¹H NMR (400 MHz, CDCl₃): δ =9.01 (brs, 1H), 8.05 (d, J=8.4 Hz, 2H), 7.99 (td, J=12.3, 4.0 Hz, 1H), 7.56 (m, 1H), 7.36 (d, J=8.4 Hz, 2H), 7.26 (td, J=7.6, 0.9 Hz, 1H), 7.16 (ddd, J=12.3, 8.4, 0.9 Hz, 1H), 2.44 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =161.0 (d, J=249 Hz), 160.5 (d, J=3 Hz), 145.5, 135.8 (d, J=10 Hz), 135.5, 132.6, 129.8 (2C), 129.0 (2C), 125.5 (d, J=3 Hz), 118.6 (d, J=10 Hz), 116.6 (d, J=25 Hz), 21.8 ppm; IR (KBr): $\tilde{\nu}$ =3325, 3088, 2923, 1705, 1595, 1428, 1350, 1167, 753 cm⁻¹; HRMS/ESI: *m*/z calcd for C₁₄H₁₃FNO₃S: 294.0594 [*M*+H]⁺; found: 294.0597.

Synthesis of palladacycle **2b**: [Pd(OAc)₂] (0.229 g, 1.02 mmol) was added to a solution of **1a** (0.300 g, 0.97 mmol) in MeOH (6 mL). The reaction mixture was stirred at 25 °C for 18 h. The crude mixture was filtered through a pad of Celite. The Celite pad was washed with MeOH (25 mL) and the solution was evaporated to dryness. MeCN (25 mL) was added, the solution was stirred at 25 °C for 0.5 h and evaporated to afford palladacycle **2b** as a yellow solid (0.452 g, 94%). M.p. > 250 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 7.8 Hz,

1 H), 6.42 (t, J=7.8 Hz, 1 H), 6.23 (d, J=7.8 Hz, 1 H), 2.47 (s, 3 H), 2.39 (s, 3 H), 2.02 ppm (s, 3 H); ¹³C NMR (500 MHz, CDCl₃): $\delta = 175.7$, 143.5, 143.2, 138.8, 132.7, 131.5, 131.3, 129.9, 129.3 (2C), 127.7 (2C), 127.5, 21.7, 4.1, 2.1 ppm; IR (KBr): $\tilde{\nu} =$ 3420, 3067, 2928, 2321, 2294, 1659, 1552, 1432, 1281, 1251, 933, 841, 746, 661, 579, 550 cm⁻¹; HRMS/ESI: m/z calcd for $C_{16}H_{14}CIN_2O_3PdS$: 454,9448 $[M-CH_{3}CN+H]^{+}$; found: 454.9463. General procedure B for ortho-alkoxylation of N-tosylbenzamide 1a-o: In a round bottom flask, Ntosylbenzamide **1**a-o (1 equiv) was added to a solution of Phl- $(OAc)_2$ (1 equiv) and $[Pd(OAc)_2]$ (0.1 equiv) in MeOH, EtOH, or *i*PrOH (8.3 mLmmol⁻¹ of **1 a–o**).

This mixture was stirred at 25 °C (see Table 2 and Scheme 4 for reaction times) and monitored by TLC. Upon completion, the resulting mixture was diluted with EtOAc, filtered through a pad of Celite and the solvent was evaporated. The crude residue was purified by silica gel chromatography using cyclohexane/EtOAc (4:1 to 3:2 gradient) as the eluent to obtain the desired products 3a-q.

2-Chloro-6-methoxy-N-(4-methylbenzenesulfonyl)benzenecarboxamide (**3a**): Starting from N-tosylbenzamide **1a** (0.200 g, 0.65 mmol), using general procedure B, compound **3a** was obtained as a white solid (0.208 g, 95%). M.p. 140–142°C. ¹H NMR (400 MHz, CDCl₃): δ =7.97 (d, *J*=8.3 Hz, 2H), 7.35 (d, *J*=8.3 Hz, 2H), 7.27 (t, *J*=8.3 Hz, 1H), 6.94 (d, *J*=8.7 Hz, 1H), 6.79 (d, *J*=8.4 Hz, 1H), 3.76 (s, 3H), 2.45 ppm (s, 3H); the NH signal is missing; ¹³C NMR (100 MHz, CDCl₃): δ =162.4, 157.6, 145.4, 135.5, 132.6, 132.3, 129.7 (2C), 128.8 (2C), 123.1, 122.3, 109.7, 56.3, 21.7 ppm; IR (KBr): $\tilde{\nu}$ =3198, 3045, 2946, 1691, 1595, 1466, 1272, 1151, 783 cm⁻¹; HRMS/ESI: *m/z* calcd for C₁₅H₁₄CINO₄SNa: 362.0230 [*M*+Na]⁺; found: 362.0212.

General procedure C for *ortho*-halogenation of *N*-tosylbenzamide 1a,b,f,g using NXS: In a round-bottom flask, *N*-tosylbenzamide 1a,b,f,g (1 equiv) and trifluoroacetic acid (10 equiv) was added to a solution of NXS (1.2 equiv) and [Pd(OAc)₂] (10 mol%) in MeOH (12.8 mLmmol⁻¹ of 1a,b,f,g). The reaction was stirred at 25 °C (see Tables 3–5 for reaction times). The resulting mixture was diluted with EtOAc, filtered through a pad of Celite and the solvent was evaporated. The crude was purified by silica gel chromatography using cyclohexane/EtOAc (4:1 to 3:2 gradient) as the eluent to obtain the desired product **4b** or **5a–d** or **6a–c**.

2-Bromo-6-chloro-N-(4-methylbenzenesulfonyl)benzenecarboxamide (**5a**): Starting from N-tosylbenzamide **1a** (0.100 g, 0.32 mmol), using general procedure C with NBS, compound **5a** was obtained as a white solid (0.097 g, 77%). M.p. 72–74°C; ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, J=8.1 Hz, 2H), 7.42 (d, J=8.0 Hz, 1H), 7.36 (d, J=8.2 Hz, 2H), 7.30 (d, J=8.1 Hz, 1H), 7.19 (t, J=8.1 Hz, 1H), 2.46 ppm (s, 3H); the NH signal is missing; ¹³C NMR (100 MHz, CDCl₃): δ = 162.6, 145.8, 135.4, 134.9, 132.3, 132.2, 131.4, 129.8 (2C), 128.9 (2C), 128.8, 120.1, 21.9 ppm; IR (KBr): $\bar{\nu}$ = 3216, 3045, 2923, 1712, 1448, 1349, 1170, 1090, 776 cm⁻¹; HRMS/ESI: *m/z* calcd for C₁₄H₁₂BrClNO₃S: 387.9404 [*M*+H]⁺; found: 387.9404.

General procedure D for ortho-iodination of N-tosylbenzamide 1 a,e,f,g,i,m using IOAc: PhI(OAc)₂ (0.75 equiv), I₂ (0.75 equiv) and MeOH (12.8 mLmmol⁻¹ of 1 a,e,f,g,i,m) were added in a round-bottom flask. The reaction was stirred for 0.25 h at room tempera-

Chem. Eur. J. **2014**, 20, 1–8

www.chemeurj.org

5

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! **77**

ture. *N*-Tosylbenzamide **1** a,e,f,g,i,m (1 equiv) and $[Pd(OAc)_2]$ (10 mol%) were added to the solution and the reaction was stirred at 25 °C (see Table 3 for reaction times). The resulting mixture was diluted with EtOAc, filtered through a pad of Celite, and the solvent was evaporated. The crude residue was purified by silica gel chromatography using cyclohexane/EtOAc (4:1 to 3:2 gradient) as the eluent to obtain the desired product **4** a,c–g.

2-Chloro-6-iodo-N-(4-methylbenzenesulfonyl)benzenecarboxamide

(4a): Starting from *N*-tosylbenzamide **1a** (0.100 g, 0.32 mmol), using the general procedure D, compound **4a** was obtained as a white solid (0.134 g, 95%). M.p. 85–86°C; ¹H NMR (400 MHz, CDCl₃): δ =8.41 (brs, 1H), 8.02 (d, *J*=8.2 Hz, 2H), 7.67 (dd, *J*=8.0, 0.8 Hz, 1H), 7.37 (d, *J*=8.2 Hz, 2H), 7.34 (dd, *J*=8.0, 0.9 Hz, 1H), 7.03 (t, *J*=8.0 Hz, 1H), 2.46 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =164.1, 145.8, 139.1, 137.9, 134.8, 132.5, 131.3, 129.8 (2C), 129.6, 129.1 (2C), 92.1, 21.9 ppm; IR (KBr): $\tilde{\nu}$ =3214, 3058, 2959, 1702, 1445, 1349, 1170, 1089, 777 cm⁻¹; HRMS/ESI: *m/z* calcd for C₁₄H₁₂ClINO₃S: 435.9265 [*M*+H]⁺; found: 435.9266.

5-Bromo-2-methoxy-N-methyl-N-(4-methylbenzenesulfonyl)benzene-

carboxamide (7): K₂CO₃ (1.21 g, 8.74 mmol) and iodomethane (544 μ L, 8.74 mmol) were added to a stirred solution of **3 f** (1.68 g, 0.74 mmol) in DMF (30 mL). After stirring at room temperature during 3 h, the solution was evaporated, water (50 mL) was added and the resulting mixture was extracted with ethyl acetate (3 \times 80 mL). The combined organic layers were dried on MgSO₄, filtrated and evaporated. The crude product was purified by silica gel chromatography using cyclohexane/EtOAc (7:3) as the eluent. 7 was obtained as a white solid (1.57 g, 91% yield). M.p. 139-141 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, J = 8.4 Hz, 2 H), 7.46 (dd, J = 8.8, 2.5 Hz, 1 H), 7.31 (d, J=8.4 Hz, 2 H), 7.16 (d, J=2.5 Hz, 1 H), 6.75 (d, J=8.8 Hz, 1 H), 3.75 (s, 3 H), 3.31 (s, 3 H), 2.45 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.4$, 155.1, 145.0, 135.7, 134.3, 130.8, 129.6 (2C), 128.2 (2C), 126.9, 112.7, 112.5, 55.9, 33.6, 21.6 ppm; IR (KBr): $\tilde{\nu} = 3006$, 2954, 2850, 1682, 1595, 1488, 1350, 1164, 1026, 829, 691 cm⁻¹; HRMS/ESI: calcd for $C_{16}H_{16}BrNO_4SNa$: 419.9876 [*M*+Na]⁺; found: 419.9877.

2-(5-Bromo-2-methoxyphenyl)propan-2-ol (8): Methylmagnesium bromide (3.0 m in diethyl ether, 0.335 mL, 1.0 mmol) was added dropwise to a solution of 7 (0.200 g, 0.50 mmol) in THF (4 mL) under N_2 at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 6 h under N₂. The resulting mixture was quenched with water (10 mL) and extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with a saturated solution of NaCl then dried on MgSO4, filtrated and evaporated. The crude product was purified by silica gel chromatography using cyclohexane/ethyl acetate (9:1) as the eluent. 8 was obtained as a white solid (0.110 g, 90% yield). M.p. 76-78°C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.44$ (d, J = 2.5 Hz, 1 H), 7.34 (dd, J =8.7, 2.5 Hz, 1 H), 6.79 (d, J=8.7 Hz, 1 H), 3.89 (s, 3 H), 1.58 ppm (s, 6H); OH signal is missing; ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.0$, 138.1, 130.7, 129.0, 113.6, 113.0, 72.3, 55.5, 29.4 (2C); IR (KBr): $\tilde{\nu} =$ 3292, 3073, 2962, 2934, 2838, 1486, 1390, 1240, 1070, 809, 627 cm⁻¹; HRMS/ESI: *m/z* calcd for C₁₀H₁₃BrO₂Na: 266.9991 [*M*+Na]⁺; found: 266.9993.

Acknowledgements

This work was supported by funding from CNRS and ERDF. The IS:CE-Chem project and the Interreg IVA France-(Channel)-England program are gratefully thanked for their financial support.

Keywords: alkoxylation · C–H activation · halogenation · palladium · synthetic methods

- Metal-Catalyzed Cross-Coupling Reactions (Eds.: A. de Meijere, F. Diederich), Wiley-VCH Verlag GmbH, Weinheim, Germany, 2004.
- [2] a) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. 2012, 124, 9092–9142; Angew. Chem. Int. Ed. 2012, 51, 8960–9009; b) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369–375.
- [3] Reviews: a) E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, *Chem. Rev.* 2007, 107, 5318–5365; b) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976–10011; Angew. Chem. Int. Ed. 2009, 48, 9792–9826; c) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169; d) S. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936–946.
- [4] For C–X bond formation using standard conditions see: a) A. R. Dick, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 2300–2301; b) X. Wan, Z. Ma, B. Li, K. Zhang, S. Cao, S. Zhang, Z. Shi, J. Am. Chem. Soc. 2006, 128, 7416–7417; c) D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sanford, Org. Lett. 2006, 8, 2523–2526; d) T.-S. Mei, D.-H. Wang, J.-Q. Yu, Org. Lett. 2010, 12, 3140–3143; e) A. S. Dudnik, N. Chernyak, C. Huang, V. Gevorgyan, Angew. Chem. 2010, 122, 8911–8914; Angew. Chem. Int. Ed. 2010, 49, 8729–8732; f) N. Schröder, J. Wencel-Delord, F. Glorius, J. Am. Chem. Soc. 2013, 125, 4536–4540; Angew. Chem. Int. Ed. 2013, 52, 4440–4444; h) D. Sarkar, F. S. Melkonyan, A. V. Gulevich, V. Gevorgyan, Angew. Chem. 2013, 125, 11000–11004; Angew. Chem. Int. Ed. 2013, 52, 10800–10804.
- [5] For C-H activation using mild conditions see: J. Wencel-Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761.
- [6] For C-H activation in water see: B. Li, P. H. Dixneuf, Chem. Soc. Rev. 2013, 42, 5744-5767.
- [7] X.-T. Ma, S.-K. Tian, Adv. Synth. Catal. 2013, 355, 337-340.
- [8] a) M. D. K. Boele, G. P. F. van Strijdonck, A. H. M. de Vries, P. C. J. Kamer, J. G. de Vries, P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2002, 124, 1586–1587; b) R. B. Bedford, M. F. Haddow, C. J. Mitchell, R. L. Webster, Angew. Chem. 2011, 123, 5638–5641; Angew. Chem. Int. Ed. 2011, 50, 5524–5527; c) T.-S. Jiang, G.-W. Wang, J. Org. Chem. 2012, 77, 9504– 9509.
- [9] a) C. E. Houlden, M. Hutchby, C. D. Bailey, J. G. Ford, S. N. G. Tyler, M. R. Gagné, G. C. Lloyd-Jones, K. I. Booker-Milburn, *Angew. Chem.* 2009, *121*, 1862–1865; *Angew. Chem. Int. Ed.* 2009, *48*, 1830–1833; b) T. Nishikata, A. R. Abela, B. H. Lipshutz, *Angew. Chem.* 2010, *122*, 793–796; *Angew. Chem. Int. Ed.* 2010, *49*, 781–784; c) T. Nishikata, A. R. Abela, S. Huang, B. H. Lipshutz, *J. Am. Chem. Soc.* 2010, *132*, 4978–9; d) L. Wang, S. Liu, Z. Li, Y. Yu, *Org. Lett.* 2011, *13*, 6137–6139.
- [10] X. Sun, Y. Sun, C. Zhang, Y. Rao, Chem. Commun. 2014, 50, 1262-1264.
- [11] a) F. Kakiuchi, T. Kochi, E. Mizushima, S. Murai, J. Am. Chem. Soc. 2010, 132, 17741–17750; b) G. Shan, X. Yang, L. Ma, Y. Rao, Angew. Chem. 2012, 124, 13247–13251; Angew. Chem. Int. Ed. 2012, 51, 13070–13074.
- [12] a) M. J. Tredwell, M. Gulias, N. G. Bremeyer, C. C. C. Johansson, B. S. L. Collins, M. J. Gaunt, Angew. Chem. 2011, 123, 1108–1111; Angew. Chem. Int. Ed. 2011, 50, 1076–1079; b) P.-S. Lee, T. Fujita, N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 17283–17295.
- [13] a) J. Karthikeyan, C.-H. Cheng, Angew. Chem. 2011, 123, 10054–10057; Angew. Chem. Int. Ed. 2011, 50, 9880–9883; b) B. Li, H. Feng, S. Xu, B. Wang, Chem. Eur. J. 2011, 17, 12573–12577.
- [14] a) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449–6457; b) H. Wang, C. Grohmann, C. Nimphius, F. Glorius, J. Am. Chem. Soc. 2012, 134, 19592–19595; c) H. Wang, F. Glorius, Angew. Chem. 2012, 124, 7430–7434; Angew. Chem. Int. Ed. 2012, 51, 7318–7322.
- [15] a) C. Zhu, J. R. Falck, Org. Lett. 2011, 13, 1214–1217; b) C. Zhu, W. Xie, J. R. Falck, Chem. Eur. J. 2011, 17, 12591–12595; c) C. Zhu, J. R. Falck, Chem. Commun. 2012, 48, 1674–1676.
- [16] F. Péron, C. Fossey, T. Cailly, F. Fabis, Org. Lett. 2012, 14, 1827-1829.
- [17] K. J. Stowers, M. S. Sanford, Org. Lett. 2009, 11, 4584-4587.
- [18] a) M. Anand, R. B. Sunoj, Org. Lett. 2011, 13, 4802–4805; b) M. Anand,
 R. B. Sunoj, Organometallics 2012, 31, 6466–6481.
- [19] See the Supporting Information for details.

KK These are not the final page numbers!

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [20] a) R. Giri, X. Chen, J.-Q. Yu, Angew. Chem. 2005, 117, 2150-2153; Angew. Chem. Int. Ed. 2005, 44, 2112-2115; b) T.-S. Mei, R. Giri, N. Maugel, J.-Q. Yu, Angew. Chem. 2008, 120, 5293-5297; Angew. Chem. Int. Ed. 2008, 47, 5215-5219.
- [21] a) G.-W. Wang, T.-T. Yuan, J. Org. Chem. 2010, 75, 476–479; b) S.-Y.
 Zhang, G. He, Y. Zhao, K. Wright, W. A. Nack, G. Chen, J. Am. Chem. Soc.
 2012, 134, 7313–7316.
- [22] Y. Fujiwara, C. Jia, Pure Appl. Chem. 2001, 73, 319-324.
- [23] H. Nagashima, N. Ozaki, M. Washiyama, K. Itoh, *Tetrahedron Lett.* 1985, 26, 657–680.

Received: October 7, 2013 Revised: December 13, 2013 Published online on

FULL PAPER

C-H Activation

F. Péron, C. Fossey, J. Sopkova-de Oliveira Santos, T. Cailly, F. Fabis*

▋▋╶∎∎

Room-Temperature ortho-Alkoxylation and -Halogenation of N-Tosylbenzamides by Using Palladium(II)-Catalyzed C-H Activation

Mild method for diverse arenes:

Room-temperature palladium-catalyzed ortho-alkoxylations and ortho-halogenations of *N*-tosylbenzamides are described. Along with the ability of the *N*- tosylcarboxamide group to be transformed in useful functional groups, this methodology offers a simple and mild route to diversely functionalized arenes (see scheme).

CHEMISTRY A European Journal

Full Paper

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim