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Abstract: Divinylcarbinols 17 and 18, CS-symmetrical and cis-
configured, were desymmetrized by Sharpless’ asymmetric epoxi-
dation. This furnished anti-configured monoepoxy alcohols 19
(85% ee) and 20 (94% ee), respectively, or their mirror images (ent-
19, 84% ee; ent-20, 95% ee). 20 (ent-20) was reduced by Red-Al®

regio- and chemoselectively, providing syn-1,3-diols ent-21 (21) at
low and ent-22 (22) at higher temperature (94–95% ee). They
should allow the obtention of more elaborated syn-1,3-diols.

Key words: acetonides, desymmetrization, 1,3-diols, epoxyalco-
hols, Sharpless asymmetric epoxidation

The asymmetric desymmetrization of prochiral molecules
with or without stereocenters (i. e., meso compounds) is
an efficient means for generating multifunctional com-
pounds enantioselectively,1,2 one advantage being that, in
principle, the underlying substrates can emerge from
highly efficient ‘bidirectional synthetic strategies’.3 In
this context the asymmetric desymmetrization of divinyl-
carbinol and derivatives thereof by Sharpless’ asymmetric
epoxidation4 (SAE) received considerable attention. This
process was examined with divinylcarbinol (1),5 with its
methallyl analog 2,5c,6 and with trans-configured dialke-
nylcarbinols 37 (Scheme 1). Several of the resulting epoxy
alcohols 4–6 were obtained with exceptionally high ee
values: up to 99%. This was explained by Schreiber et al.5c

based upon formal kinetics; the crucial point being that in
these cases the initial asymmetric epoxidation is followed
by an ee-enhancing kinetic resolution through a second
epoxidation.

Epoxy alcohols 4 and 5 (Scheme 1) were employed as
enantiomerically pure building blocks in the synthesis of
polyhydroxylated natural products such as sugars or poly-
ol macrolide antibiotics,5,6 while type-6 epoxy alcohols
have not seen many synthetic applications yet. They are
amenable, though, to the stereocontrolled synthesis of
anti-configured 1,3-diols through a regioselective ring-
opening of the epoxide ring by a hydride nucleophile as
shown by Hatakeyama et al.7b–d: epoxy alcohols 6 and
Red-Al® give 1,3-diols 7 (Scheme 2, top).

The latter compounds exhibit the anti-1,3-diol motif 8. It
abounds in polyol, polyene macrolide antibiotics, a class

of compounds well beyond 200 members.8a There, how-
ever, motif 8 is always intermingled with the diastereo-
morphic motif 11 exhibiting the syn-configuration.
Considering this and the persistent need for methods tai-
lored for the synthesis of such macrolides8 we investigat-
ed the reaction sequence outlined in Scheme 2 below
Hatakeyama’s work. It is stereochemically complementa-
ry to his method and starts from a cis-configured type-12
divinylcarbinol. Enantio- and diastereoselective desym-
metrizations by SAE were meant to furnish type-9 epoxy
alcohols and their reductions to lead to syn-1,3-diols 10.
These diols are versatile examples of type-11 diols.

Scheme 2 Divinylcarbinol → epoxy alcohol → 1,3-diol strategies.
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Scheme 3 a) 13 (2.3 equiv), n-BuLi (2.1 equiv), THF, –78 °C, 70
min, addition of HCO2Et, → –35 °C in 20 h; b) 14 (2.03 equiv),
n-BuLi (2.03 equiv), THF, –78 °C, 40 min, addition of HCO2Et, →
–30°C in 15 h; c) ZnCl2 (14 equiv), K (27 equiv), THF, reflux, 4.5 h,
addition of 15 in MeOH, 40 min; d) ZnCl2 (13 equiv), K (25 equiv),
THF, reflux, 3 h, addition of 16 in MeOH, 10 min, addition of H2O,
5 h.

To the best of our knowledge, our preparation of the cis-
configured type-12 divinylcarbinols 17 and 18 is unprec-
edented (Scheme 3). Firstly propargyl ethers 13 and 14
were deprotonated giving the corresponding acetylide an-
ion. Then 0.5 equivalent of ethyl formate were added.
This furnished dialkynylcarbinols 15 (85%) and 169

(94%), respectively.10 Their hydrogenation in the pres-
ence of Lindlar’s catalyst gave complex mixtures. There-
fore, we chose Rieke zinc11 in methanol as the reducing
agent.12 We obtained the desired divinylcarbinols 17 and
18 as pure stereoisomers in 75% and 72% yield, respec-
tively. Their assignments as cis-olefins are in accordance
with vicinal olefinic 1H,1H coupling constants of 11.2 Hz
and 11.3 Hz, respectively.

We were aware that SAEs of cis-configured (primary) al-
lyl alcohols normally proceed with diminished enantiose-
lectivity compared to their trans-isomers.13 In agreement
with this, SAEs of cis-2-butene-1,4-diol mono-protected
with the t-BuMe2Si- or the PMB group, i. e., of (primary)
vinyl carbinols analogous to our (secondary) divinyl-
carbinols 17 and 18, are reported to yield epoxy alcohols
with no more than 84–85%14 and 85–88% ee,15 respec-
tively. Still, we hoped for a higher level of enantioselec-
tivity in the SAEs of 17 and 18 because of the expected
kinetic resolution taking place after the initial epoxidation
of the unsubstituted and trans-substituted divinyl-
carbinols 1–3 discussed in Scheme 1.

SAEs of the t-BuMe2Si-protected divinylcarbinol 18 with
stoichiometric amounts of Ti(i-PrO)4 and L-(+)-diisopro-
pyltartrate (→ 19) or D-(–)-diisopropyltartrate (→ ent-19)
suffered from low diastereoselectivities (ds = 62:38)16 and
moderate enantiopurities of the major diastereomer (ee =
84–85%; determined by HPLC, Scheme 4). The com-
bined yields of the two diastereomeric monoepoxyalco-
hols obtained as a mixture after standard flash

chromatography on silica gel17 were 77% and 74%, re-
spectively. Separation of pure major diastereomer by the
same technique was tedious. It delivered 39% 19 in one
optical series and 19% ent-19 in the other (already taking
into account that 14–17% of unreacted divinylcarbinol 18
were recovered).

Success came during desymmetrizing of the PMB-
protected divinylcarbinol 17 (Scheme 4): Exposure to
stoichiometric amounts of L-(+)- or D-(–)-diisopropyl-
tartrate containing SAE cocktails furnished epoxy alco-
hols 20 and ent-20 in yields of 71% and 69%,  respectively
(taking into account 5–8% recovered unreacted 17).18

Increased values of diastereo- (ds < 81:19)19 and enantio-
selectivity (ee = 94–95% in the major diastereomer; deter-
mined by HPLC) were observed compared to the previous
desymmetrization. Repeated flash chromatography on
silica gel17 provided the main diastereomers pure: 27%
2020 and 22% ent-20, respectively.

The somewhat easier purification made us continue the
route towards syn-1,3-diol building blocks with the PMB-
protected epoxyalcohols 20 (94% ee) and ent-20 (95% ee)
rather than with their t-BuMe2Si-protected analogs21 19
and ent-19 using Hatakeyama’s protocol7c (Scheme 5).
Treatment of 20 with Red-Al® (10 equiv) in toluene at
–40 °C gave syn-1,3-diol, ent-2122 in 85% yield.23 Like-
wise, ent-20 delivered 21 (76%). On the other hand, re-
duction of 20 and ent-20 with Red-Al® (4 equiv) in
toluene (or THF) at 60 °C proceeded beyond ent-21 and
21. It also brought about the loss of the PMBO group by
an SN2¢ substitution, thereby giving diols 2224 (95% yield)
and ent-22 (83% yield) as the only products, respectively.
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Scheme 4 a) Molecular sieves 4 Å, Ti(Oi-Pr)4 (1.0 equiv), L-(+)-di-
isopropyltartrate (1.1 equiv), CH2Cl2, –25 °C, 50 min, addition of 18,
1 h; addition of t-BuOOH (1.4 equiv), 5 d, addition of t-BuOOH (0.65
equiv), 17 h; b) Same as (a) with D-(–)-diisopropyltartrate; c) Mole-
cular sieves 4 Å, Ti(Oi-Pr)4 (1.0 equiv), L-(+)-diisopropyltartrate
(1.1 equiv), CH2Cl2, –25 °C, 1 h, addition of 17, 20 min, addition of
t-BuOOH (1.4 equiv), 2 d, addition of t-BuOOH (0.3 equiv), 18 h;
d) Molecular sieves 4 Å, Ti(Oi-Pr)4 (1.0 equiv), D-(–)-diisopropyltart-
rate (1.1 equiv), CH2Cl2, –25 °C, 1 h, addition of 17, 70 min, addition
of t-BuOOH (1.4 equiv), 55 d, addition of t-BuOOH (0.7 equiv), 2 d.
*Yield based on re-isolated starting material.
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In order to elucidate the relative configuration of the OH
groups in 1,3-diols ent-21 and ent-22, these compounds
were transformed into the corresponding acetonides 23
and 24 (Scheme 5; 86% and 79% yield, respectively).
Their stereostructure is cis as concluded from the two
Rychnovsky/Evans criteria for the 13C NMR resonances
of the protecting group of cis-4,6-disubstituted ace-
tonides.25 On the one hand, the 13CquatMe2 signals appear
at d = 19.69/30.13 (23) and 19.76/30.11 (24); this matches
the typical d values of 19.66 ± 0.35 and 30.00 ± 0.30. On
the other hand, the 13CquatMe2 resonances are d = 98.69
(23) and 98.62 (24) and thus within the standard range of
d = 98.93 ± 0.67.

In summary, we have synthesized enantiopure syn-1,3-
diol building blocks, compounds 21, 22, and their enantio-
mers, from inexpensive propargyl alcohol in only 5 steps.
As a key step we have desymmetrized a cis-configured
dialkenylcarbinol by a SAE, which had not been studied
previously for that kind of substrate.26
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= 6.2 Hz, 4J5,7-H(E) = 4J5,7-H(Z) = 1.1 Hz, 5-H2), 2.91–3.28 (m, 
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5), 55.26 (OCH3), 71.02, 71.16, 73.05, and 73.99 (C-1, C-2, 
C-4, C-1¢), 113.86 and 129.41 (2 × Cortho, 2 × Cmeta), 117.86, 
129.89, 134.51, and 159.35 (C-6, C-7, Cpara, Cipso).
IR(film): 3400, 3075, 2915, 2860, 1640, 1615, 1585, 1515, 
1460, 1440, 1365, 1300, 1250, 1175, 1100, 1035, 990, 920, 
820 cm–1.
Anal. Calcd for C15H22O4 (266.3): C, 67.64; H, 8.33. Found: 
C, 67.54; H, 8.39.
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