1813

Concise Synthesis of Optically Pure *syn*-1,3-Diols by Stereoselective Desymmetrization of a Divinylcarbinol

Thilo Berkenbusch,*a Reinhard Brückner*b

^b Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg, Germany Fax +49(761)2036100; E-mail: reinhard.brueckner@organik.chemie.uni-freiburg.de

Received 23 June 2003

Abstract: Divinylcarbinols **17** and **18**, CS-symmetrical and *cis*configured, were desymmetrized by Sharpless' asymmetric epoxidation. This furnished *anti*-configured monoepoxy alcohols **19** (85% ee) and **20** (94% ee), respectively, or their mirror images (*ent*-**19**, 84% ee; *ent*-**20**, 95% ee). **20** (*ent*-**20**) was reduced by Red-Al[®] regio- and chemoselectively, providing *syn*-1,3-diols *ent*-**21** (**21**) at low and *ent*-**22** (**22**) at higher temperature (94–95% ee). They should allow the obtention of more elaborated *syn*-1,3-diols.

Key words: acetonides, desymmetrization, 1,3-diols, epoxyalcohols, Sharpless asymmetric epoxidation

The asymmetric desymmetrization of prochiral molecules with or without stereocenters (i. e., meso compounds) is an efficient means for generating multifunctional compounds enantioselectively,^{1,2} one advantage being that, in principle, the underlying substrates can emerge from highly efficient 'bidirectional synthetic strategies'.³ In this context the asymmetric desymmetrization of divinylcarbinol and derivatives thereof by Sharpless' asymmetric epoxidation⁴ (SAE) received considerable attention. This process was examined with divinylcarbinol (1)⁵ with its methallyl analog 2,^{5c,6} and with *trans*-configured dialkenylcarbinols 3^7 (Scheme 1). Several of the resulting epoxy alcohols 4-6 were obtained with exceptionally high ee values: up to 99%. This was explained by Schreiber et al.5c based upon formal kinetics; the crucial point being that in these cases the initial asymmetric epoxidation is followed by an ee-enhancing kinetic resolution through a second epoxidation.

Epoxy alcohols **4** and **5** (Scheme 1) were employed as enantiomerically pure building blocks in the synthesis of polyhydroxylated natural products such as sugars or polyol macrolide antibiotics,^{5,6} while type-**6** epoxy alcohols have not seen many synthetic applications yet. They are amenable, though, to the stereocontrolled synthesis of *anti*-configured 1,3-diols through a regioselective ringopening of the epoxide ring by a hydride nucleophile as shown by Hatakeyama et al.^{7b-d}: epoxy alcohols **6** and Red-Al[®] give 1,3-diols **7** (Scheme 2, top).

The latter compounds exhibit the *anti*-1,3-diol motif **8**. It abounds in polyol, polyene macrolide antibiotics, a class

Scheme 1 Previous desymmetrizations of divinylcarbinols by Sharpless' asymmetric epoxidation. a) Ref.⁵; b) ref.⁶; c) ref.⁷

of compounds well beyond 200 members.^{8a} There, however, motif **8** is always intermingled with the diastereomorphic motif **11** exhibiting the *syn*-configuration. Considering this and the persistent need for methods tailored for the synthesis of such macrolides⁸ we investigated the reaction sequence outlined in Scheme 2 below Hatakeyama's work. It is stereochemically complementary to his method and starts from a *cis*-configured type-**12** divinylcarbinol. Enantio- and diastereoselective desymmetrizations by SAE were meant to furnish type-**9** epoxy alcohols and their reductions to lead to *syn*-1,3-diols **10**. These diols are versatile examples of type-**11** diols.

Hatakeyama's work:

Scheme 2 Divinylcarbinol \rightarrow epoxy alcohol \rightarrow 1,3-diol strategies.

^a Bayer AG, BCH-FCH-RD-LP2, Building G 8, 51368 Leverkusen, Germany

SYNLETT 2003, No. 12, pp 1813–1816 Advanced online publication: 19.09.2003 DOI: 10.1055/s-2003-41487; Art ID: G14403ST.pdf © Georg Thieme Verlag Stuttgart · New York

Scheme 3 a) **13** (2.3 equiv), *n*-BuLi (2.1 equiv), THF, -78 °C, 70 min, addition of HCO₂Et, $\rightarrow -35$ °C in 20 h; b) **14** (2.03 equiv), *n*-BuLi (2.03 equiv), THF, -78 °C, 40 min, addition of HCO₂Et, $\rightarrow -30^{\circ}$ C in 15 h; c) ZnCl₂ (14 equiv), K (27 equiv), THF, reflux, 4.5 h, addition of **15** in MeOH, 40 min; d) ZnCl₂ (13 equiv), K (25 equiv), THF, reflux, 3 h, addition of **16** in MeOH, 10 min, addition of H₂O, 5 h.

To the best of our knowledge, our preparation of the *cis*configured type-**12** divinylcarbinols **17** and **18** is unprecedented (Scheme 3). Firstly propargyl ethers **13** and **14** were deprotonated giving the corresponding acetylide anion. Then 0.5 equivalent of ethyl formate were added. This furnished dialkynylcarbinols **15** (85%) and **16**⁹ (94%), respectively.¹⁰ Their hydrogenation in the presence of Lindlar's catalyst gave complex mixtures. Therefore, we chose Rieke zinc¹¹ in methanol as the reducing agent.¹² We obtained the desired divinylcarbinols **17** and **18** as pure stereoisomers in 75% and 72% yield, respectively. Their assignments as *cis*-olefins are in accordance with vicinal olefinic ¹H,¹H coupling constants of 11.2 Hz and 11.3 Hz, respectively.

We were aware that SAEs of *cis*-configured (primary) allyl alcohols normally proceed with diminished enantioselectivity compared to their *trans*-isomers.¹³ In agreement with this, SAEs of *cis*-2-butene-1,4-diol mono-protected with the *t*-BuMe₂Si- or the PMB group, i. e., of (primary) vinyl carbinols analogous to our (secondary) divinylcarbinols **17** and **18**, are reported to yield epoxy alcohols with no more than 84–85%¹⁴ and 85–88% ee,¹⁵ respectively. Still, we hoped for a higher level of enantioselectivity in the SAEs of **17** and **18** because of the expected kinetic resolution taking place after the initial epoxidation of the unsubstituted and *trans*-substituted divinylcarbinols **1–3** discussed in Scheme 1.

SAEs of the *t*-BuMe₂Si-protected divinylcarbinol **18** with stoichiometric amounts of Ti(*i*-PrO)₄ and L-(+)-diisopropyltartrate (\rightarrow **19**) or D-(-)-diisopropyltartrate (\rightarrow *ent*-**19**) suffered from low diastereoselectivities (ds = 62:38)¹⁶ and moderate enantiopurities of the major diastereomer (ee = 84–85%; determined by HPLC, Scheme 4). The combined yields of the two diastereomeric monoepoxyalcohols obtained as a mixture after standard flash

Scheme 4 a) Molecular sieves 4 Å, $Ti(Oi-Pr)_4$ (1.0 equiv), L-(+)-diisopropyltartrate (1.1 equiv), CH_2Cl_2 , -25 °C, 50 min, addition of **18**, 1 h; addition of *t*-BuOOH (1.4 equiv), 5 d, addition of *t*-BuOOH (0.65 equiv), 17 h; b) Same as (a) with D-(-)-diisopropyltartrate; c) Molecular sieves 4 Å, $Ti(Oi-Pr)_4$ (1.0 equiv), L-(+)-diisopropyltartrate (1.1 equiv), CH_2Cl_2 , -25 °C, 1 h, addition of **17**, 20 min, addition of *t*-BuOOH (1.4 equiv), 2 d, addition of *t*-BuOOH (0.3 equiv), 18 h; d) Molecular sieves 4 Å, $Ti(Oi-Pr)_4$ (1.0 equiv), D-(-)-diisopropyltartrate (1.1 equiv), CH_2Cl_2 , -25 °C, 1 h, addition of **17**, 70 min, addition of *t*-BuOOH (1.4 equiv), 55 d, addition of *t*-BuOOH (0.7 equiv), 2 d. *Yield based on re-isolated starting material.

chromatography on silica gel¹⁷ were 77% and 74%, respectively. Separation of pure major diastereomer by the same technique was tedious. It delivered 39% **19** in one optical series and 19% *ent*-**19** in the other (already taking into account that 14–17% of unreacted divinylcarbinol **18** were recovered).

Success came during desymmetrizing of the PMBprotected divinylcarbinol **17** (Scheme 4): Exposure to stoichiometric amounts of L-(+)- or D-(-)-diisopropyltartrate containing SAE cocktails furnished epoxy alcohols **20** and *ent*-**20** in yields of 71% and 69%, respectively (taking into account 5–8% recovered unreacted **17**).¹⁸ Increased values of diastereo- (ds < 81:19)¹⁹ and enantioselectivity (ee = 94–95% in the major diastereomer; determined by HPLC) were observed compared to the previous desymmetrization. Repeated flash chromatography on silica gel¹⁷ provided the main diastereomers pure: 27% **20**²⁰ and 22% *ent*-**20**, respectively.

The somewhat easier purification made us continue the route towards *syn*-1,3-diol building blocks with the PMB-protected epoxyalcohols **20** (94% *ee*) and *ent*-**20** (95% *ee*) rather than with their *t*-BuMe₂Si-protected analogs²¹ **19** and *ent*-**19** using Hatakeyama's protocol^{7c} (Scheme 5). Treatment of **20** with Red-Al[®] (10 equiv) in toluene at -40 °C gave *syn*-1,3-diol, *ent*-**21**²² in 85% yield.²³ Likewise, *ent*-**20** delivered **21** (76%). On the other hand, reduction of **20** and *ent*-**20** with Red-Al[®] (4 equiv) in toluene (or THF) at 60 °C proceeded beyond *ent*-**21** and **21**. It also brought about the loss of the PMBO group by an S_N2' substitution, thereby giving diols **22**²⁴ (95% yield) and *ent*-**22** (83% yield) as the only products, respectively.

Scheme 5 a) Red-Al[®] (10 equiv), toluene, -40 °C, 5 h; b) Red-Al[®] (4 equiv), THF, 60 °C, 2 h; c) Red-Al[®] (10 equiv), toluene, -40 °C, 6 h; d) Red-Al[®] (4 equiv), toluene, 60 °C, 2 h; e) 2,2-dimethoxypropane (6 equiv), pyridinium *p*-toluenesulfonate (4 mol%), acetone, 10 °C, 16 h; f) same as (e).

In order to elucidate the relative configuration of the OH groups in 1,3-diols *ent*-**21** and *ent*-**22**, these compounds were transformed into the corresponding acetonides **23** and **24** (Scheme 5; 86% and 79% yield, respectively). Their stereostructure is *cis* as concluded from the two Rychnovsky/Evans criteria for the ¹³C NMR resonances of the protecting group of *cis*-4,6-disubstituted acetonides.²⁵ On the one hand, the ¹³C_{quat}Me₂ signals appear at $\delta = 19.69/30.13$ (**23**) and 19.76/30.11 (**24**); this matches the typical δ values of 19.66 ± 0.35 and 30.00 ± 0.30 . On the other hand, the ¹³C_{quat}Me₂ resonances are $\delta = 98.69$ (**23**) and 98.62 (**24**) and thus within the standard range of $\delta = 98.93 \pm 0.67$.

In summary, we have synthesized enantiopure syn-1,3diol building blocks, compounds **21**, **22**, and their enantiomers, from inexpensive propargyl alcohol in only 5 steps. As a key step we have desymmetrized a *cis*-configured dialkenylcarbinol by a SAE, which had not been studied previously for that kind of substrate.²⁶

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft for which we are very grateful. In addition, we thank the Wacker AG (Burghausen) for a gift of *t*-BuMe₂SiCl.

References

- For leading references on asymmetric desymmetrizations of substrates containing no stereocenter, see: (a) Tamao, K.; Tohma, T.; Inui, N.; Nakayama, O.; Ito, Y. *Tetrahedron Lett.* **1990**, *31*, 7333. (b) Shibasaki, M.; Boden, C. D. J.; Kojima, A. *Tetrahedron* **1997**, *53*, 7371. (c) Angelaud, R.; Babot, O.; Charvat, T.; Landais, Y. J. Org. Chem. **1999**, *64*, 9613. (d) Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. **2001**, *123*, 11273. (e) Evans, P. A.; Cui, J.; Buffone, G. P. Angew. Chem. Int. Ed. **2003**, *42*, 1734; Angew. Chem. **2003**, *115*, 1776.
- (2) For leading references on asymmetric desymmetrizations of substrates, which are *meso*-configured, see: (a) Hodgson, D. M.; Gibbs, A. R.; Lee, G. P. *Tetrahedron* **1996**, *52*, 14361.
 (b) La, D. S.; Alexander, J. B.; Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock, R. R. *J. Am. Chem. Soc.* **1998**, *120*, 9720. (c) Jacobsen, E. N. *Acc. Chem. Res.* **2000**, *33*, 421. (d) BouzBouz, S.; Cossy, J. *Org. Lett.* **2001**, *3*, 3995. (e) Katsuki, T. *Curr. Org. Chem.* **2001**, *5*, 663. (f) Harada, T.; Egusa, T.; Igarashi, Y.; Kinugasa, M.; Oku, A. *J. Org. Chem.* **2002**, *67*, 7080. (g) Vares, L.; Rein, T. *J. Org. Chem.* **2002**, *67*, 7226.
- (3) (a) Schreiber, S. L. Chem. Scr. 1987, 27, 563. (b) Ward, R. S. Chem. Soc. Rev. 1990, 19, 1. (c) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9. (d) Maier, M. In Organic Synthesis Highlights II; Waldmann, H., Ed.; VCH: Weinheim New York, 1995, 203. (e) Magnuson, S. R. Tetrahedron 1995, 51, 2167. (f) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765. (g) Hoffmann, R. W. Angew. Chem. Int. Ed. 2003, 42, 1096; Angew. Chem. 2003, 115, 1128.
- (4) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5976. (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
- (5) (a) Hatakeyama, S.; Sakurai, K.; Takano, S. J. Chem. Soc., Chem. Commun. 1985, 1759. (b) Häfele, B.; Schröter, D.; Jäger, V. Angew. Chem. Int. Ed. Engl. 1986, 25, 87; Angew. Chem. 1986, 98, 89. (c) Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987, 109, 1525. (d) Smith, D. B.; Wang, Z.; Schreiber, S. L. Tetrahedron 1990, 46, 4793. (e) Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 5583. (f) Jäger, V.; Hümmer, W.; Stahl, U.; Gracza, T. Synthesis 1991, 769.
- (6) Hatakeyama, S.; Sakurai, K.; Numata, H.; Ochi, N.; Takano, S. J. Am. Chem. Soc. **1988**, 110, 5201.
- (7) (a) Herunsalee, A.; Isobe, M.; Pikul, S.; Goto, T. *Synlett* 1991, 199. (b) Hatakeyama, S.; Satoh, K.; Takano, S. *Tetrahedron Lett.* 1993, *34*, 7425. (c) Esumi, T.; Fukuyama, H.; Oribe, R.; Kawazoe, K.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. *Tetrahedron Lett.* 1997, *38*, 4823. (d) Nishioka, T.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. *Tetrahedron Lett.* 1998, *39*, 5597.
- (8) (a) Omura, S.; Tanaka, H. In *Macrolide Antibiotics: Chemistry, Biology and Practice*; Omura, S., Ed.; Academic Press: New York, **1984**, 351–404. (b) Oishi, T.; Nakata, T. *Synthesis* **1990**, 635. (c) Rychnovsky, S. D. *Chem. Rev.* **1995**, 95, 2021. (d) Schneider, C. *Angew. Chem. Int. Ed.* **1998**, 37, 1375; Angew. Chem. **1998**, 110, 1445.

Downloaded by: University of Florida. Copyrighted material.

Synlett 2003, No. 12, 1813–1816 © Thieme Stuttgart · New York

- (9) Compound **16** has been previously prepared, see ref.^{7a}
- (10) Except for compound 24, all new compounds gave satisfactory ¹H NMR and IR spectra as well as correct combustion analyses.
- (11) (a) Rieke, R. D.; Uhm, S. J.; Hudnall, P. M. J. Chem. Soc., Chem. Commun. 1973, 269. (b) Rieke, R. D.; Uhm, S. J. Synthesis 1975, 452.
- (12) Procedure: (a) Avignon-Tropis, M.; Pougny, J. R. *Tetrahedron Lett.* **1989**, *30*, 4951. (b) Chou, W.-N.; Clark, D. L.; White, J. B. *Tetrahedron Lett.* **1991**, *32*, 299.
- (13) (a) Johnson, R. A.; Sharpless, K. B. In *Catalytic Asymmetric Synthesis*; Ojima, I. E., Ed.; Wiley-VCH: New York, **1993**, 103–158. (b) Katsuki, T.; Martin, V. S. *Org. React.* **1996**, 48, 1.
- (14) SAEs of *cis*-2-butene-1,4-diol mono-protected with a *tert*-butyldimethylsilyl roup: (a) Astles, P. C.; Thomas, E. J. *J. Chem. Soc., Perkin Trans. 1* 1997, 845; 85% ee.
 (b) Shibuya, H.; Kawashima, K.; Narita, N.; Ikeda, M.; Kitagawa, I. *Chem. Pharm. Bull.* 1992, 40, 1154; 84–85% ee.
- (15) SAEs of *cis*-2-butene-1,4-diol mono-protected with a PMB group: (a) Williams, R. M.; Rollins, S. B.; Judd, T. C. *Tetrahedron* 2000, *56*, 521; 88% ee. (b) Yoshino, T.; Nagata, Y.; Itoh, E.; Hashimoto, M.; Katoh, T.; Terashima, S. *Tetrahedron* 1997, *53*, 10239; 85% ee.
- (16) This was concluded from the integral ratio of the peaks attributed to 3-H [$\delta_{major} = 3.02$ (dd; **19**/*ent*-**19**), $\delta_{minor} = 3.08$ (dd)].
- (17) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- (18) In addition, we retrieved inseparable mixtures of mono- with bis-epoxides.
- (19) This was concluded from the integral ratio of the peaks attributed to 3-H [$\delta_{major} = 3.00 \text{ (dd; } 20/ent-20)$, $\delta_{minor} = 3.06 \text{(dd)}$].
- (20) cis-(2R,3S,4S)-2,3-Epoxy-1,7-bis-[4-methoxybenzyl)oxy]-5-hepten-4-ol(**20**): $[\hat{\alpha}]_{D}^{25} = -30.9$ (c = 0.58 in CHCl₃); – 94.4% ee by HPLC. ¹H NMR (500.0 MHz, CDCl₃): $\delta = 2.80$ (d, $J_{OH,4} = 2.3$ Hz, OH), 3.00 (dd, $J_{3,4}$ = 7.5 Hz, $J_{3,2}$ = 4.3 Hz, 3-H), 3.25 (m_c, probably incompletely resolved ddd: $J_{2,1-H(A)} = J_{2,1-H(B)} =$ ca. 5.7 Hz, $J_{2,3}$ = 4.3 Hz, 2-H), AB signal (δ_A = 3.63, δ_B = 3.79, $J_{AB} = 11.1$ Hz, in addition split by $J_{A,2} = 6.2$ Hz, $J_{B,2} =$ 5.4 Hz, 1-H₂), B part superimposed by 3.80 (s, $2 \times OCH_3$), AB signal ($\delta_A = 4.05$, $\delta_B = 4.11$, $J_{AB} = 12.9$ Hz, in addition split by $J_{A,6} = 5.7$ Hz, ${}^{4}J_{A,5-H} = 1.4$ Hz, $J_{B,6} = 6.7$ Hz, ${}^{4}J_{B,5-H} =$ 1.5 Hz, 7-H₂), 4.25 (br dd, $J_{4,3} = J_{4,5} = 7.5$ Hz, 4-H), 4.42 (s, 1"-H₂)*, AB signal ($\delta_A = 4.46$, $\delta_B = 4.54$, $J_{AB} = 11.4$ Hz, 1'-H₂), 5.70 (dddd, $J_{cis} = 11.3$ Hz, $J_{5,4} = 7.6$ Hz, ${}^{4}J_{5,7-H(A)} =$ ${}^{4}J_{5,7-H(B)} = 1.5$ Hz, 5-H), 5.82 (br ddd, $J_{cis} = 11.4$ Hz, $J_{6,7-H(A)} = J_{6,7-H(B)} = 6.0$ Hz, 6-H), AA'BB' signal centered at $\delta = 6.88$ and $\delta = 7.26 (2 \times C_6 H_4)$. ¹³C NMR (125.8 MHz, CDCl₃): δ = 54.73 (C-2), 55.26 (2 × OCH₃), 58.12 (C-3), 65.80 (C-7), 66.34 (C-4), 68.00 (C-1), 72.02 (C-1"), 73.20 (C-1'), 113.83, 113.96, 129.46, and 129.60 ($2 \times 2 \times C_{ortho}$, $2 \times 2 \times C_{meta}$), 129.32, 130.03, 159.28, and 159.51 ($2 \times C_{para}$, $2 \times C_{ipso}$), 130.29 (C-6), 131.71 (C-5). IR(film): 3400, 3000, 2935, 2910, 2860, 2835, 1610, 1585, 1515, 1460, 1300, 1250, 1175, 1075, 1035, 850, 820 cm⁻¹. Anal. Calcd for C23H28O6 (400.5): C, 68.98; H, 7.05. Found C, 68.99; H, 7.20.
- (21) Moreover, *tert*-butyldimethylsiloxy groups do not withstand prolonged exposure to Red-Al[®]: Berkenbusch, T. *PhD Dissertation*; Universität Freiburg: Germany, **2002**.

(22) cis-(2S,4R)-1,7-Bis-[(4-methoxybenzyl)oxy]-5-heptene-2,4-diol (*ent*-**21**): $[\alpha]_D^{25} = 14.8$ (*c* = 0.78 in CHCl₃). ¹H NMR (500.0 MHz, CDCl₃): δ = AB signal (δ _A = 1.55, $\delta_{\rm B}=1.71,\,J_{\rm AB}=14.2$ Hz, in addition split by $J_{\rm A,4}=4.4$ Hz, $J_{A,2} = 2.7$ Hz, $J_{B,2} = 9.9$ Hz, $J_{B,4} = 8.8$ Hz, $3-H_2$), 3.07 (br s, 2 × OH), AB signal (δ_A = 3.35, δ_B = 3.40, J_{AB} = 9.5 Hz, in addition split by $J_{A,2} = 7.1$ Hz, $J_{B,2} = 4.1$ Hz, 1-H₂), 3.795 and 3.804 (2 × s, 2 × OCH₃), 3.96 (m_c, 2-H), AB signal ($\delta_A =$ 4.06, $\delta_{\rm B} = 4.09$, $J_{\rm AB} = 12.4$ Hz, in addition split by $J_{\rm A,6} = 6.1$ Hz, ${}^{4}J_{A,5-H} = 1.3$ Hz, $J_{B,6} = 6.4$ Hz, $J_{B,5-H} = 1.3$ Hz, $7-H_{2}$), AB signal ($\delta_{\rm A} = 4.43$, $\delta_{\rm B} = 4.46$, $J_{\rm AB} = 11.2$ Hz, 1'-H₂), B part partly superimposed by 4.47 (s, 1"-H₂), 4.67 (ddd with incompletely resolved allylic couplings, $J_{4,5} = J_{4,3-H(B)} = 8.4$ Hz, $J_{4,3-H(A)} = 4.2$ Hz, 4-H), 5.60 (dddd, $J_{cis} = 11.4$ Hz, $J_{5,4} =$ 8.0 Hz, ${}^{4}J_{5,7-H(A)} = {}^{4}J_{5,7-H(B)} = 1.3$ Hz, 5-H), 5.68 (dddd, $J_{cis} = 11.2$ Hz, $J_{6,7-H(A)} = J_{6,7-H(B)} = 6.2$ Hz, ${}^{4}J_{6,4} = 0.9$ Hz, 6-H), AA'BB' signal centered at $\delta = 6.87$ and $\delta = 7.25$ (2 × C₆H₄). ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 39.74$ (C-3), 55.26 (2 × OCH₃), 65.54, 67.63, 70.20, 72.19, 73.06 and 74.00 (C-1, C-2, C-4, C-7, C-1', C-1"), 113.85, 127.69, 129.40, 129.50, 129.93, 129.97, 135.72, 159.32, and 159.33 (9 resonances for 10 non-equivalent nuclei: C-5, C-6, $2 \times C_6 H_4$). IR(film): 3400, 3000, 2920, 2855, 1615, 1585, 1515, 1465, 1455, 1445, 1420, 1360, 1300, 1245, 1175, 1075, 1030, 820 cm^{-1} .

Anal. Calcd for $C_{23}H_{30}O_6\,(402.5)$: C, 68.64; H, 7.51. Found: C, 68.34; H, 7.24.

- (23) Regioselective reductions of α,β-epoxy alcohols resulting in 1,3-diols (Red-Al[®]-method) or 1,2-diols (DIBAL-method):
 (a) Finan, J. M.; Kishi, Y. *Tetrahedron Lett.* **1982**, *23*, 2719.
 (b) Viti, S. M. *Tetrahedron Lett.* **1982**, *23*, 4541.
- (24) (2R,4R)-1-[(4-Methoxybenzyl)oxy]-6-heptene-2,4-diol (22): $[\alpha]_D^{25} = -1.9$ (c = 0.81 in CHCl₃). ¹H NMR (500.0 MHz, CDCl₃): δ = AB signal (δ _A = 1.53, $\delta_{\rm B} = 1.62, J_{\rm AB} = 14.4$ Hz, in addition split by $J_{\rm A,2} = J_{\rm A,4} = 9.8$ Hz, $J_{B,2} = J_{B,4} = 2.7$ Hz, 3-H₂), 2.25 (dddd, $J_{5,6} = 7.3$ Hz, $J_{5,4}$ = 6.2 Hz, ${}^{4}J_{5,7-\text{H}}(\text{E}) = {}^{4}J_{5,7-\text{H}}(\text{Z}) = 1.1$ Hz, 5-H₂), 2.91–3.28 (m, $2 \times \text{OH}$), AB signal ($\delta_A = 3.35$, $\delta_B = 3.43$, $J_{AB} = 9.4$ Hz, in addition split by $J_{A,2} = 7.1$ Hz, $J_{B,2} = 3.9$ Hz, 1-H₂), 3.81 (s, OCH₃), 3.92 (dtd with transition to higher order splitting, $J_{4,3-H(A)} = 9.8 \text{ Hz}, J_{4,5} = 6.1 \text{ Hz}, J_{4,3-H(B)} = 2.5 \text{ Hz}, 4-\text{H}), 4.04$ (dddd, $J_{2,3-H(A)} = 10.4$ Hz, $J_{2,1-H(A)} = 6.6$ Hz, $J_{2,1-H(B)} = 3.8$ Hz, $J_{2,3-H(B)} = 3.1$ Hz, 2-H), 4.48 (s, 1'-H₂), 5.09–5.14 (m, 7-H_E), 7-H_z), 5.82 (m_c, 6-H), AA'BB' signal centered at $\delta = 6.88$ and $\delta = 7.25 (C_6 H_4)$. ¹³C NMR (125.7 MHz, CDCl₃): δ = 38.71 and 42.21 (C-3, C-5), 55.26 (OCH₃), 71.02, 71.16, 73.05, and 73.99 (C-1, C-2, C-4, C-1'), 113.86 and 129.41 ($2 \times C_{ortho}$, $2 \times C_{meta}$), 117.86, 129.89, 134.51, and 159.35 (C-6, C-7, C_{para} , C_{ipso}). IR(film): 3400, 3075, 2915, 2860, 1640, 1615, 1585, 1515, 1460, 1440, 1365, 1300, 1250, 1175, 1100, 1035, 990, 920, 820 cm⁻¹. Anal. Calcd for C₁₅H₂₂O₄ (266.3): C, 67.64; H, 8.33. Found: C, 67.54; H, 8.39
- (25) (a) Rychnovsky, S. D.; Skalitzky, D. J. *Tetrahedron Lett.* **1990**, *31*, 945. (b) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. **1993**, *58*, 3511. (c) Evans, D. A.; Rieger, D. L.; Gage, J. R. *Tetrahedron Lett.* **1990**, *31*, 7099.
- (26) The asymmetric desymmetrization of a bicyclic, tertiary dialkenylcarbinol by the zirconium analog of a SAE, employing 3.0–3.4 equivalents each of Zr(*i*-PrO)₄, D-(–)-diisopropyl tartrate, and *t*-BuOOH is described in: Spivey, A. C.; Woodhead, S. J.; Weston, M.; Andrews, B. I. *Angew. Chem. Int. Ed.* **2001**, *40*, 769; *Angew. Chem.* **2001**, *113*, 791.