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Abstract
Copper oxide (CuO) nanoparticles (NPs) were prepared through a biological procedure where the Rosa canina fruit extract 
was used as a capper and reductant agent. For the three-component reaction of amines, aldehydes and alkynes (A3 coupling), 
these CuO NPs were used as an effective heterogeneous nanocatalyst. Various propargylamines were obtained in a good 
yield. Additionally, the reuse and separation of CuO NPs was extremely effective, economical and simple.
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1  Introduction

In most cases, propargylamines are used in organic chemistry 
as useful construction blocks and precursors to prepare various 
nitrogen-containing heterocyclic materials and main interme-
diates to synthesize natural products and biologically active 
drugs [1–3]. Furthermore, a number of propargylamines have 
been used to treat neuropsychiatric illnesses such as Parkin-
son’s and Alzheimer’s disease [4, 5]. Their importance leads 

to developing various synthetic approaches [6–8]. Though, 
the most direct and effective technique for preparing propar-
gylamines is via transition-metal catalyzed three-component 
coupling of an aldehyde, an amine and a terminal alkyne, 
which is identified as an A3 coupling reaction [9, 10]. Vari-
ous heterogeneous and homogeneous catalysts have recently 
been used to synthesize propargylamine through A3-coupling 
reaction based on transition metals such as Zr [11], Mn [12], 
Re [13], Fe [14, 15], Ru [16, 17], Co [18], Ir [19, 20], Ni [21, 
22], Pd [23] Cu [24–28], Ag [29–31], Au [32–35], Zn [36, 37], 
Cd [38] and Hg [39]. Among the different transition metals, 
copper has mostly been examined as it is cheap, abundant, high 
reactive and nontoxic. Although many of the catalytic sys-
tems are homogeneous, their loss at the reaction end reduces 
their efficacy, especially in industrial applications. Currently, 
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metal NPs are regarded as heterogeneous catalysts with a high 
surface-to-volume ratio. They could be appropriate substitute 
for traditional catalysis owing to their higher selectivity and 
activity [40–45].

Different chemical transformations have recently been per-
formed under the heterogeneous catalysis. Among heterogene-
ous catalysts, metal NPs such as CuO have been extensively 
used as efficient catalysts in organic reactions owing to their 
great surface areas, small dimensions, simplicity, excellent 
catalytic activity, benign character and recoverability [46–50]. 
Furthermore, copper oxide NPs and copper are cheap in com-
parison to Au, Ag, Pd, Pt, Ru and Rh, which have been exten-
sively applied as catalysts for organic transformations.

Various ways exist to synthesize CuO NPs like sonochemi-
cal [51], microwave irradiations [52], sol–gel method [53], 
one step solid-state reaction technique at ambient temperature 
[54], electrochemical approaches [55], precipitation–pyrolysis 
[56], thermal decomposition of precursor [57] or by combin-
ing electro deposition and self-catalytic mechanism. Poison-
ous substances (e.g. hydrazine hydrate, sodium borohydride, 
dimethylformamide, ethylene glycol and so on) in chemical 
techniques are highly reactive with many biological and eco-
logical difficulties. As a result, a challenge existed for finding 
a mild, harmless, suitable and a natural product to produce 
metal/metal oxides in an aqueous environment. In different 
natural materials used to construct NPs, herbs appear to be 
the most appropriate candidates as the NPs made using herbs 
are more stable and the synthesis speed is high. At present, 
simplicity, inexpensiveness and environmentally-friendliness 
of green synthesis of NPs have made it extremely important. 
Several reports, including those of Aloe barbadensis Miller 
[58, 59] and Gum Karaya [60] are available about biosynthesis 
of CuO NPs using herbs.

Indeed, green synthesis of NPs has been enhanced as a 
novel nanobiotechnology to produce economical and eco-
friendly synthetic method for extremely stable NPs. For the 
first time, owing to our considerable interest in the biosyn-
thesis of metal NPs and heterogeneous catalysts [61–73], 
we intend to report application of green synthesized CuO 
NPs as an effective heterogeneous nanocatalyst for the three-
component reaction of amines, aldehydes and alkynes (A3 
coupling) using Rosa canina fruit extract [74]. Moreover, 
the CuO NPs can be recovered and recycled several times 
without much activity loss.

2 � Experimental

2.1 � CuO NPs Green Synthesis Using Rosa canina 
Fruit Extract

After carefully cleaning and washing the fresh Rosa canina 
fruits with double-distilled water several times, to 100 mL 

of deinonized water, 10 g of the fruits were added and boiled 
in a water bath for 15 min. This mixture was cooled off 
and filtered using Whatman filter paper No. 1 to obtain an 
aqueous extract. The extract was then stored at 4 °C in a 
refrigerator for later use as a reducing and stabilizing agent. 
A 10 mL extract quantity was added dropwise to 100 mL 
of 1 mM aqueous Cu(OAc)2 solution refluxed at a tempera-
ture of 100 °C for 1 h to obtain the CuO NPs. Owing to the 
heating process, the mixtures coloration slowly changed to 
a dark brown hue over time. This issue is owing to the sur-
face plasmon resonance excitation signaling the antioxidant 
phenolics hydrogen donation behavior and CuO NPs crea-
tion within the plant. Then, the obtained precipitation was 
rinsed three times with chloroform and ethanol, respectively. 
Afterward, it was air dried for 48 h at room temperature. The 
concentration of copper oxide was 5.6 mmol/g, which was 
determined by ICP-AES.

2.2 � General Procedure for the Synthesis 
of Propargylamine Derivatives

The CuO NPs catalyst (10 mg) was poured to a mixture of 
aldehyde (1 mmol), phenylacetylene (1.2 mmol) and amine 
(1 mmol) in toluene (3 mL), and the mixture was agitated at 
100 °C. The reaction development was controlled through 
TLC. After converting the substrate fully, the mixture was 
centrifuged after cooling down to ambient temperature. The 
crude product was obtained after isolation of the catalyst 
and evaporation of the solvent. For purification, silica gel 
column chromatography (70:30, Hexane/EtOAc) was uti-
lized. Through melting points or spectral analysis, all the 
compounds were identified and their characterization was 
carried out [75–88].

3 � Results and Discussion

The FESEM and TEM measurements were applied to verify 
the nanostructure of green synthesized CuO NPs using Rosa 
canina fruit extract that was synthesized again according our 
previously report [74]. The FESEM image indicated that 
the CuO nanoparticles were encapsulated by biopolymers 
(Fig. 1a), and surface morphology of the CuO NPs had more 
regular stacked structure. TEM image of CuO NPs showed 
that this nanoparticle formed evenly dispersed nano-sized 
encapsulated in membranous light gray biopolymers shells 
(Fig. 1b). Most of these particles are in the 20–25 nm range. 
The EDX showing the presence of C, N, O, and Cu in Fig. 1c 
also confirmed the existence of biopolymers layers on the 
surface of CuO NPs.

The polyphenolic compounds have been demonstrated as 
reducing agent during the biological extract mediated prepa-
ration of nanomaterials [48, 49]. The Rosa canina extract 
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is also a rich source of the polyphenolic compounds and 
flavonoidic groups. These entire polyphenolic compounds 
may act as reducing agent for the reduction of Cu2+ ion. 
Scheme 1 shows the schematic representation of probable 
mechanism. In the first step, when extract mixed with the 
metal salt solution, the hydroxyl groups of the polyphenolic 
compounds formed the complex with the Cu2+ and reduced 
it into the Cu. Thus formed metallic copper atoms react with 
the available atmospheric oxygen to form most stable oxide 
i.e. CuO. In the next, formed CuO molecules come together 
to nucleate followed by further growth which results the 
formation of nanoparticles.

Owing to our constant interest in the biosynthesis of 
metal NPs and heterogeneous catalysts [61–73], after struc-
tural characterization of the prepared CuO NPs, their cata-
lytic activity was studied in the three-component coupling 
reaction of amines, aldehydes and alkynes (A3 coupling). 

Using benzaldehyde, morpholine and phenylacetylene, pri-
mary tests were conducted to optimize different factors such 
as time, temperature, solvents and catalyst loading. Table 1 
presents the outcomes. In this regard, the effect of catalyst 
was first studied, and as expected, desired product was not 
obtained without catalyst presenting the dispensable role 
of CuO NPs in the reaction mechanism (Table 1, entry 1). 
Using a 10 mg catalyst in toluene at 80 °C, the reaction 
yield was obtained 85% (Table 1, entry 2). In addition, the 
reaction quantitatively occurred using 10 mg of catalyst at 
100 °C (Table 1, entry 3). By decreasing the catalyst level 
to 7 and 5 mg, lower yields were achieved (Table 1, entries 
4 and 5). However, using 10 mg of catalyst in other sol-
vents such as CH2Cl2, DMF, EtOH, H2O, CH3CN and neat, 
resulted in lower reaction yields (Table 1, entries 6–11). As 
a result, we opted toluene as the best solvent, 10 mg catalyst 
and 100 °C reaction temperature as the most optimum and 

Fig. 1   a FESEM, b TEM, and c EDX data of biosynthesized CuO NPs
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effective reaction conditions to study the scope of this A3 
coupling.

Under optimal reaction conditions, other aldehydes 
reacted with various phenylacetylene and aliphatic amines, 
resulted in the A3 coupling product with good yield 
(Table 2). At the primary study of the aldehyde substrate 
scope, phenylacetylene and morpholine were used as model 
substrates and various aldehydes were studied for the 
A3-coupling reactions (Table 2, entries 1–14). The results 

demonstrate that aromatic aldehydes behavior such as func-
tional groups as –Cl, –Br, –OH, –Me, or –OMe can affect the 
A3-coupling. Furthermore, minor electronic influence was 
found that is associated with reaction of aryl aldehydes with 
electron-withdrawing groups (Table 2, entries 2–4) and gen-
eration of the relevant products in excellent yields, whereas 
replacement of electron rich groups (Table 2, entries 5–7) on 
the benzene ring lowered the performance and caused less 
yields. Furthermore, reaction of challenging heterocyclic 

Scheme 1   Probable mechanism 
for formation of CuO NPs using 
Rosa canina extract OH
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Table 1   Optimization of various conditions in the model reaction using biosynthesized CuO NPs catalyst

N

O
CHO

N
H

O

+
CuO NPs

Reaction conditions: Benzaldehyde (1.0 mmol), morpholine (1 mmol), phenylacetylene (1.2 mmol), CuO NPs, solvent (3.0 mL) for 10 h
a Yields are based on 1H NMR

Entry Catalyst (mg) Solvent T (°C) Yield (%)a

1 – Toluene 80 –
2 10 Toluene 80 85
3 10 Toluene 100 96
4 7 Toluene 100 65
5 5 Toluene 100 50
6 10 CH2Cl2 70 30
7 10 DMF 100 65
8 10 EtOH 80 60
9 10 H2O 100 50
10 10 CH3CN 70 60
11 10 – 100 35
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compounds like thiophene-2-carbaldehyde or furan-2-car-
boxaldehyde with morpholine and phenylacetylene effi-
ciently proceeded, and the corresponding propargylamines 
were obtained in good yields (Table 2, entries 8, 9). Moreo-
ver, under this optimum condition, the aliphatic aldehyde 
(cyclohexanecarbaldehyde/butanaldehyde) indicated good 
yields (Table 2, entries 10, 11). A mixture of benzaldehyde-
phenylacetylene-amine was selected to expand the scope 
of amine substrates, and various amines were examined 
(Table 2, entries 1 and 12–14). The results show that under 
optimal reaction conditions, cyclic, heterocyclic (piperidine/
pyrrolidine/morpholine) provided high yields of products 
(Table 2, entries 1 and 12, 13). However, no product was 
achieved by using aniline as a substrate (Table 2, entry 14).

Recovery of heterogeneous new catalysts is particularly 
essential in terms of economic and sustainable chemistry 
views. As a result, we studied the recovery of the CuO NPs 
catalyst for the reaction of benzaldehyde, morpholine and 
phenylacetylene under optimum reaction conditions. For this 
purpose, at the end of the reaction, through centrifugation 
and rinsing with water and ethanol twice, the catalyst was 
isolated from the reaction solution. Afterward, the catalyst 
was recycled for seven times with observing no significant 

change in the catalytic performance (Fig. 2). This reusabil-
ity demonstrates the excellent turnover and stability of the 
catalyst under working conditions.

In addition, to stablish the catalyst heterogeneity, for the 
reaction of benzaldehyde, morpholine and phenylacetylene, 
a hot filtration examination was performed using CuO NPs 
under the optimized conditions. After 5 h a 65% yield could 
be achieved from the reaction, and subsequently the catalyst 
was separated to be reapplied. No increase in yield of the 

Table 2   The reactions of aldehydes, amines and alkynes in the presence of CuO NPs catalyst

R3

+ CuO NPsR1CHO

R2
2NH

R3

R1

NR2
2

Reaction conditions: Aldehyde (1.0 mmol), amine (1 mmol), alkyne (1.2 mmol), CuO NPs (10 mg) were stirred in toluene (3.0 mL) at 100 °C 
for 10 h
a Yields are based on 1H NMR
b Earlier reference of the corresponding product

Entry R1 Amine R3 Yield (%)a Refs.b

1 Ph Morpholine Ph 96 [75]
2 4-ClC6H4 Morpholine Ph 90 [85]
3 3-ClC6H4 Morpholine Ph 95 [88]
4 4-BrC6H4 Morpholine Ph 92 [78]
5 4-OHC6H4 Morpholine Ph 88 [86]
6 4-MeC6H4 Morpholine Ph 90 [75]
7 4-OMeC6H4 Morpholine Ph 85 [86]
8 2-Thiophenyl Morpholine Ph 92 [86]
9 2-Furfuryl Morpholine Ph 90 [75]
10 Cyclohexyl Morpholine Ph 90 [86]
11 C3H7 Morpholine Ph 80 [86]
12 Ph Piperidine Ph 92 [86]
13 Ph Pyrrolidine Ph 90 [87]
14 Ph Aniline Ph 0 [86]

Fig. 2   Recycling of catalyst for the reaction of benzaldehyde, mor-
pholine and phenylacetylene
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product was observed and when the reaction for another 5 h 
was sustained following the catalyst was separated, approv-
ing the catalyst’s heterogeneous property.

Table 3 presents a comparison of a number of chosen 
procedures in the literature and current procedure, showing 
that CuO NPs is similarly or more effective catalyst in terms 
of yield and reaction time than previously-reported ones.

4 � Conclusion

In summary, a cost-effective, green, simple effective, tech-
nique was developed to synthesize CuO NPs with Rosa 
canina fruit extract as a stabilizer and reductant. It was 
determined that CuO NPs were an air stable, effective and 
cost-effective catalyst to synthesize propargylamines using a 
one-pot three-component A3-coupling reaction of aldehydes, 
amines and alkynes. The products were obtained in good to 
high yields, and the catalyst can be reutilized up to seven 
cycles with almost no performance change.
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