# Three-component condensation of 4-aminoisothiazole derivatives with aldehydes and Meldrum´s acid. Synthesis of 6,7-dihydro-4*H*-isothiazolo[4,5-*b*]pyridin-5-ones

B. V. Lichitsky, A. N. Komogortsev, R. M. Belyi, A. A. Dudinov, and M. M. Krayushkin\*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. E-mail: mkray@ioc.ac.ru

A convenient method was developed for the synthesis of previously unknown substituted 6,7-dihydro-4H-isothiazolo[4,5-b]pyridin-5-ones based on the three-component condensation of 4-aminoisothiazole hydrochlorides, Meldrum's acid, and aromatic aldehydes.

Key words: 4-aminoisothiazoles, three-component condensation, Meldrum's acid, decarboxylation, 6,7-dihydro-4H-isothiazolo[4,5-b]pyridin-5-ones.

Aminoisothiazole derivatives have bactericidal properties,<sup>1</sup> inhibit cyclin-dependent kinases (CDK) and glycogen synthase kinase 3 (GSK-3),<sup>2</sup> and are used for the synthesis of antibiotics.<sup>3,4</sup> Hence, the synthesis of new fused heterocyclic systems containing the 4-aminoisothiazole moiety is an important problem.

Previously, we have developed a general approach to the synthesis of 4,7-dihydro-5*H*-thieno[2,3-*b*]pyridin-6ones **1a**,<sup>5</sup> 6,7-dihydro-4*H*-thiazolo[4,5-*b*]pyridin-5-ones **1b**,<sup>6,7</sup> 6,7-dihydro-4*H*-thieno[3,2-*b*]pyridin-5-ones **1c**,<sup>8</sup> and 6,7-dihydro-4*H*-selenazolo[4,5-*b*]pyridin-5-ones **1d**<sup>9</sup> based on the three-component condensation of labile heterocyclic amines **2** with aldehydes **3** and Meldrum's acid **4** (Scheme 1).

In this method, the generation of aminoheterocycles 2 directly in the reaction mixture plays a key role. The generation is performed by either the *in situ* decarboxylation of vicinal aminocarboxylic acids 5, which are formed by the alkaline hydrolysis of readily available esters,  $^{5,6,8}$  or by the neutralization of stable hydrochlorides 6 with anhydrous sodium acetate.  $^{7,9}$ 

In the present study, we extended the previously developed approach based on the three-component condensation of 4-aminoisothiazole derivatives 7, which are formed *in situ* from the corresponding hydrochlorides 8, with aromatic aldehydes 3 and Meldrum's acid 4 to the synthesis of 6,7-dihydro-4H-isothiazolo[4,5-b]pyridin-5-ones 9 (Scheme 2, Table 1).

Labile amines 7 can be generated *in situ* with the use of either hydrochlorides **8**, which are prepared by the acid hydrolysis of ethyl 4-aminoisothiazole-5-carboxylates **10** (see Ref. 10) followed by the decarboxylation, or potassium 4-aminoisothiazole-5-carboxylates **11**,<sup>11</sup> which are formed by the alkali treatment of esters **10** (Scheme 3).



Our studies showed that 4-aminoisothiazole hydrochlorides 8 are the reagents of choice for the synthesis of the target 6,7-dihydro-4H-isothiazolo[4,5-b]pyridin-5-ones 9.

Fused pyridinones **9** were synthesized in acetic acid in the presence of anhydrous sodium acetate, which served as the base for the generation of free 4-aminoisothiazole **7**. It should be noted that the reaction with the use of amino

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1493–1496, July, 2009.

1066-5285/09/5807-1538 © 2009 Springer Science+Business Media, Inc.

| Com-  | Substituents                       |                                     | M.p./°C | Yield<br>(%) | Found (%)             |                     |                       | Molecular formula                                    |
|-------|------------------------------------|-------------------------------------|---------|--------------|-----------------------|---------------------|-----------------------|------------------------------------------------------|
| pound | R                                  | Ar                                  |         | (70)         | Calculated            |                     |                       |                                                      |
|       |                                    |                                     |         |              | С                     | Η                   | Ν                     |                                                      |
| 9a    | 4-Cl-C <sub>6</sub> H <sub>4</sub> | 4-Cl-C <sub>6</sub> H <sub>4</sub>  | 267—269 | 45           | <u>57.43</u><br>57.61 | $\frac{3.13}{3.22}$ | <u>7.30</u><br>7.46   | $C_{18}H_{12}Cl_2N_2OS$                              |
| 9b    | 4-Cl-C <sub>6</sub> H <sub>4</sub> | $3-MeO-C_6H_4$                      | 169—171 | 37           | <u>61.33</u><br>61.54 | $\frac{4.21}{4.08}$ | <u>7.38</u><br>7.55   | $C_{19}H_{15}ClN_2O_2S$                              |
| 9c    | 4-Cl-C <sub>6</sub> H <sub>4</sub> | 2-F-C <sub>6</sub> H <sub>4</sub>   | 186—188 | 29           | <u>60.53</u><br>60.25 | <u>3.49</u><br>3.37 | <u>7.99</u><br>7.81   | C <sub>18</sub> H <sub>12</sub> ClFN <sub>2</sub> OS |
| 9d    | 4-Cl-C <sub>6</sub> H <sub>4</sub> | Ph                                  | 222—224 | 34           | <u>63.64</u><br>63.43 | <u>3.72</u><br>3.84 | $\frac{8.07}{8.22}$   | C <sub>18</sub> H <sub>13</sub> ClN <sub>2</sub> OS  |
| 9e    | Ph                                 | 4-MeO-C <sub>6</sub> H <sub>4</sub> | 177—179 | 43           | <u>67.61</u><br>67.84 | <u>4.92</u><br>4.79 | <u>8.15</u><br>8.33   | $C_{19}H_{16}N_2O_2S$                                |
| 9f    | Ph                                 | $2,3-(MeO)_2C_6H_3$                 | 164—166 | 41           | <u>65.77</u><br>65.56 | <u>5.09</u><br>4.95 | <u>7.79</u><br>7.64   | $C_{20}H_{18}N_2O_3S$                                |
| 9g    | Ph 4-(                             | $NH_2C(O)CH_2O)-C_6H_4$             | 190—192 | 33           | <u>63.57</u><br>63.31 | <u>4.65</u><br>4.52 | <u>10.93</u><br>11.07 | $C_{20}H_{17}N_3O_3S$                                |
| 9h    | Ph                                 | 2-F-C <sub>6</sub> H <sub>4</sub>   | 144—146 | 30           | <u>66.38</u><br>66.65 | <u>4.16</u><br>4.04 | <u>8.81</u><br>8.64   | $C_{18}H_{13}FN_2OS$                                 |
| 9i    | СООН                               | Ph                                  | 226-228 | 43           | <u>57.16</u><br>56.92 | <u>3.80</u><br>3.67 | <u>10.04</u><br>10.21 | $C_{13}H_{10}N_2O_3S$                                |
| 9j    | СООН                               | 4-Cl-C <sub>6</sub> H <sub>4</sub>  | 156—159 | 46           | <u>50.79</u><br>50.57 | <u>3.05</u><br>2.94 | <u>9.25</u><br>9.07   | $C_{13}H_9ClN_2O_3S$                                 |
| 9k    | СООН                               | $4-F-C_6H_4$                        | 179—181 | 42           | <u>53.69</u><br>53.42 | <u>3.00</u><br>3.10 | <u>9.74</u><br>9.58   | $C_{13}H_9FN_2O_3S$                                  |
| 91    | СООН                               | $3-Cl-C_6H_4$                       | 123—124 | 51           | <u>50.77</u><br>50.57 | <u>3.82</u><br>2.94 | <u>9.23</u><br>9.07   | $C_{13}H_9ClN_2O_3S$                                 |
| 9m    | СООН                               | $3-MeO-C_6H_4$                      | 118-120 | 35           | <u>55.51</u><br>55.26 | <u>4.11</u><br>3.97 | <u>9.40</u><br>9.21   | $C_{14}H_{12}N_2O_4S$                                |

Table 1. Yields, melting points, and elemental analysis data for compounds 9a-m

Scheme 2



**7:** R = 4-Cl-C<sub>6</sub>H<sub>4</sub> (**a**); Ph (**b**); CO<sub>2</sub>H (**c**)

acid **8c** was performed in the presence of a twofold excess of the starting compound **8c** and sodium acetate because of instability of amino acid **8c**. The proposed scheme of the synthesis of 6,7-dihydro-4H-isothiazolo[4,5-b]pyridin-5-ones **9** involves the Michael addition of 4-aminoisothiazole **7** to arylmethylidene derivative **12**, which is

### Scheme 3



**8–10:** R = 4-Cl-C<sub>6</sub>H<sub>4</sub> (a), Ph (b), CO<sub>2</sub>H (8c), CO<sub>2</sub>Et (10c), CO<sub>2</sub>K (11c)

formed *in situ* from aldehydes and Meldrum's acid, followed by the intramolecular cyclization accompanied by the elimination of  $CO_2$  and acetone molecules (Scheme 4).

The newly synthesized compounds are crystalline solids, whose structures were confirmed by elemental analy-

#### Scheme 4



sis and <sup>1</sup>H NMR spectroscopy (see Tables 1 and 2). The <sup>1</sup>H NMR spectra of reaction products **9** show characteristic signals for the methine protons at  $\delta 4.67-5.00$  and for the nonequivalent protons of the methylene unit at  $\delta 2.81-3.02$ , which agree well with the data published in the literature for related compounds.<sup>5–9</sup>

To sum up, we developed a new general method for the synthesis of the previously unknown substituted 6,7-di-hydro-4H-isothiazolo[4,5-b]pyridin-5-ones based on the

three-component condensation of 4-aminoisothiazole hydrochlorides, Meldrum's acid, and aromatic aldehydes.

## Experimental

The <sup>1</sup>H NMR spectra were recorded on a Bruker Avance II 300 instrument (300 MHz) in DMSO-d<sub>6</sub>. The melting points were measured on a Boetius hot-stage apparatus and are uncorrected. The course of the reactions was monitored and the purity

**Table 2.** <sup>1</sup>H NMR spectra (DMSO-d<sub>6</sub>,  $\delta$ , *J*/Hz) of compounds **9a**-m

| Com-<br>poundR $H-C-H$ $H-C-H$ CHArN9a7.56 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.56 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.56 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.56 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.56 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.74 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J=8);<br>7.81 (J=0,7)<br>7.81 (J=16,6)<br>7.74 (J=16,6)<br>7.74 (J=16,6)<br>7.74 (J=16,7)<br>7.78 (M, 2 H, Ph)<br>7.74 (J=16,6)<br>7.74 (J=16,6)<br>7.74 (J=16,6)<br>7.74 (J=16,7)<br>7.78 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9);<br>7.76 (H, 2 H, C <sub>6</sub> H <sub>4</sub> , J=9); | H<br>1 H) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , I H)    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .23       |
| 9b7.56 (d, 2 H, C_6H_4, J = 8);<br>7.74 (d, 2 H, C_6H_4, J = 8);<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .19       |
| 9c7.56 (d, 2 H, C_6H_4, J = 8);<br>7.74 (d, 2 H, C_6H_4, J = 8)<br>7.56 (d, 2 H, C_6H_4, J = 8)<br>7.56 (d, 2 H, C_6H_4, J = 8);<br>7.74 (d, 2 H, C_6H_4, J = 8)<br>7.74 (d, 2 H, C_6H_4, J = 9);<br>7.68 - 7.78 (m, 2 H, Ph)<br>7.74 (J = 16, 6)3.72<br>(J = 16, 9)<br>(J = 16, 9)<br>(J = 6, 9)<br>7.28 (d, 2 H, C_6H_4, J = 9);<br>3.75 (s, 3 H, MeO)3.74 (s, 3 H, MeO)<br>7.1-7.45 (m, 4 H, C_6H_3);100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>101<br>1019c7.41-7.58 (m, 3 H, Ph);<br>7.41-7.58 (m, 3 H, Ph);<br>2.812.812.934.926.70-6.80 (m, 1 H, C_6H_3);100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 9c7.56 (d, 2 H, C_6H_4, J = 8);2.833.025.007.1-7.45 (m, 4 H, C_6H_4)107.74 (d, 2 H, C_6H_4, J = 8)(J = 16, 8)(J = 16, 7)(J = 7, 8)9d7.56 (d, 2 H, C_6H_4, J = 8);2.902.904.757.23-7.45 (m, 4 H, C_6H_5)107.74 (d, 2 H, C_6H_4, J = 8)(J = 0, 7)(J = 0, 7)(J = 7, 7)79e7.43-7.56 (m, 3 H, Ph);2.812.914.676.94 (d, 2 H, C_6H_4, J = 9);107.68-7.78 (m, 2 H, Ph)(J = 16, 6)(J = 16, 9)(J = 6, 9)7.28 (d, 2 H, C_6H_4, J = 9);109f7.41-7.58 (m, 3 H, Ph);2.812.934.926.70-6.80 (m, 1 H, C_6H_3);10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .25       |
| 9d $7.56 (d, 2 H, C_6H_4, J=8);$ $2.90$ $2.90$ $4.75$ $7.23-7.45 (m, 4 H, C_6H_5)$ 10 $7.74 (d, 2 H, C_6H_4, J=8)$ $(J=0, 7)$ $(J=0, 7)$ $(J=7, 7)$ 9e $7.43-7.56 (m, 3 H, Ph);$ $2.81$ $2.91$ $4.67$ $6.94 (d, 2 H, C_6H_4, J=9);$ 10 $7.68-7.78 (m, 2 H, Ph)$ $(J=16, 6)$ $(J=16, 9)$ $(J=6, 9)$ $7.28 (d, 2 H, C_6H_4, J=9);$ 10 $3.75 (s, 3 H, MeO)$ 9f $7.41-7.58 (m, 3 H, Ph);$ $2.81$ $2.93$ $4.92$ $6.70-6.80 (m, 1 H, C_6H_3);$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .20       |
| 9e7.43-7.56 (m, 3 H, Ph);<br>7.68-7.78 (m, 2 H, Ph)2.81<br>$(J = 16, 6)$ 2.91<br>$(J = 16, 9)$ 4.67<br>$(J = 6, 9)$ 6.94 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J = 9);<br>7.28 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J = 9);<br>3.75 (s, 3 H, MeO)10<br>9f9f7.41-7.58 (m, 3 H, Ph);<br>$2.81$ 2.81<br>$2.93$ 2.93<br>$4.92$ 4.67<br>$6.70-6.80 (m, 1 H, C6H3);6.70-6.80 (m, 1 H, C6H3);1010$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 7.68-7.78 (m, 2 H, Ph) $(J = 16, 6)$ $(J = 16, 9)$ $(J = 6, 9)$ 7.28 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J = 9);<br>3.75 (s, 3 H, MeO)9f7.41-7.58 (m, 3 H, Ph);2.812.934.926.70-6.80 (m, 1 H, C <sub>6</sub> H <sub>3</sub> );10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).11      |
| 9f 7.41-7.58 (m, 3 H, Ph); 2.81 2.93 4.92 3.75 (s, 3 H, MeO)   6.70-6.80 (m, 1 H, C <sub>6</sub> H <sub>3</sub> ); 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| <b>9f</b> 7.41–7.58 (m, 3 H, Ph); 2.81 2.93 4.92 $6.70-6.80$ (m, 1 H, C <sub>6</sub> H <sub>3</sub> ); 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ).11      |
| 7.65–7.79 (m, 2 H, Ph) $(J = 16, 8)$ $(J = 16, 7)$ $(J = 7, 8)$ 6.98–7.11 (m, 2 H, C <sub>6</sub> H <sub>3</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 3.81 (s, 3 H, MeO);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 3.82 (s, 3 H, MeO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| <b>9g</b> 7.45–7.60 (m, 3 H, Ph); 2.86 2.93 4.72 $6.85-7.02$ (m, 1 H, C <sub>6</sub> H <sub>4</sub> ); 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .13       |
| 7.68–7.81 (m, 2 H, Ph) $(J = 16, 8)$ $(J = 16, 7)$ $(J = 7, 8)$ 7.26–7.44 (m, 3 H, C <sub>6</sub> H <sub>4</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 6.85 - 7.02 (m, 2 H, NH <sub>2</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 4.41 (s, 2 H, CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| <b>9h</b> 7.45–7.57 (m, 3 H, Ph); 2.84 3.02 5.00 $7.15-7.44$ (m, $4$ H, $C_6H_4$ ) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .19       |
| 7.67–7.81(m, 2 H, Ph) $(J = 16, 7)$ $(J = 16, 7)$ $(J = 7, 7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| <b>9i</b> 13.20–14.25 (br.s, 1 H) 2.86 2.98 4.81 7.22–7.41 (m, 5 H, Ph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .17       |
| (J = 16, 8) $(J = 16, 7)$ $(J = 7, 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| <b>9j</b> 12.40–13.01 (br.s, 1 H) 2.86 2.96 4.83 $7.34 (d, 2 H, C_6H_4, J=8);$ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .17       |
| (J = 16, 8) $(J = 16, 7)$ $(J = 7, 8)$ 7.44 (d, 2 H, C <sub>6</sub> H <sub>4</sub> , J = 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| <b>9k</b> 13.20–14.68 (br.s, 1 H) 2.86 2.95 4.82 $7.14-7.27$ (m, 2 H, C <sub>6</sub> H <sub>4</sub> ); 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .16       |
| (J = 16, 8) $(J = 16, 7)$ $(J = 7, 8)$ $7.31-7.45$ (m, 2 H, C <sub>6</sub> H <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| <b>91</b> 13.20–14.68 (br.s, 1 H) 2.89 2.99 4.84 $7.24-7.49$ (m, 4 H, C <sub>6</sub> H <sub>4</sub> ) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .19       |
| (J = 16, 8) $(J = 16, 7)$ $(J = 7, 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| <b>9m</b> 13.20–14.68 (br.s, 1 H) 2.91 2.91 4.76 6.80–6.97 (m, 1 H, C <sub>6</sub> H <sub>4</sub> ); 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .15       |
| (J = 0, 8) $(J = 0, 8)$ $(J = 8, 8)$ 7.23-7.35 (m, 3 H, C <sub>6</sub> H <sub>4</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 3.74 (s, 3 H, MeO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |

of the reaction products was checked by TLC on Merck Silica gel 60 F254 plates using an ethyl acetate—hexane mixture as the eluent.

Esters 10 and aminoisothiazole hydrochlorides 8a-c were synthesized according to methods described in the literature.<sup>10</sup>

**3,7-Diaryl-6,7-dihydro-4***H***-isothiazolo[4,5-***b***]pyridin-5-ones 9a—h (general procedure). A mixture of 4-aminoisothiazole hydrochloride 8a,b (2 mmol), anhydrous sodium acetate (0.16 g, 2 mmol), Meldrum's acid (0.32 g, 2.3 mmol), and the corresponding aldehyde (2.15 mmol) in acetic acid (7 mL) was refluxed for 2 h and concentrated** *in vacuo***. The residue was recrystallized from aqueous ethanol, filtered off, and washed on a filter with aqueous ethanol and water.** 

7-Aryl-5-oxo-6,7-dihydro-4*H*-isothiazolo[4,5-*b*]pyridine-3carboxylic acids 9i—m (general procedure). A mixture of hydrochloride 8c (0.72 g, 4 mmol), anhydrous sodium acetate (0.33 g, 4 mmol), Meldrum's acid (0.32 g, 2.2 mmol), and the corresponding aldehyde (2 mmol) in acetic acid (7 mL) was refluxed for 2 h and concentrated *in vacuo*. The residue was dissolved in aqueous ethanol, and then concentrated hydrochloric acid (0.5 mL) was added to the solution. The precipitate that formed was filtered off and dissolved in a 0.6 *M* NaOH solution (10 mL). The alkaline solution was filtered from insoluble impurities and neutralized with concentrated hydrochloric acid. The precipitate that formed was filtered off and washed on a filter with water.

#### References

1. US Pat. 6069161, Chem. Abstr., 129: 77912.

2. WO Pat. 2006008545, Chem. Abstr., 144: 170981.

- 3. R. W. Burli, G. Y. White, E. E. Baird, S. M. Touami, S. Taylor, J. A. Kaizerman, H. E. Mozer, *Biorg. Med. Chem. Lett.*, 2002, **12**, 2591.
- 4. J. A. Kaizerman, M. I. Gross, G. Y. White, J.-X. Hu, W. Duan, E. E. Baird, K. W. Johnson, R. D. Tanaka, H. E. Moser, R. W. Burli, *J. Med. Chem.*, 2003, 46, 3914.
- B. V. Lichitsky, A. N. Komogortsev, A. A. Dudinov, M. M. Krayushkin, *Izv. Akad. Nauk, Ser. Khim.*, 2008, 2133 [*Russ. Chem. Bull., Int. Ed.*, 2008, 57, 2175].
- A. A. Dudinov, B. V. Lichitsky, A. N. Komogortsev, M. M. Krayushkin, *Mendeleev Commun.*, 2009, 19, 87.
- A. A. Dudinov, B. V. Lichitsky, I. A. Antonov, A. N. Komogortsev, P. A. Belyakov, M. M. Krayushkin, *Izv. Akad. Nauk, Ser. Khim.*, 2008, 1707 [*Russ. Chem. Bull., Int. Ed.*, 2008, 57, 1740].
- B. V. Lichitsky, R. M. Belyi, A. N. Komogortsev, A. A. Dudinov, M. M. Krayushkin, *Izv. Akad. Nauk, Ser. Khim.*, 2009, 382 [*Russ. Chem. Bull., Int. Ed.*, 2009, **58**, 387].
- A. A. Dudinov, A. N. Komogortsev, B. V. Lichitsky, M. M. Krayushkin, *Phosphorus, Sulfur, Silicon, Related Elements*, 2009 (in press).
- 10. K. Gewald, P. Bellman., Liebigs Ann. Chem., 1979, 10, 1534.
- S. Mataka, K. Takahashi, M. Tashiro, J. Heterocycl. Chem., 1985, 22, 1497.

Received February 11, 2009