

Bioorganic & Medicinal Chemistry Letters 11 (2001) 3035-3039

## Beta 3 Agonists. Part 1: Evolution from Inception to BMS-194449<sup>†</sup>

W. N. Washburn,\* P. M. Sher, K. M. Poss, R. N. Girotra, P. J. McCann, A. V. Gavai, A. B. Mikkilineni, A. Mathur, P. Cheng, T. C. Dejneka, C. Q. Sun, T. C. Wang, T. W. Harper, A. D. Russell, D. A. Slusarchyk, S. Skwish, G. T. Allen, D. E. Hillyer, B. H. Frohlich, B. E. Abboa-Offei, M. Cap, T. L. Waldron, R. J. George, B. Tesfamariam, C. P. Ciosek, Jr., D. Ryono, D. A. Young, K. E. Dickinson, A. A. Seymour, C. M. Arbeeny and R. E. Gregg

Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, NJ 08543, USA

Received 26 June 2001; accepted 7 September 2001

Abstract—Screening of the BMS collection identified 4-hydroxy-3-methylsulfonanilidoethanolamines as full beta 3 agonists. Substitution of the ethanolamine nitrogen with a benzyl group bearing a *para* hydrogen bond acceptor promoted  $\beta_3$  selectivity. SAR elucidation established that highly selective  $\beta_3$  agonists were generated upon substitution of  $C_{\alpha}$  with either benzyl to form (*R*)-1,2diarylethylamines or with aryl to generate 1,1-diarylmethylamines. This latter subset yielded a clinical candidate, BMS-194449 (**35**).<sup>1</sup> © 2001 Elsevier Science Ltd. All rights reserved.

The incidence of obesity and non-insulin dependent diabetes mellitus (Type 2) is increasing at an alarming rate in Western countries.<sup>2,3</sup> Our goal was to utilize  $\beta_3$ adrenergic mediated thermogenesis to modulate obesity and to lower plasma glucose and insulin levels thereby ameliorating Type 2 diabetes.<sup>4</sup> Treatment of diabetic rodents for 10–15 days with  $\beta_3$  agonists results in loss of white adipose tissue (WAT), proliferation of brown adipose tissue (BAT), and concurrent normalization of elevated plasma glucose, insulin, nonesterified fatty acid (NEFA), and triglyceride levels.<sup>5</sup> In rodents, activation of  $\beta_3$  receptors, localized almost exclusively on both brown and white adipocytes, elevates c-AMP levels thereby stimulating lipolysis in WAT and upregulating BAT specific genes.<sup>6</sup> The increased expression of thermogenin, a BAT specific protein that uncouples fatty acid oxidation from oxidative phosphorylation, leads to increased energy expenditure. Elevated NEFA consumption necessitates increased glucose metabolism to maintain homeostasis. The resulting decrease in plasma glucose leads to diminished insulin secretion and peripheral insulin resistance.

Since large adult mammals including man do not have defined BAT depots,<sup>7</sup> our strategy was to utilize full rather than partial  $\beta_3$  agonists to enhance the probability of eliciting a thermogenic response from whatever BAT is present in man. To minimize  $\beta_1$  and  $\beta_2$  side effects, structural features were sought to reduce  $\beta_1$  and  $\beta_2$  affinities ( $K_i$ ) and intrinsic activity (IA).  $K_i$  for  $\beta_1$ ,  $\beta_2$ , and  $\beta_3$  and  $\beta_3$  IA were determined using membranes isolated from CHO cells transfected with human  $\beta_1$ ,  $\beta_2$ , or  $\beta_3$  adrenergic receptors to insure that species dependent differences in  $\beta_3$  responsiveness did not contribute to clinical failure as was the case for BRL 37344 or CL316243, for which rodent tissues had been employed for SAR elucidation.<sup>3,8,9</sup>

Screening of the Bristol-Myers Squibb compound collection identified a subset of the  $\beta_2$  selective chemotype, 4-hydroxy-3-methylsulfonanilidoethanolamines that were full  $\beta_3$  agonists (1–8).<sup>10</sup> Full adrenergic agonism of this chemotype had been attributed to the bioisosteric relationship between the left-hand portion of this class and the catechol moiety of natural ligands adrenaline and noradrenaline.<sup>11</sup>  $K_i$   $\beta_3$  for this chemotype was a function of the ethanolamine *N*-substituent; alkyl moieties strongly favored  $\beta_2$  whereas benzyl or phenethyl promoted  $\beta_3$  particularly if the aryl ring bore a *p*-methoxyl (see Table 1). Phenethyl containing derivatives **4–6** 

<sup>\*</sup>Corresponding author. Fax: +1-609-818-3550; e-mail: william. washburn@bms.com <sup>†</sup>See ref 1.

were particularly promising as a starting point in view of the 14-fold increase in selectivity for  $\beta_3$  relative to  $\beta_2$  upon progressively increasing the number of methoxy substituents.

We anticipated that replacement of the methoxyl of **5** with an oxyacetic acid residue (**10**) would further increase selectivity for  $\beta_3$  since we and others had converted *m*-chlorophenylethanolamines to  $\beta_3$  selective ligands by introduction of an appropriately oriented anionic group.<sup>14</sup> However, this modification diminished  $\beta_3 K_i$  100-fold relative to **5**; moreover, steric repulsion was not the explanation since the methyl ester **9** bound 16-fold tighter than **10**.<sup>15</sup> Similar results were also obtained for the corresponding *m*-substituted phenoxy-acetic acid/ester (data not shown). We attributed these failures to the difference in interactions of the left-hand of these two chemotypes with the adrenergic receptors. Hydroxysulfonanilides being a catechol bioisostere

Table 1. Comparison of  $\beta_3$  AR agonist activity and selectivity versus  $\beta_1$  and  $\beta_2$  for compounds  $1-10^{12,13}$ 



<sup>a</sup>Racemic mixture.

<sup>b</sup>Selectivity is defined as the ratio of  $\beta_1 K_i$  or  $\beta_2 K_i$  to  $\beta_3 K_i$ .

**Table 2.** Comparison of  $\beta_3$  AR agonist activity and selectivity versus  $\beta_1$  and  $\beta_2$  for compounds **11–17**<sup>12,13</sup>

| Me S N N R             |                                                    |               |              |                          |                |
|------------------------|----------------------------------------------------|---------------|--------------|--------------------------|----------------|
| Compd                  | R                                                  | $\beta_3 K_i$ | $\beta_3 IA$ | Selectivity <sup>b</sup> |                |
|                        |                                                    | (IIIVI)       | (70 act)     | $vs \ \beta_1$           | $vs \ \beta_2$ |
| 11 <sup>a</sup>        | (CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H  | 87,000        | 57           | 1                        | 0.3            |
| 12 <sup>a</sup>        | $(CH_2)_4CO_2Me$                                   | 570           | 89           | 26                       | 5              |
| 13 <sup>a</sup>        | pentyl                                             | 320           | 77           | 8                        | 0.5            |
| <b>14</b> <sup>a</sup> | (CH <sub>2</sub> ) <sub>4</sub> CH <sub>2</sub> OH | 480           | 72           | 10                       | 0.5            |
| 15 <sup>a</sup>        | (CH <sub>2</sub> ) <sub>4</sub> CONHMe             | 1600          | 104          | 7                        | 0.5            |
| <b>16</b> <sup>a</sup> | cyclohexyl                                         | 4300          | 80           | 7                        | 0.7            |
| 17 <sup>a</sup>        | Ph                                                 | 360           | 133          | 15                       | 3              |
| 28                     | $(\pm) \operatorname{CH}_2\operatorname{Ph}$       | 1500          |              | 6                        | 0.3            |

<sup>a</sup>Diastereomeric mixture.

<sup>b</sup>Selectivity is defined as the ratio of  $\beta_1 K_i$  or  $\beta_2 K_i$  to  $\beta_3 K_i$ .

should bind in a specific fashion to fix the molecular orientation; whereas, the loose interactions of the *m*-chlorophenyl moiety of BRL 37344 and CL316243 would be more accommodating.

Before abandoning this approach, 11, bearing a conformationally mobile valeric acid side chain as a C $\alpha$ substituent of 4, was synthesized to maximize the probability of achieving proper positioning of the anionic charge (Table 2).<sup>16</sup> Despite this feature,  $\beta_3$  affinity of 11 was diminished relative to that of 4; whereas, that of the corresponding methyl ester 12 was so enhanced that 12 became  $\beta_3$  selective. This effect was unique to the methyl valerate side chain since the corresponding hydrocarbon 13, alcohol 14, and amide 15 were  $\beta_2$  selective. In the course of exploring the SAR of this  $\alpha$  appendage, the chain was cyclized to generate 16 and subsequently aromatized to form 17. Although 16 bearing a cyclohexyl moiety was  $\beta_2$  selective. 17 containing a planar phenyl was  $\beta_3$  selective.

Discovery that the 1,2-phenylethylamine moiety of 17 significantly enhanced  $\beta_3$  affinity of hydroxysulfonanilidoethanolamines was a critical advance. Small lipophilic or modestly polar *para* and/or *meta* substituents of the  $\alpha$  aryl ring increased  $\beta_1$  and  $\beta_2$  affinity 2- to 4fold. Commensurate increases were found for  $\beta_3$  affinity unless the *para* substituent was methoxy (18). The 10- to 12-fold further enhancement of  $\beta_3$  affinity due to the *para* methoxyl of 18, 20, and 26 was not emulated by the methyls of 22, chlorines of 23 or ethyls of 24. The *para* methoxyl was the salient feature since an additional *meta* methoxyl (20) modestly enhanced  $\beta_3$  binding whereas *ortho* substitution (21) decreased  $\beta_3$  affinity 2-fold (Table 3).

The similarity of this effect to that observed with methyl ester 12 suggested that the effect was due to an appropriately oriented alkoxy fragment attached to a  $sp^2$  carbon. We suggest that the enhanced affinity is not steric

**Table 3.** Comparison of  $\beta_3$  AR agonist activity and selectivity versus  $\beta_1$  and  $\beta_2$  for compounds **18–28**<sup>12,13</sup>

|                                                                                                   | Me - S<br>HO<br>HO                                                                   | OH H                          | X<br>X                              |                                |                         |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|--------------------------------|-------------------------|
| Compd                                                                                             | Х                                                                                    | $\beta_3 K_i$                 | $\beta_3$ IA (% act)                | Selectivity <sup>b</sup>       |                         |
|                                                                                                   |                                                                                      | (1111)                        | (70 act)                            | $vs \ \beta_1$                 | $vs \ \beta_2$          |
| 1 <b>8</b> a                                                                                      | 4-OMe                                                                                | 44                            | 99                                  | 60                             | 8                       |
| <b>19</b> a                                                                                       | 3-OMe                                                                                | 230                           | 99                                  | 16                             | 2                       |
|                                                                                                   | 3.1 (OMe)                                                                            | 33                            | 105                                 | 60                             | -                       |
| 20 <sup>a</sup>                                                                                   | <b>5,4-(ONIC)</b> <sub>2</sub>                                                       | 55                            | 105                                 | 69                             | 8                       |
| 20 <sup>a</sup><br>21 <sup>a</sup>                                                                | $2,4-(OMC)_2$                                                                        | 70                            | 103                                 | 69<br>37                       | 8<br>3                  |
| 20 <sup>a</sup><br>21 <sup>a</sup><br>22 <sup>a</sup>                                             | $2,4-(OMe)_2$<br>$3,4-(Me)_2$                                                        | 70<br>133                     | 103<br>102<br>79                    | 69<br>37<br>43                 | 8<br>3<br>3             |
| 20 <sup>a</sup><br>21 <sup>a</sup><br>22 <sup>a</sup><br>23 <sup>a</sup>                          | $2,4-(OMe)_2$<br>$3,4-(Me)_2$<br>$3,4-(Cl)_2$                                        | 70<br>133<br>414              | 103<br>102<br>79<br>97              | 69<br>37<br>43<br>9            | 8<br>3<br>1             |
| 20 <sup>a</sup><br>21 <sup>a</sup><br>22 <sup>a</sup><br>23 <sup>a</sup><br>24 <sup>a</sup>       | $2,4-(OMe)_2$<br>$3,4-(Me)_2$<br>$3,4-(Cl)_2$<br>$3,4-(Cl)_2$<br>$3,4-(Et)_2$        | 70<br>133<br>414<br>520       | 103<br>102<br>79<br>97<br>91        | 69<br>37<br>43<br>9<br>6       | 8<br>3<br>1<br>0.5      |
| 20 <sup>a</sup><br>21 <sup>a</sup><br>22 <sup>a</sup><br>23 <sup>a</sup><br>24 <sup>a</sup><br>26 | $2,4-(OMe)_2$<br>$3,4-(Me)_2$<br>$3,4-(Cl)_2$<br>$3,4-(El)_2$<br>$(R,R) 3,4-(OMe)_2$ | 70<br>133<br>414<br>520<br>11 | 103<br>102<br>79<br>97<br>91<br>112 | 69<br>37<br>43<br>9<br>6<br>63 | 8<br>3<br>1<br>0.5<br>6 |

<sup>a</sup>Diastereomeric mixture.

<sup>b</sup>Selectivity is the ratio of  $\beta_1 K_i$  or  $\beta_2 K_i$  to  $\beta_3 K_i$ .

or electronic in origin, but rather stems from ability of *p*-methoxy moiety of the  $\alpha$  aryl ring to function as an Hbond acceptor. Although proper spatial presentation of two aryl rings are required to achieve full benefit, this effect is also operative for *N*-benzyl- and *N*-phenethylhydroxysulfonanilidoethanolamines since  $\beta_3$  affinity increased 8- and 3-fold upon *para* methoxylation of respectively 7 and 4 to generate 8 and 5. Thus, in this instance,  $\beta_3$  selectivity was induced by increasing  $\beta_3$ affinity whereas  $\beta_3$  selectivity had been previously achieved for BRL 37344, CL316243, and other related agonists by introduction of an acidic moiety that disfavored  $\beta_1$  and  $\beta_2$  binding.<sup>13</sup>

Knowing that  $\beta_3$  agonists required a *R* configuration at the hydroxylic center,<sup>10</sup> the *R*,*R* and *R*,*S* diastereomers **26** and **27** comprising **20** were prepared by a route analogous to that outlined in Scheme 1, entailing sequential alkylation of racemic 2-phenyl-1-(3,4-dimethoxyphenyl)ethyl amine with TBS protected (*R*)-iodohydrin **25**, deprotection, and HPLC separation of diastereomers.<sup>17</sup> The  $\beta_3$  affinity for the *R*,*R* diastereomer **26** was 30-fold greater than that of the *R*,*S* isomer **27** thereby establishing the preferred spatial orientation of the rings. A similar pattern for  $\beta$  affinities and  $\beta_3$  IA was observed for 17 other *R*,*R*/*R*,*S* pairs of diastereomers (data not shown).<sup>18</sup>

Compounds **28** and **29** (Tables 2 and 4, respectively) were prepared in an attempt to exploit the ability of a neighboring aryl ring to promote  $\beta_3$  selectivity while concurrently symmetrizing the amine substituent to reduce the number of chiral centers. Unfortunately, the



Scheme 1. Reagents and conditions: (a)  $CH_3SO_2Cl$ , pyridine, 93%; (b)  $CuBr_2$ , EtOAc,  $CHCl_3$ , 73%; (c) (*R*)-2-methyl-CBS-oxazaborolidine, BH<sub>3</sub>.THF, -10°C, 86%; (d) NaI, acetone, 92%; (e) Et<sub>3</sub>SiCl, imidazole, DMAP, DMF, 70%; (f)  $CHClF_2$ , 30% aq NaOH/*i*PrOH, 65°C, 84%; (g) NH<sub>2</sub>OH, 20°C, 95%; (h) Zn, HOAc; 90%; (i) diisopropylethylamine, THF, 140°C; NH<sub>4</sub>F, THF, 80%; (j) H<sub>2</sub>, Pd/C, methanol, 80%.

*N*-1,3-diphenyl-2-propylamine derivative **28** was  $\beta_2$  selective, presumably due to increased conformational flexibility of the 1,3-diarylpropyl substituent. Consequently, this series was not further pursued.

In contrast, since constraints inherent in the N-benzhydryl moiety maintained  $\beta_3$  selectivity for **29**, subsequent synthetic efforts focused on the 1,1-diarylmethylamine series. This effort, exploiting the influence of hydrogen bond accepting para substituents on activity at both the  $\beta_1$  and  $\beta_3$  receptors, culminated with 34 and 35 (Table 4). Subsequently, incorporation of strongly electron donating substituents was shown to be undesirable. Both 33 and 34 were more prone to undergo metabolic cleavage and solvolysis resulting in formation of a nonselective  $\alpha$  and  $\beta$  adrenergic agonist, 4-hydroxy-3methylsulfonanilidoethanolamine<sup>11</sup> 36 (Table 1). Methylation of  $C_{\alpha}$  (Z = Me) was not beneficial since  $\beta_1$ and  $\beta_2$  affinity of **37** and **38** preferentially increased over  $\beta_3$ . In addition, the probability of acid catalyzed formation of 36 was enhanced. As illustrated by 39 (Z = CONH<sub>2</sub>), quaternizing  $C_{\alpha}$  with an electronegative moiety reduced affinities at all three  $\beta$  receptors, possibly due to the inductive effect attenuating the ethanolamine basicity. The increase in  $\beta_3$  affinity and IA correlated with hydrogen bonding capabilities of the para substituent. Increasing substituent lipophilicity modulated  $\beta_1$  IA as illustrated by generation of a weak partial  $\beta_1$  agonist by replacement of the methoxyl of 34 with OCHF<sub>2</sub> of 35.

In vivo potency and the functional margin of separation between  $\beta_3$  mediated effects versus  $\beta_1$  or  $\beta_2$  dependent events were determined by iv administration of promising  $\beta_3$  agonists to ketamine anesthetized African green

Table 4.  $\beta_1$ ,  $\beta_2$ , and  $\beta_3$  binding affinity and IA of compounds **29**–**39**<sup>12,13</sup>



| Compd                  | R                   | Z                       | $K_i \beta_3$<br>(nM) | IA β <sub>3</sub><br>(%) | Selectivity     |                 | IA $\beta_1$ |
|------------------------|---------------------|-------------------------|-----------------------|--------------------------|-----------------|-----------------|--------------|
|                        |                     |                         |                       |                          | $vs \; \beta_1$ | $vs \; \beta_2$ | (70)         |
| <b>29</b> ª            | Н                   | Н                       | 5800                  | 44                       | 5               | 5               |              |
| 30                     | CONMe <sub>2</sub>  | Н                       |                       | 43                       |                 |                 |              |
| <b>31</b> <sup>a</sup> | CH <sub>2</sub> OMe | Н                       | 980                   | 78                       | 46              | 13              |              |
| 32                     | F                   | Н                       | 2800                  | 70                       | 3               | 2               | 48           |
| 33                     | NHAc                | Н                       | 300                   | 96                       | 17              | 3               | 88           |
| 34                     | OMe                 | Н                       | 81                    | 100                      | 17              | 22              | 85           |
| 35                     | $OCHF_2$            | Н                       | 160                   | 77                       | 8               | 7               | 24           |
| 37                     | OMe                 | Me                      | 20                    | 79                       | 3               | 8               | 79           |
| 38                     | $OCHF_2$            | Me                      | 81                    | 94                       | 2               | 2               |              |
| 39                     | OMe                 | $\operatorname{CONH}_2$ | 220                   | 106                      | 3               | 10              |              |

<sup>a</sup>Racemic mixture.

 ${}^{b}\beta_{1}$  IA was determined by measuring the acceleration in contraction of spontaneously beating guinea pig atria relative to that induced by isoproterenol.<sup>19</sup>

Table 5. Response of African green monkeys to iv injection of 26 and $35^{a}$ 

| Compd | Lipolysis<br>ED <sub>50</sub> (mg/kg) | $\beta_1$ Margin before onset of tachycardia | $\beta_2$ Margin before decrease of serum K <sup>+</sup> |
|-------|---------------------------------------|----------------------------------------------|----------------------------------------------------------|
| 26    | 0.03                                  | < 3                                          | 3                                                        |
| 35    | 0.08                                  | >6; <12                                      | > 60                                                     |

<sup>a</sup>The margin of separation was the ratio of the dose that produced the onset (statistically significant) of a  $\beta_1$  or  $\beta_2$  event to the ED<sub>50</sub> for lipolysis.

monkeys.  $\beta_1$  agonist activity was reflected by tachycardia;  $\beta_2$ , by a decrease in serum K<sup>+</sup> levels;<sup>20</sup>  $\beta_3$ , by an increase in non-esterified fatty acids (NEFA). Failure to see blunting of lipolysis upon co-administration of the  $\beta_3$  agonist and 0.1 mg/kg propranolol, a nonselective  $\beta_1$ and  $\beta_2$  antagonist, confirmed that the lipolytic response of the most promising 1,2-diarylethylamine **26** and 1,1diarylmethylamine **35** were  $\beta_3$  mediated.

The safety margin (Table 5) of the 1,1-diarylmethylamine analogue **35** (BMS-194449) was superior than that of the more potent 1,2-diarylethylamine **26**. In this primate model **35** appeared to be a partial  $\beta_3$  agonist since a maximum NEFA elevation of 0.9 mEquiv/L induced by **35** was less than the 1.3 mEquiv/L typically induced by a full agonist such as **26**.

The rat PK profile of 20 and 35 were not favorable; oral bioavailability was less than 1-2%. Subsequent studies with portal vein and bile duct cannulated rats revealed that 70% of the drug administered was converted primarily to a mixture of two monoglucuronides of the benzylic and phenolic hydroxyls along with minor amount of the N-glucuronide of the sulfonamido moiety. This transformation primarily occurred during transit of the gut wall; however, hepatic glucuronidation was also a factor. Although oxidative metabolism was a very minor pathway, some N-dealkylation of 35 did occur to generate the *R* enantiomer of 36. Despite this poor prognosis for oral activity, we continued to pursue this chemotype convinced that the combination of full  $\beta_3$  IA and high  $\beta_3$  affinity offered the best opportunity to ascertain whether  $\beta_3$  agonists could elicit a sustained robust thermogenic response in man.

Intravenous administration of **35** to 6 volunteers produced no separation between the onset of lipolysis and  $\beta_2$  mediated prolongation of QT interval, suggesting that lipolysis was either  $\beta_2$  mediated or that no separation existed between doses producing  $\beta_2$  and  $\beta_3$  responses.<sup>21</sup> Further studies with BMS-194449 were terminated.

## Acknowledgements

We acknowledge the contributions of members of the Bristol-Myers Squibb analytical chemistry department; D. Strosberg for transfected CHO cells; J. Gougoutas for the X-ray based structure determination of 27; and D. Floyd for suggesting use of OCHF<sub>2</sub> as a substituent.

## **References and Notes**

1. (a) Prior preliminary communications of this work, see: Washburn, W. N.; Girotra, R. N.; McCann, P. J.; Gavai, A. V.; Mikkilineni, A. B.; Cheng, P.; Dejneka, T. C.; Sher, P. M.; Sun, C. Q.; Wang, T. C.; Ryono, D.; Harper, T. W.; Russell, A. D.; Slusarchyk, D. A.; Skwish, S.; Allen, G. T.; Hillyer, D. E.; Frohlich, B. H.; Abboa-Offei, B. E.; Cap, M.; Waldron, T. L.; George, R. J.; Tesfamariam, B.; Ciosek, C. P., Jr.; Young, D.; Dickinson, K. E.; Seymour, A. A.; Arbeeny, C. M.; Gregg, R. E. *Abstract of Papers*, MEDI-022, 216th National ACS Meeting, Boston, MA, Aug 23–27, 1998; American Chemical Society: Washington, DC, 1998. (b) Washburn, W. N., Girotra, R. N., Sher, P. M., Mikkilineni, A. B., Poss, K. M., Mathur, A., Biacchi, G. S., Gavai, A. V., U.S. Patent 5,776,983, 1998; *Chem. Abstr.* **1995**, *123*, 2870.

2. Friedman, J. M. Nature 2000, 404, 632.

3. Amos, A. F.; McCarty, D. J.; Zimmet, P. Diabetic Med. 1997, 14, S7.

4. (a) Weyer, C.; de Souza, C. J. Drug Dev. Res. 2000, 51, 80.
(b) Bray, G. A.; Tartaglia, L. A. Nature 2000, 404, 672. (c) Weyer, C.; Gautier, J. F.; Danforth, E., Jr. Diabetes Metab. 1999, 25, 11. (d) Kordik, C. P.; Reitz, A. B. J. Med. Chem. 1999, 42, 181. (e) Weber, A. E. Annu. Rep. Med. Chem. 1998, 33, 193.

5. Arbeeny, C. M.; Myers, D. S.; Hillyer, D. E.; Bergquist, K. E. Am. J. Physiol. **1995**, 268, E678.

6. Lowell, B. B.; Spiegelman, B. E. Nature 2000, 404, 652.

7. Himms-Hagen, J.; Ricquier, D. In *Handbook of Obesity*; Bray, G. A., Bouchard, C., James, W. P. T., Eds.; Marcel Dekher: New York, 1998; p 415.

Cantello, B. C. C.; Smith, S. A. Drugs Future **1991**, *16*, 797.
 Bloom, J. D.; Claus, T. Drugs Future **1994**, *19*, 23.

10. All compounds were evaluated using the truncated human  $\beta_3$  adrenergic receptor reported by Emorine, L. T.; Marullo, S.; Briend-Sutren, M. M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. *Science* **1989**, *245*, 1118.

11. Larsen, A. A.; Gould, W. A.; Roth, H. R.; Comer, W. T.; Uloth, R. H. J. Med. Chem. 1967, 10, 462.

12. Receptor binding assays were run in triplicate with membranes prepared from CHO cells expressing the cloned human receptor in the presence of <sup>125</sup>I-iodocyanopindolol;  $\beta_3$  AR agonist activity was assessed by measurement of cAMP accumulation levels in CHO membranes expressing human  $\beta_3$ AR.<sup>13</sup> IA was given as percent of the maximal stimulation with isoproterenol.

13. Sher, P. M.; Fisher, L. G.; Skwish, S.; Michel, I. M.; Seiler, S. M.; Washburn, W. N.; Dickinson, K. E. J. Med. Chem. Res. **1997**, 7, 109.

14. This approach exploited the finding that  $\beta_3$  affinity is unaffected by an appropriately oriented negative charge whereas  $\beta_1$  and  $\beta_2$  affinities are diminished.<sup>13</sup>

15. Compounds **9–29** were prepared by sequentially treating the corresponding amine with the previously described phenacyl bromide<sup>11</sup> generated in step b of Scheme 1 for 30 min in MeCN, followed by NaBH<sub>4</sub> reduction in EtOH, and hydrogenolysis over Pd/C in MeOH. Spectral data were fully consistent with structures.

16. The amine precursor for **12** was obtained by sequential treatment of cyclohexyl oxime dianion with (a) BnCl; (b) poly  $H_3PO_4$  at 130 °C; (c) concd HCl/MeOH.

17. Absolute configuration of 27 determined by X-ray.

18. The 1,2-diarylethylamine series is the subject of the following paper. Gavai, A. V.; Sher, P. M.; Mikkilineni, A. B.; Poss, K. M.; McCann, P. J.; Girotra, R. N.; Fisher, L. G.; Wu, G.; Bednarz, M. S.; Mathur, A.; Wang, T. C.; Sun, C. Q.; Slusarchyk, D. A.; Skwish, S.; Allen, G. T.; Hillyer, D. E.; Frohlich, B. H.; Abboa-Offei, B. E.; Cap, M.; Waldron, T. L.; George, R. J.; Tesfamariam, B.; Harper, T. W.; Ciosek, C. P., Jr.; Young, D. A.; Dickinson, K. E.; Seymour, A. A.; Arbeeny, C. M.; Washburn, W. N. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 3041.

- 19. Tesfamariam, B.; Allen, G. T. Br. J. Pharmacol. 1994, 112, 55.
- 20. Lipworth, B. J.; McFarlane, L. C.; Coutie, W. J.; McDe-
- vitt, D. Eur. J. Clin. Pharmacol. 1989, 37, 297.
- 21. Unpublished work, communicated by P. Slugg, Bristol-Myers Squibb, Princeton, NJ, USA.