Palladium-Catalyzed Intermolecular Aerobic Oxidative Cyclization of 2-Ethynylanilines with Isocyanides: Regioselective Synthesis of 4-Halo-2-aminoquinolines

Bifu Liu, Hanling Gao, Yue Yu, Wanqing Wu, and Huanfeng Jiang*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, PR China

Supporting Information

ABSTRACT: A robust and regioselective palladium-catalyzed intermolecular aerobic oxidative cyclization of 2-ethynylanilines with isocyanides to the synthesis of 4-halo-2-aminoquinolines is reported herein. The procedure constructs various 4-halo-2-aminoquinolines with moderate to excellent yields (47–94%) and broad substrates scope. Furthermore, this process can be easily extended to synthesis of various 6*H*-

indolo[2,3-b]quinolines via an intramolecular Buchwald–Hartwig cross-coupling reaction in two-step one-pot manner.

INTRODUCTION

The quinoline nucleus is arguably one of the most important substructures present in many natural products and synthetic drugs with different biological activities.1 Because of their widespread biological activities, many different strategies for the preparation of quinolines have been developed. Although classical methods are widely recognized for the preparation of quinolines, these syntheses generally involve multiple steps and/or complex substrates.² On the other hand, significant efforts have been made with regard to the modification of quinolines.³ Despite numerous approaches that have been developed, the preparation of quinolines bearing different substituents at specific positions employing readily available starting materials is still an attractive research area⁴ since 2aminoquinolines are often required by medicinal and material chemists.⁵ Nevertheless, the efficient synthesis of 2-aminoquinoline architectures from easily available raw materials remains elusive. And only a few examples were developed for the procedure of 2-aminoquinolines.⁶ Meanwhile, aromatic halides are an important class of compounds not only widely utilized in drug and natural product synthesis,⁷ but also providing good opportunities for further formation of C-C and/or C-heteroatom bonds by transition-metal-catalyzed coupling reactions. Thus, the development of simple and efficient methods for halo-2-aminoquinolines is highly desirable because of their great significance.

Isocyanides have been recognized as powerful C1 synthons in the construction of structurally appealing heteroarenes.⁸ Therefore, it is not surprising that special attention has been paid to the insertion of isocyanides into the C–Pd bond in recent years.⁹ In addition, palladium-catalyzed aerobic oxidation has drawn wide attention because of its inexpensive and environmentally benign characteristics, particularly when molecular oxygen is used as the sole oxidant.¹⁰ However, only few processes utilizing molecular oxygen have been reported concerning palladium-catalyzed isocyanides insertion.^{9g,h} 2-Ethynylanilines are known to be used widely in the synthesis of substituted indoles,¹¹ so it is straightforward that 3-amidylindoles (II) can be prepared via an intramolecular aminopalladation of 2-ethynylanilines to form the indolylpalladium complexes (I), followed by insertion of isocyanides (Scheme 1).^{9i,j} Considering the importance of quinoline

Scheme 1. Aminopalladation vs Halopalladation of 2-Ethynylanilines for the Synthesis of 3-Amidylindoles and 4-Halo-2-aminoquinolines

compounds and our previous work on the construction of *N*-heterocycles involving isocyanides,¹² we envisioned that 2-ethynylanilines could undergo a halopalladation process to give the vinylpalladium complexes (III), and the subsequent isocyanides insertion would provide access to highly functionalized quinolines (IV) in a single step (Scheme 1). As well, 2-ethynylanilines have also been explored for the preparation of substituted quinolines.¹³ Herein, for the first time, we present a simple and efficient method to the construction of various of 4-halo-2-aminoquinolines via palladium-catalyzed oxidative inter-

```
Received: August 4, 2013
```

ACS Publications © XXXX American Chemical Society

molecular cyclization of 2-ethynylanilines with isocyanides using molecular oxygen as the sole oxidant.

RESULTS AND DISCUSSION

To verify our hypothesis, we began our investigation with 2-(phenylethynyl)aniline (1a) and *tert*-butylisocyanide (2a) in toluene as model substrates catalyzed by $PdCl_2$ (5 mol %) in the presence of $CuCl_2$ (2.0 equiv). To our delight, *N*-(*tert*butyl)-4-chloro-3-phenylquinolin-2-amine (3aa) could be obtained in 35% yield (Table 1, entry 1). Screening various

Table 1. Optimization of the Reaction Conditions^a

	Ph + NH ₂	t-Bu−N≡oxida	yst, additive		∠Ph `N∽ ^{<i>t-</i>Bu H}
	1a	2a		3aa	
entry	catalyst	additive (equiv)	oxidant	solvent	yield (%) ^b
1	PdCl ₂	_	CuCl ₂	toluene	35
2	PdCl ₂	_	CuCl ₂	DMF	13
3	PdCl ₂	_	CuCl ₂	THF	10
4	PdCl ₂	_	$CuCl_2$	dioxane	trace
5	PdCl ₂	_	$CuCl_2$	DMSO	80
6	PdCl ₂	-	1 atm O ₂	DMSO	trace
7	PdCl ₂	LiCl (1)	1 atm O ₂	DMSO	63
8	PdCl ₂	LiCl (2)	1 atm O ₂	DMSO	83
9	PdCl ₂	LiCl (2)	1 atm O ₂	DMSO	90 (86)
10	PdCl ₂	LiCl (2)	1 atm N ₂	DMSO	n.d. ^d
11	PdCl ₂	KI (2)	1 atm O ₂	DMSO	n.d. ^d
12	$Pd(PPh_3)_4$	LiCl (2)	1 atm O ₂	DMSO	n.d. ^d
13	$Pd(OAc)_2$	LiCl (2)	1 atm O ₂	DMSO	trace
14	PdI_2	LiCl (2)	1 atm O ₂	DMSO	trace
15 ^c	PdBr ₂	LiBr (2)	1 atm O ₂	DMSO	57(52)

^{*a*}Reaction conditions: Unless otherwise noted, all reactions were performed with **1a** (0.5 mmol), **2a** (0.6 mmol), catalyst (5 mol %), additive, and oxidant (2.0 equiv to **1a**) in 2.0 mL of solvent (100 °C for entries 1–8 and 120 °C for entries 9–15) for 12 h. ^{*b*}Analyzed by GC–MS using dodecane as the internal standard. Data in parentheses is isolated yield. ^{*c*}140 °C for 12 h, and 4-bromo-*N*-(*tert*-butyl)-3-phenylquinolin-2-amine was obtained. ^{*d*}n.d = not detected.

solvents revealed that the solvent played an important role in this reaction (entries 1–5). Notably, DMSO was identified as the optimal solvent for the formation of **3aa** (entry 5). Considering our previous work on palladium-catalyzed oxidation reactions with molecular oxygen as the sole oxidant, ^{10c} CuCl₂ was replaced by 1 atm of O₂ in this system; however, only trace amount of **3aa** was observed (entry 6). The yields of **3aa** could be increased sharply when LiCl was added (entries 7–8).¹⁴ Importantly, the reaction conducted at 120 °C for 12 h gave the desired product in 86% isolated yield (entry 9). Further investigation revealed that PdCl₂ was superior to any other palladium catal³sts so far tested (entries 11–14). Additionally, 52% yield of 4-bromo-*N*-(*tert*-butyl)-3-phenyl-quinolin-2-amine was formed when the reaction was performed with PdBr₂ (5 mol %) and 2 equiv of LiBr at 140 °C (entry 15).

With efficient reaction conditions in hand (Table 1, entry 9), we next surveyed the substrate scope of the reaction by employing a variety of 2-ethynylanilines (1) (Table 2). Substituent at the terminal alkynyl (R^1) of 2-ethynylanilines was first evaluated under the standard conditions. The results demonstrated that the electronic effects on substituted (R^1) 2ethynylanilines had only a slight influence on the formation of the desired 4-chloro-2-aminoquinolines (Table 2, entries 1-13). As shown in Table 2, aryl substituted (R¹) 2-ethynylanilines with either an electron-donating or electron-withdrawing group on the benzene ring were able to undergo cyclization with *tert*-butylisocyanide (2a) to afford an array of 4-chloro-2aminoquinolines in good to excellent yields (3aa-3ma). The molecular structure of 3ka was further characterized by X-ray crystal diffraction measurement.¹⁵ It is noted that the orthosubstituted substrates (1g and 1j) showed slightly lower yields than the para-substituted ones (Table 2, entries 7-9, 10-11), which was probably caused by the steric effects. Gratifyingly, the standard conditions were compatible with the 2-thienyl group (1n), providing the corresponding product in 87% yield (entry 14). While either alkyl (entries 15-18) or propargyl alcohol (entries 19-22) substituted (R^1) 2-ethynylanilines were treated under the same conditions, the corresponding products were obtained in lower yields to some extent. However, silyland diphenylmethanol-substituted 2-ethynylanilines failed to give the desired products (entries 17–18 and 22). Furthermore, we found that the addition of TFA to the reaction mixture (after the formation of 3aa was completed) and subsequent heating at 80 °C for further 5 h gave 4-chloro-3-phenylquinolin-2-amine (3wa) in 82% yield (Table 2, entry 23).⁶

Encouraged by these initial results, the substrate versatility of 2-ethynylanilines was next examined using different substituents (R^2) on the anilines (Table 3, 4a-4i). The electron-donating 4methyl- (4a) and 5-methoxy-substituted (4b) 2-ethynylanilines were both reacted with 2a under the optimal conditions to provide 5aa and 5ba in 85 and 92% yields, respectively. However, the 2-ethynylanilines (4c-4j) with electron-withdrawing groups (R^2) reacted sluggishly with 2a and a higher reaction temperature was needed. Especially, when 2,6dichloro- (4f), -CN (4i) and -COOMe (4j) substituted 2ethynylanilines were applied to this transformation, no desired products were formed even with extended reaction time at 140 °C. Pleasingly, heterocyclic substituted 2-ethynylaniline 4k efficiently annulated with 2a and afforded 5ka in 83% yield. Unfortunately, 3-(phenylethynyl)pyridin-2-amine (41) failed to afford the desired product 5la. We suspected that the coordination of the two adjacent nitrogens of 4l with Pd catalyst might be too strong to catalyze this reaction.^{12d,e} Moreover, various isocyanides were also applied to probe the scope and limitations of this approach (Table 3, 2b-2i). Fortunately, almost all the isocyanides were found compatible with this transformation, affording the corresponding 4-chloro-2-aminoquinolines in good to excellent yields (Table 3, 5mb-5mi). Notably, ethyl isocyanoacetate (2d) was also compatible for these reaction conditions and gave 5md in 86% yield. In addition, bromo-substituted 2-ethynylaniline (4n) was also reacted with various isocyanides (2d-2i) effectively at 140 °C and afforded the corresponding products (5nd-5ni) in good to excellent yields. However, when we extended our method to the synthesis of 4-bromo-2-aminoquinolines under the similar conditions (Table 1, entry 15), only moderate yields of corresponding products (6aa-6ea) could be obtained (Scheme 2).¹⁶

It is well-known that the tetracyclic indolo[3,2-*b*]quinoline ring system exhibits numerous biological activities and found in many important natural products.¹⁷ Procedures for the synthesis of these scaffolds from readily available starting materials remained scarcely described in the literature; hence, the development of simple and general methods for their preparation still remains a great challenge.¹⁸ Having successfully

Table 2. Scope of 2-Ethynylanilines (R^1) for the Synthesis of 4-Chloro-2-aminoquinolines^{*a*}

^{*a*}Reaction conditions: Unless otherwise noted, 1 (0.5 mmol), 2a (0.6 mmol), $PdCl_2$ (5 mol %), LiCl (1.0 mmol), and O_2 (1 atm) in 2.0 mL of DMSO at 120 °C for 12 h. ^{*b*}Isolated yield. ^{*c*}140 °C for 12 h. ^{*d*}TFA (5 equiv) was added for further 5 h at 80 °C. n.r. = no reaction. n.d. = not detected.

Table 3. Versatility	v of 2-Ethvnvlaniline	(\mathbf{R}^2) and \mathbf{Isc}	cvanides for the	Synthesis of 4	-Chloro-2-aminoquinolines ^a

		Ph			PdCl ₂ (5 mol %)	Cl Ph	
			+ R ³ -N≡	₽ -	LiCl (2 equiv.), O ₂	$R^2 \frac{\Pi}{\Pi}$	
		~ NH₂ 4	2			5 H	
entry	aniline (4)	isocyanide	yield (%) ^b	entry	aniline (4)	isocyanide	yield (%) ^b
1	NH ₂ 4a	2a	5aa , 85	14	4m	j-Pr−N≡⊂ 2c	5mc , 88
2	NH ₂ 4b	2a	5ba , 92	15	4m		5md , 86
3 ^c	F NH ₂ 4c	2a	5ca , 80	16	4m	n-Bu−N≡ 2e	5me , 94
4 ^{<i>c</i>}	CI NH ₂ 4d	2a	5da , 88	17	4m	n-Hex—N== 2f	5mf , 84
5 °		2a	5ea , 84	18	4m	$Bn-N \stackrel{\oplus}{=} {\overset{\bigcirc}{=}} {2g}$	5mg , 91
6 ^c	NH ₂ 4f	2a	5fa , n.r	19	4m)0	5mh , 83
7 ^c	Br NH ₂ 4g	2a	5ga , 82	20	4m		5mi , 87
8 ^c	F ₃ C H 4h	2a	5ha , 79	21 ^c	Br NH ₂ 4n	2d	5nd , 81
9 °	NC. NH ₂ 4i	2a	5ia , n.r	22 ^c	4n	2e	5ne , 92
10 ^c	MeOOC	2a	5ja, trace	23 ^c	4n	2f	5nf , 83
11 ^c		2a	5ka , 83	24 ^c	4n	2g	5ng , 87
12 ^c		2a	5la , n.r	25 °	4n	2h	5nh , 80
13 ^c	NH ₂ 4m	$\xrightarrow{\oplus}_{N\equiv}^{\oplus}$	5mb , 79	26 °	4n	2i	5ni , 85

^{*a*}Reaction conditions: Unless otherwise noted, 4 (0.5 mmol), 2 (0.6 mmol), PdCl₂ (5 mol %), LiCl (1.0 mmol), and O₂ (1 atm) in 2.0 mL of DMSO at 120 °C for 12 h. ^{*b*}Isolated yield. ^{*c*}140 °C for 12 h. n.r. = no reaction.

Scheme 2. Synthesis of 4-Bromo-2-aminoquinolines

Scheme 3. Two-Step One-Pot Synthesis of 11-Chloro-6H-indolo[2,3-b]quinolines^a

^{*a*}Reaction conditions: step (1) **1j** (0.5 mmol), **2** (0.6 mmol), PdCl₂ (5 mol %), LiCl (2 equiv) in 2 mL of DMSO at 140 °C for 12 h under 1 atm O₂; step (2) Pd₂(dba)₃ (5 mol %), P(o-tol)₃ (10 mol %), and *t*-BuONa (2 equiv) in 2.0 mL of toluene at 85 °C for 12 h.

Scheme 4. Proposed Mechanism

established the general method for the synthesis of various 4-halo-2-aminoquinolins, we envisioned that 3-(2-bromophenyl)-4-chloro-2- aminoquinolins (Table 3, 5nd-5ni) could easily undergo an intramolecular Buchwald–Hartwig¹⁹ cross-coupling reaction to afford various indolo[3,2-*b*]quinolines. As expected, we found that 11-chloro-6*H*-indolo[2,3-*b*]quinolines (7a–7e) could be conveniently prepared in good yields through a one-pot two-step process (Scheme 3).

On the basis of our previous work on isocyanides and the influence of the chloride ion concentration in Table 1, we proposed a plausible mechanism in Scheme 4. Coordination of PdX_2 with the carbon–carbon triple bond affords intermediate **A**, followed by *trans*-halopalladation¹⁴ to give intermediate **B**. Subsequently, the migratory insertion of isocyanides 2 into the σ -vinylpalladium intermediate would result in the formation of intermediate **C**. Then, the seven-membered azapalladacyclic intermediate **C**. Finally, reductive elimination affords **E**, HX, and Pd(0) species. The Pd(0) species is oxidized to the active PdX₂ species by O₂. And the unstable product **E** would easily aromatize to give the final product **3**.

CONCLUSION

In summary, we have developed a novel and efficient strategy for the construction of 4-halo-2-aminoquinolines involving Pdcatalyzed aerobic oxidative annulations of commercially available isocyanides with readily accessible 2-ethynylanilines. The reaction exhibits a broad substrate scope and gives various 4-halo-2-aminoquinolines in good to excellent yields. Importantly, this process can be extended to the synthesis of various 6*H*-indolo[2,3-*b*]quinolines via an intramolecular Buchwald–Hartwig cross-coupling reaction in a two-step one-pot manner.

EXPERIMENTAL SECTION

General Information. Melting points were measured by a melting point instrument and were uncorrected. ¹H and ¹³C NMR spectra were recorded by using a 400 MHz NMR spectrometer. The chemical shifts are referenced to signals at 7.24 and 77.0 ppm, respectively, and chloroform is used as a solvent with TMS as the internal standard. IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with an infrared spectrometer. GC–MS was obtained using electron ionization. The data of HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). TLC was performed by using commercially available 100–400 mesh silica gel plates (GF254). Unless otherwise noted, all purchased chemicals were used without further purification. All the 2-ethynylanilines were known compounds and readily prepared from the reactions of the corresponding 2-iodobenzenamines with terminal alkynes directly by reported procedures.²⁰

Typical Experimental Procedure for Synthesis of 4-Halo-2aminoquinolines. To the mixture of 2-ethynylanilines (1, 0.5 mmol), PdX₂ (5 mol %) and LiX (2.0 equiv) in DMSO were added successively in a test tube. After stirring for 5 min at room temperature, isocyanide (2, 0.6 mmol) was added, and then the mixture was stirred at 120–140 °C for 12 h under 1 atm of O₂. Upon completion, the reaction mixture was extracted with ethyl acetate (3 × 10 mL), and the organic layers were combined, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was separated by flash column chromatography (the eluents phases were $V_{\text{hexane}}/V_{\text{EtOAc}} = 100:1$, and the stationary phases were 300–400 mesh silica gel) to give the pure products 3 (X = Cl) and 5 (X = Br).

N-(*tert-Butyl*)-4-*chloro-3-phenylquinolin-2-amine* (**3***aa*). Light yellow oil (133 mg, 86%): IR (KBr) 3432, 2962, 1605, 1517, 1415, 1223, 758, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.60–7.47 (m, 4H), 7.35–7.27 (m, 3H), 4.31 (br. s, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 147.8, 139.6, 135.2, 129.8, 129.8, 129.3, 128.5, 126.8, 124.4, 124.2, 122.4, 121.1, 51.9, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₀ClN₂⁺, 311.1310, found 311.1306.

N-(*tert-Butyl*)-4-*chloro-3*-(4-*methoxyphenyl*)*quinolin-2-amine* (**3ba**). White solid (155 mg, 91%): mp 132–134 °C; IR (KBr) 3429, 2960, 1598, 1515, 1415, 1245, 757; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.53–7.50 (m, 1H), 7.20 (d, *J* = 7.2 Hz, 3H), 7.02 (d, *J* = 7.2 Hz, 2H), 4.34 (br. s, 1H), 3.84 (s, 3H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 154.8, 147.7, 139.9, 131.1, 129.7, 127.1, 126.7, 124.4, 124.0, 122.3, 121.2, 114.8, 55.2, 51.8, 29.0; HRMS (ESI) *m/z* calcd for C₂₀H₂₂ClN₂O⁺, 341.1415, found 341.1424.

N-(*tert-Butyl*)-4-*chloro*-3-(*p*-*tolyl*)*quinolin*-2-*amine* (**3***ca*). White solid (141 mg, 87%): mp 116–118 °C; IR (KBr) 3431, 2962, 1602, 1517, 1415, 1222, 811, 756; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.55–7.51 (m, 1H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.26–7.22 (m, 1H),7.18 (d, *J* = 7.2 Hz, 2H), 4.34 (br. s, 1H), 2.43 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 147.8, 139.7, 138.4, 132.4, 132.2, 130.1, 129.7, 126.8, 124.5, 124.4, 122.4, 121.3, 51.9, 29.1, 21.5; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₂ClN₂⁺, 325.1466, found 325.1459.

N-(tert-Butyl)-4-chloro-3-(4-ethylphenyl)quinolin-2-amine (**3da**). White solid (144 mg, 85%): mp 122–124 °C; IR (KBr) 3430, 2964, 2360, 1763, 1600, 1517, 1415, 1239, 1053, 756; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.22–7.18 (m, 3H), 4.32 (br. s, 1H), 2.71 (q, *J*₁ = *J*₂ = 7.6 Hz, 2H), 1.41 (s, 9H), 1.28 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 147.7, 144.5, 139.6, 132.3, 129.7, 129.7, 128.8, 126.8, 124.4, 124.3, 122.3, 121.2, 51.9, 29.0, 28.7, 15.2; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₄ClN₂⁺, 339.1623, found 339.1619.

N-(*tert-Butyl*)-4-*chloro*-3-(2,4-*dimethylphenyl*)*quinolin*-2-*amine* (*3ea*). Light gray solid (139 mg, 82%): mp 105–107 °C; IR (KBr) 3422, 2961, 1602, 1516, 1415, 1222, 756; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.29 (m, *J* = 7.6 Hz, 1H), 7.21 (s, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 4.22 (br. s, 1H), 2.43 (s, 3H), 2.10 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 147.9, 139.8, 138.7, 136.8, 131.6, 131.3, 129.7, 129.6, 127.6, 126.8, 124.3, 123.8, 122.2, 121.2, 51.7, 29.0, 21.3, 19.1; HRMS (ESI) *m/z* calcd for $C_{21}H_{24}ClN_2^+$, 339.1623, found 339.1628.

N-(*tert-Butyl*)-4-*chloro-3*-(4-fluorophenyl)quinolin-2-amine (**3fa**). White solid (136 mg, 83%): mp 115–117 °C; IR (KBr) 3435, 2962, 2361, 1597, 1514, 1414, 1229, 757; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.58–7.54 (m, 1H), 7.30–7.20 (m, 5H), 4.20 (br. s, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (*J* = 246.9 Hz), 154.4, 147.8, 140.0, 131.8 (*J* = 8.1 Hz), 131.0 (*J* = 3.3 Hz), 130.0, 126.8, 124.4, 123.2, 122.5, 121.1, 116.6 (*J* = 21.5 Hz), 52.0, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉ClFN₂⁺, 329.1215, found 329.1213.

N-(tert-Butyl)-4-chloro-3-(2-chlorophenyl)quinolin-2-amine (**3ga**). Yellow oil (139 mg, 81%): IR (KBr) 3433, 2961, 1764, 1608, 1516, 1413, 1240, 1054, 756; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.61–7.58 (m, 2H), 7.44–7.43 (m, 2H), 7.31–7.27 (m, 2H), 4.05 (br. s, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 148.0, 140.5, 134.3, 133.9, 131.8, 130.3, 130.1, 127.8, 126.9, 124.4, 122.5, 121.9, 120.9, 52.0, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉Cl₂N₂⁺, 345.0920, found 345.0917.

N-(*tert-Butyl*)-4-*chloro-3*-(3-*chlorophenyl*)*quinolin-2-amine* (*3ha*). White solid (146 mg, 85%): mp 109–111 °C; IR (KBr) 3436, 2962, 1763, 1606, 1517, 1241, 1052, 756; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.48–7.42 (m, 2H), 7.32 (s, 1H), 7.28–7.18 (m, 2H), 4.17 (br. s, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 147.8, 139.9, 137.0, 135.2, 130.7, 130.1, 130.1, 128.8, 128.1, 126.9, 124.5, 122.8, 122.6, 121.0, 52.1, 29.0; HRMS (ESI) m/z calcd for $C_{19}H_{19}Cl_2N_2^+$, 345.0920, found 345.0911.

N-(*tert*-Butyl)-4-chloro-3-(4-chlorophenyl)quinolin-2-amine (**3ia**). Light yellow solid (158 mg, 92%): mp 122–124 °C; IR (KBr) 3850, 3435, 2922, 2355, 1744, 1605, 1515, 1239, 1050, 758; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.54–7.50 (m, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 3H), 4.14 (br. s, 1H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 147.8, 140.0, 134.7, 133.6, 131.4, 130.0, 129.7, 126.9, 124.4, 123.0, 122.6, 121.0, 52.1, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉Cl₂N₂⁺, 345.0920, found 345.0914.

3-(2-Bromophenyl)-N-(tert-butyl)-4-chloroquinolin-2-amine (**3***ja*). White solid (163 mg, 84%): mp 138–140 °C IR (KBr) 3438, 2960, 2918, 1763, 1609, 1517, 1414, 1242, 1048, 761; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.59–7.55 (m, 1H), 7.50–7.46 (m, 1H), 7.36–7.32 (m, 1H), 7.29–7.25 (m, 2H), 4.00 (br. s, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 148.0, 140.3, 136.1, 133.5, 131.9, 130.4, 130.1, 128.4, 126.9, 124.4, 124.3, 123.5, 122.5, 120.9, 52.0, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉BrClN₂⁺, 389.0415, found 389.0403.

3-(4-Bromophenyl)-N-(tert-butyl)-4-chloroquinolin-2-amine (**3ka**). White solid (182 mg, 94%): mp 141–143 °C IR (KBr) 3435, 2962, 2920, 1758, 1606, 1516, 1414, 1241, 1052, 758; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 2H), 4.08 (br. s, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 147.8, 139.9, 134.1, 132.6, 131.7, 130.0, 126.9, 124.4, 122.9, 122.9, 122.6, 121.0, 52.1, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉BrClN₂⁺, 389.0415, found 389.0413.

N-(tert-Butyl)-4-chloro-3-(4-(trifluoromethyl)phenyl)quinolin-2amine (**3la**). Brown solid (166 mg, 88%): mp 104–106 °C IR (KBr) 3439, 2965, 2361, 1764, 1322, 1242, 1065, 757; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 4.08 (br. s, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 148.0, 140.0, 139.1, 130.8 (q, *J* = 32.5 Hz), 130.6, 130.2, 127.0, 126.4 (q, *J* = 3.6 Hz), 124.5, 124.0 (q, *J* = 270.6 Hz), 122.8, 122.7, 121.0, 52.2, 29.1; HRMS (ESI) *m*/*z* calcd for C₂₀H₁₉ClF₃N₂⁺, 379.1183, found 379.1175.

N-(*tert-Butyl*)-4-*chloro*-3-(4-*nitrophenyl*)*quinolin*-2-*amine* (**3ma**). Yellow solid (151 mg, 85%): mp 142–144 °C IR (KBr) 3436, 2965, 2362, 1605, 1518, 1346, 1238, 758; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.8 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.61–7.57 (m, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 1H), 4.00 (br. s, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 148.0, 147.9, 142.2, 140.0, 131.4, 130.5, 127.0, 124.6, 124.4, 122.9, 121.9, 120.7, 52.3, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉ClN₃O₂⁺, 356.1160, found 356.1153.

N-(*tert-Butyl*)-4-chloro-3-(*thiophen-2-yl*)*quinolin-2-amine* (**3na**). Yellow oil (137 mg, 87%): IR (KBr) 3425, 2990, 2362, 1764, 1243, 1055, 756; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.55–7.50 (m, 2H), 7.22–7.15 (m, 2H), 7.05 (d, *J* = 3.6 Hz, 1H), 4.61 (br. s, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 148.2, 142.2, 135.2, 130.3, 129.0, 127.8, 127.7, 126.9, 124.7, 122.5, 121.0, 117.1, 52.0, 29.0; HRMS (ESI) *m/z* calcd for C₁₇H₁₈ClN₂S⁺, 317.0874, found 317.0867.

N-(*tert-Butyl*)-4-*chloro-3-hexylquinolin-2-amine* (**3***oa*). Yellow oil (124 mg, 78%): IR (KBr) 3468, 2957, 2925, 1599, 1517, 1412, 1222, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.49–7.46 (m, 1H), 7.21 (d, *J* = 6.8 Hz, 1H), 4.57 (br. s, 1H), 2.74 (t, *J* = 8.0 Hz, 2H), 1.61–1.49 (m, 11H), 1.45–1.33 (m, 6H), 0.89 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 146.7, 139.6, 128.9, 126.7, 124.1, 122.3, 122.3, 121.5, 51.9, 31.6, 29.4, 29.2, 28.6, 27.2, 22.6, 14.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₈ClN₂⁺, 319.1936, found 319.1932.

N-(tert-Butyl)-4-chloro-3-dimethylaminomethyl-quinolin-2amine (**3pa**). Yellow solid (119 mg, 82%): mp 106–108 °C; IR (KBr) 3433, 2924, 2858, 1745, 1602, 1365, 1047, 757; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.71 (br. s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.51–7.47 (m, 1H), 7.22–7.19 (m, 1H), 3.73 (s, 2H), 2.26 (s, 6H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 147.7, 140.2, 129.3, 126.6, 124.5, 121.8, 120.9, 118.1, 58.1, 51.1, 44.2, 29.1; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₃ClN₃⁺, 292.1575, found 292.1585.

N-(tert-Butyl)-4-chloro-3-(prop-1-en-2-yl)quinolin-2-amine (**3sa**). Yellow solid (119 mg, 87%): mp 87–89 °C; IR (KBr) 3426, 2962, 1745, 1598, 1517, 1417, 1232, 756; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.52–7.48 (m, 1H), 7.23–7.20 (m, 1H), 5.49 (s, 1H), 5.07 (s, 1H), 4.96 (br. s, 1H), 2.04 (s, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 147.3, 140.6, 137.7, 129.5, 126.7, 125.7, 124.0, 122.3, 121.0, 118.9, 51.7, 29.1, 21.8; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₀ClN₂⁺, 275.1310, found 275.1302.

N-(*tert-Butyl*)-4-*chloro*-3-(1-*phenylvinyl*)*quinolin*-2-*amine* (**3ta**). Yellow oil (136 mg, 81%): IR (KBr) 3430, 2960, 2357, 1743, 1595, 1518, 1221, 758; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.59–7.55 (m, 1H), 7.38–7.26 (m, 6H), 6.16 (s, 1H), 5.45 (s, 1H), 4.83 (br. s, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 147.8, 142.7, 139.8, 137.5, 129.8, 128.7, 128.5, 126.8, 125.9, 124.4, 124.0, 122.4, 121.0, 118.7, 51.9, 28.9; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₂ClN₂⁺, 337.1466, found 337.1471.

(2-(tert-Butylamino)-4-chloroquinolin-3-yl)(phenyl)methanol (**3ua**). Red oil (139 mg, 82%): IR (KBr) 3740, 3057, 2359, 1742, 1452, 1243, 830, 767, 691; ¹H NMR (400 MHz, DMSO-*d*) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.58–7.53 (m, 2H), 7.36–7.24 (m, 6H), 7.05 (d, *J* = 3.6 Hz, 1H), 6.70 (br. s, 1H), 6.63 (d, *J* = 3.2 Hz, 1H), 1.29 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*) δ 154.2, 146.9, 141.2, 138.1, 129.9, 128.0, 127.1, 126.0, 125.0, 124.2, 123.4, 122.4, 119.9, 69.6, 50.9, 28.6; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₀ClN₂O⁻, 339.1270, found 339.1289.

4-Chloro-3-phenylquinolin-2-amine (**3wa**). Brown solid (104 mg, 82%): mp 120–122 °C; IR (KBr) 3478, 3397, 2979, 2362, 1610, 1429, 1245, 1048, 756; ¹H NMR (400 MHz, acetone-*d*) δ 7.65–7.57 (m, 4H), 7.53–7.49 (m, 1H), 7.44–7.42 (m, 2H), 7.37–7.33 (m, 1H), 5.60 (br. s, 2H); ¹³C NMR (100 MHz, acetone-*d*) δ 157.4, 149.0, 140.9, 136.1, 131.0, 130.6, 130.1, 129.4, 127.1, 125.1, 124.4, 123.7, 122.5; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂ClN₂⁺, 255.0684, found 255.0678.

N-(tert-Butyl)-4-chloro-6-methyl-3-phenylquinolin-2-amine (**5aa**). Yellow oil (138 mg, 85%): IR (KBr) 3433, 2962, 1600, 1515, 1417, 1323, 1221, 823, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.56–7.52 (m, 2H), 7.49–7.45 (m, 1H), 7.42–7.40 (m, 1H), 7.34–7.31 (m, 2H), 4.21 (br. s, 1H), 2.50 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 146.1, 139.1, 135.4, 131.9, 131.7, 129.9, 129.3, 128.5, 126.7, 124.1, 123.5, 121.0, 51.8, 29.1, 21.4; HRMS (ESI) m/z calcd for C₂₀H₂₂ClN₂⁺, 325.1466, found 325.1464.

N-(tert-Butyl)-4-chloro-7-methoxy-3-phenylquinolin-2-amine (**5ba**). Light yellow solid (156 mg, 92%): mp 130–132 °C; IR (KBr) 3740, 2961, 2359, 1764, 1609, 1516, 1242, 1037, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 9.2 Hz, 1H), 7.53–7.42 (m, 3H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.10 (s, 1H), 6.91 (dd, *J*₁ = 2.4 Hz, *J*₂ = 8.8 Hz, 1H), 4.26 (br. s, 1H), 3.94 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 155.0, 149.4, 139.4, 135.3, 130.1, 129.3, 128.4, 125.7, 121.8, 115.8, 114.2, 106.1, 55.4, 51.9, 29.1; HRMS (ESI) *m/z* calcd for $C_{20}H_{22}ClN_2O^+$, 341.1415, found 341.1408.

N-(*tert-Butyl*)-4-chloro-6-fluoro-3-phenylquinolin-2-amine (**5ca**). White solid (131 mg, 80%): mp 104–106 °C; IR (KBr) 3433, 2961, 2355, 1601, 1516, 1416, 1236, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.66 (m, 2H), 7.56–7.53 (m, 2H), 7.49–7.46 (m, 1H), 7.34–7.30 (m, 3H), 4.27 (br. s, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3 (d, *J* = 239.9 Hz), 154.0, 144.6, 138.9, 134.9, 129.7, 129.4, 128.8, 128.7, 125.0, 121.5 (d, *J* = 9.6 Hz), 119.1 (d, *J* = 24.7 Hz), 108.6 (d, *J* = 24.4 Hz), 51.9, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉ClFN₂⁺, 329.1215, found 329.1214.

N-(*tert-Butyl*)-4,6-*dichloro-3-phenylquinolin-2-amine* (**5da**). White solid (151 mg, 88%): mp 106–108 °C; IR (KBr) 3431, 2960, 1764, 1598, 1514, 1415, 1239, 704; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 2.4 Hz, 1H), 7.65 (d, *J* = 9.2 Hz, 1H), 7.55–7.51 (m, 2H), 7.48–7.45 (m, 2H), 7.30–7.28 (m, 2H), 4.31 (br. s, 1H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 146.2, 138.6, 134.8, 130.4,

129.7, 129.4, 128.8, 128.3, 127.7, 125.0, 123.5, 121.9, 52.0, 28.9; HRMS (ESI) m/z calcd for $C_{19}H_{19}Cl_2N_2^+$, 345.0920, found 345.0913.

N-(*tert-Butyl*)-4,7-*dichloro-3-phenylquinolin-2-amine* (*5ea*). Light yellow solid (144 mg, 84%): mp 82–84 °C; IR (KBr) 2991, 1764, 1604, 1516, 1378, 1243, 1055; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.8 Hz, 1H), 7.73 (s, 1H), 7.55–7.44 (m, 3H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 1H), 4.34 (br. s, 1H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 148.3, 139.4, 135.7, 134.8, 129.8, 129.4, 128.7, 125.8, 125.7, 124.4, 123.0, 119.7, 52.1, 28.9; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉Cl₂N₂⁺, 345.0920, found 345.0915.

6-Bromo-N-(tert-butyl)-4-chloro-3-phenylquinolin-2-amine (**5ga**). Light yellow solid (159 mg, 82%): mp 119.4–121 °C; IR (KBr) 2986, 2360, 1743, 1514, 1373, 1241, 1047; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.62–7.45 (m, 5H), 7.28 (d, *J* = 6.8 Hz, 2H), 4.32 (br. s, 1H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 146.5, 138.5, 134.7, 133.0, 129.7, 129.4, 128.8, 128.5, 126.7, 125.0, 122.5, 115.4, 52.1, 28.9; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉BrClN₂⁺, 389.0415, found 389.0403.

N-(tert-Butyl)-4-chloro-3-phenyl-6-(trifluoromethyl)quinolin-2amine (**5ha**). Light yellow solid (149 mg, 79%): mp 103–105 °C; IR (KBr) 3739, 3431, 2925, 2356, 1519, 1299, 1242, 1123, 837, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.72–7.70 (m, 1H), 7.56–7.46 (m, 3H), 7.29 (d, *J* = 6.8 Hz, 2H), 4.46 (br. s, 1H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 149.3, 140.0, 134.4, 129.6, 129.5, 128.9, 127.5, 125.7 (q, *J* = 9.3 Hz), 125.4, 124.6 (q, *J* = 270 Hz), 124.1(q, *J* = 32.5 Hz), 122.6 (q, *J* = 4.3 Hz), 120.4, 52.3, 28.9; HRMS (ESI) *m*/*z* calcd for C₂₀H₁₉ClF₃N₂⁺, 379.1183, found 379.1194.

N-(tert-Butyl)-4-chloro-3-phenyl-1,5-naphthyridin-2-amine (**5ka**). Yellow solid (129 mg, 83%): mp 134–136 °C; IR (KBr) 3430, 2962, 2924, 2362, 1593, 1517, 1411, 1217, 701; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (dd, J_1 = 1.2 Hz, J_2 = 4.0 Hz,1H), 7.99 (dd, J_1 = 1.2 Hz, J_2 = 8.4 Hz, 1H), 7.55–7.44 (m, 4H), 7.32–7.30 (m, 2H), 4.41 (br. s, 1H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 149.3, 140.0, 134.4, 129.6, 129.5, 128.9, 127.5, 125.7 (q, *J* = 9.3 Hz), 125.4, 124.6 (q, *J* = 270 Hz), 124.1(q, *J* = 32.5 Hz), 122.6 (q, *J* = 4.3 Hz), 120.4, 52.3, 28.9; HRMS (ESI) *m*/*z* calcd for C₁₈H₁₉ClN₃⁺, 312.1262, found 312.1252.

4-Chloro-3-phenyl-N-(2,4,4-trimethylpentan-2-yl)quinolin-2amine (**5mb**). White solid (145 mg, 79%): mp 102–104 °C; IR (KBr) 3439, 2954, 2360, 1607, 1517, 1417, 1224, 757; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.58–7.51 (m, 3H), 7.48–7.44 (m, 1H), 7.29–7.25 (m, 3H), 4.35 (br. s, 1H), 1.84 (s, 2H), 1.50 (s, 6H), 0.83 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 147.8, 139.6, 135.2, 129.9, 129.8, 129.4, 128.6, 126.8, 124.4, 124.4, 122.3, 121.0, 55.8, 52.1, 31.6, 314, 29.2; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₈ClN₂⁺, 367.1936, found 367.1925.

4-Chloro-N-isopropyl-3-phenylquinolin-2-amine (**5mc**). Red oil (130 mg, 88%): IR (KBr) 3431, 2967, 1604, 1512, 1412, 1166, 758, 703; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.58–7.44 (m, 4H), 7.32–7.22 (m, 3H), 4.47–4.37 (m, 1H), 4.16 (d, *J* = 6.8 Hz, 1H), 1.15 (s, 3H), 1.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 148.1, 140.1, 134.8, 130.0, 129.9, 129.4, 128.6, 126.5, 124.5, 123.6, 122.5, 121.4, 42.6, 22.8; HRMS (ESI) *m/z* calcd for C₁₈H₁₈ClN₂⁺, 297.1153, found 297.1164.

Ethyl 2-((4-chloro-3-phenylquinolin-2-yl)amino)acetate (**5md**). Dark green oil (146 mg, 86%): IR (KBr) 3424, 2927, 2357, 1742, 1515, 1410, 1200, 759; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.60–7.46 (m, 4H), 7.40–7.30 (m, 3H), 4.97 (br. s, 1H), 4.27 (d, *J* = 5.6 Hz, 2H), 4.17 (q, *J*₁ = *J*₂ = 7.0 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 154.1, 147.4, 140.5, 134.3, 130.1, 129.9, 129.4, 128.8, 126.7, 124.5, 123.6, 123.1, 121.9, 61.1, 43.5, 14.1; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₈ClN₂O₂⁺, 341.1051, found 341.1044.

N-Butyl-4-chloro-3-phenylquinolin-2-amine (*5me*). Yellow solid (146 mg, 94%): mp 50–52 °C; IR (KBr) 3441, 2926, 2356, 1742, 1606, 1517, 1243, 758; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.60–7.46 (m, 4H), 7.35–7.27 (m, 3H), 4.35 (br. s, 1H), 3.52 (q, *J* = 6.8 Hz, 2H), 1.56–1.48 (m, 2H), 1.37–1.28 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 154.9, 148.0, 140.0, 134.8, 130.0, 129.8, 129.4, 128.6, 126.5, 124.5, 123.6, 122.5, 121.5, 41.2, 31.5, 20.1, 13.8; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₀ClN₂⁺, 311.1310, found 311.1315.

4-Chloro-N-cyclohexyl-3-phenylquinolin-2-amine (**5mf**). Yellow oil (141 mg, 84%): IR (KBr) 3430, 2928, 2359, 1606, 1512, 1412, 1341, 757, 702; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.58–7.46 (m, 4H), 7.34–7.32 (m, 2H), 7.28–7.25 (m, 1H), 4.25 (br.s, 1H), 4.20–4.10 (m, 1H), 2.04–1.98 (m, 2H), 1.64–1.58 (m, 3H), 1.48–1.37 (m, 2H), 1.19–1.02 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 148.1, 140.0, 134.8, 130.0, 129.8, 129.4, 128.6, 126.4, 124.8, 123.7, 122.4, 121.4, 49.2, 32.9, 25.8, 24.7; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₂ClN₂⁺, 337.1466, found 337.1460.

N-Benzyl-4-chloro-3-phenylquinolin-2-amine (*5 mg*). Light yellow solid (157 mg, 91%): mp 108–110 °C; IR (KBr) 3438, 2925, 2360, 1743, 1604, 1514, 1243, 757; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.59–7.55 (m, 1H), 7.52–7.48 (m, 2H), 7.44–7.41 (m, 1H), 7.34–7.18 (m, 8H), 4.76 (br. s, 1H), 4.75 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 147.8, 140.4, 139.5, 134.5, 130.1, 129.8, 129.4, 128.7, 128.4, 127.4, 127.0, 126.6, 124.5, 123.6, 122.8, 121.8, 45.3; HRMS (ESI) *m/z* calcd for C₂₂H₁₈ClN₂⁺, 345.1153, found 345.1158.

4-*Chloro-N*-(4-methoxyphenyl)-3-phenylquinolin-2-amine (*5mh*). Yellow oil (149 mg, 83%): IR (KBr) 3419, 2355, 1739, 1600, 1510, 1415, 1239, 759; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.62–7.51 (m, 6H), 7.42–7.34 (m, 3H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.24 (br. s, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 152.0, 147.2, 140.7, 134.3, 133.1, 130.2, 130.0, 129.6, 129.0, 127.1, 124.4, 124.1, 123.6, 122.2, 121.5, 114.0, 55.5; HRMS (ESI) *m*/*z* calcd for C₂₂H₁₈ClN₂O⁺, 361.1102, found 361.1098.

4-Chloro-N-(2,6-dimethylphenyl)-3-phenylquinolin-2-amine (*5mi*). Red brown solid (156 mg, 87%): mp 156–159 °C; IR (KBr) 3401, 2921, 2358, 1740, 1607, 1501, 1230, 760; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.69–7.61 (m, 3H), 7.57–7.50 (m, 4H), 7.36–7.32 (m, 1H), 7.17–7.05 (m, 3H), 5.72 (br. s, 1H), 2.21 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 147.8, 140.6, 136.4, 135.7, 134.9, 130.0, 129.8, 129.6, 128.9, 128.0, 127.1, 126.3, 124.4, 123.6, 123.1, 122.0, 18.8; HRMS (ESI) *m*/*z* calcd for $C_{23}H_{20}ClN_2^+$, 359.1310, found 359.1305.

Ethyl 2-((3-(2-bromophenyl)-4-chloroquinolin-2-yl)amino)acetate (**5nd**). White solid (169 mg, 81%): mp 132–134 °C; mp 134–136 °C; IR (KBr) 2970, 2361, 1731, 1665, 1475, 1369, 1135, 701; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 1H), 7.79– 7.75 (m, 2H), 7.62–7.58 (m, 1H), 7.51–7.47 (m, 1H), 7.38–7.31 (m, 3H), 4.74 (br. s, 1H), 4.38 (dd, *J*₁ = 5.6 Hz, *J*₂ = 18.4 Hz, 1H), 4.24– 4.10 (m, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 153.4, 147.7, 141.3, 135.2, 133.5, 131.6, 130.6, 130.4, 128.4, 126.8, 124.5, 124.5, 123.2, 122.9, 121.7, 61.1, 43.5, 14.1; HRMS (ESI) *m/z* calcd for C₁₉H₁₇BrClN₂O₂⁺, 419.0156, found 419.0159.

3-(2-Bromophenyl)-N-butyl-4-chloroquinolin-2-amine (**5ne**). Yellow solid (178 mg, 92%): mp 70–72 °C; IR (KBr) 3445, 2927, 2353, 1747, 1603, 1519, 1240, 751; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.61–7.57 (m, 1H), 7.50–7.46 (m, 1H), 7.34–7.27 (m, 3H), 4.12 (br. s, 1H), 3.60–3.44 (m, 2H), 1.57–1.50 (m, 2H), 1.38–1.31 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 148.3, 140.8, 135.7, 133.5, 131.7, 130.4, 130.3, 128.4, 126.6, 124.5, 124.5, 122.9, 122.5, 121.2, 41.2, 31.5, 20.1, 13.8; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉BrClN₂⁺, 389.0415, found 389.0421.

3-(2-Bromophenyl)-4-chloro-N-cyclohexylquinolin-2-amine (**5nf**). Yellow oil (172 mg, 83%): IR (KBr) 3433, 2924, 2362, 1609, 1507, 1410, 1339, 759, 701; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 1H), 7.78–7.74 (m, 2H), 7.60–7.46 (m, 2H), 7.37–7.25 (m, 3H), 4.21–4.09 (m, 1H), 4.00 (br. s, 1H), 2.07–1.96 (m, 2H), 1.61–1.01 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 148.3, 140.8, 135.8, 133.6, 131.8, 130.4, 130.2, 128.4, 126.6, 124.5, 124.4, 123.0, 122.4, 121.2, 49.2, 33.1, 25.8, 24.8; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₁BrClN₂⁺, 415.0571, found 415.0575.

N-Benzyl-3-(2-bromophenyl)-4-chloroquinolin-2-amine (**5** *ng*). Yellow solid (184 mg, 87%): mp 128–130 °C; IR (KBr) 3436, 2928, 2361, 1739, 1601, 1511, 1246, 751; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.77–7.72 (m, 2H), 7.60–7.56 (m, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.31–7.18 (m, 8H), 4.84 (dd, *J*₁ = 6.0 Hz, *J*₂ = 15.2 Hz, 1H), 4.71 (dd, *J* = 6.0 Hz, *J*₂ = 15.2 Hz, 1H), 4.48 (br.s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 148.1, 141.2, 139.5, 135.5, 133.6, 131.7, 130.5, 130.4, 128.4, 128.4, 127.5, 127.0, 126.8, 124.5, 124.5, 122.9, 122.8, 121.5, 45.3; HRMS (ESI) *m/z* calcd for C₂₂H₁₇BrClN₂⁺, 423.0258, found 423.0263.

3-(2-Bromophenyl)-4-chloro-N-(4-methoxyphenyl)quinolin-2amine (5nh). White solid (175 mg, 80%): mp 132–134 °C; mp 134– 136 °C; IR (KBr) 2970, 2361, 1731, 1665, 1475, 1369, 1135, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 1H), 7.71–7.64 (m, 2H), 7.50–7.34 (m, 4H), 7.23–7.19 (m, 3H), 6.72 (d, J = 9.2 Hz, 2H), 5.83 (br. s, 1H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 151.5, 147.5, 141.3, 135.2, 133.17, 132.9, 131.9, 130.7, 130.4, 128.5, 127.1, 124.5, 124.4, 123.6, 123.2, 122.1, 121.9, 113.9, 55.4; HRMS (ESI) *m*/*z* calcd for C₂₂H₁₇BrClN₂O⁺, 439.0207, found 439.0213.

3-(2-Bromophenyl)-4-chloro-N-(2,6-dimethylphenyl)quinolin-2amine (**5ni**). White solid (185 mg, 85%): mp 219–221 °C; IR (KBr) 3396, 2924, 2360, 1608, 1503, 1223, 754; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.60–7.56 (m, 2H), 7.48–7.34 (m, 3H), 7.13 (s, 3H), 5.52 (br. s, 1H), 2.25 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 148.0, 141.4, 136.0, 135.9, 135.8, 133.7, 131.3, 130.7, 130.3, 128.6, 128.0, 127.2, 126.4, 124.7, 124.4, 123.2, 122.9, 121.7, 18.8; HRMS (ESI) *m*/*z* calcd for C₂₃H₁₉BrClN₂⁺, 437.0415, found 437.0404.

4-Bromo-N-(tert-butyl)-3-phenylquinolin-2-amine (**6aa**). Light yellow oil (92 mg, 52%): IR (KBr) 3431, 2961, 1594, 1515, 1411, 1219, 756; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, $J_1 = 1.2$ Hz, $J_1 = 8.4$ Hz, 1H), 7.72 (d, J = 6.4 Hz, 1H), 7.57–7.51 (m, 3H), 7.48–7.46 (m, 1H), 7.29–7.26 (m, 3H), 4.22 (br. s, 1H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 147.7, 137.3, 133.5, 129.8, 129.7, 129.4, 128.6, 127.3, 127.1, 126.8, 122.6, 122.5, 52.0, 29.0; HRMS (ESI) m/z calcd for C₁₉H₂₀BrN₂⁺, 355.0804, found 355.0797.

4-Bromo-N-(tert-butyl)-3-(4-methoxyphenyl)quinolin-2-amine (**6ba**). Yellow solid (136 mg, 71%): mp 91–93 °C; IR (KBr) 3428, 2961, 1593, 1514, 1109, 616; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J_1 = 1.2 Hz, J_1 = 8.4 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.53–7.48 (m, 1H), 7.24–7.16 (m, 3H), 7.02 (d, J = 8.8 Hz, 2H), 4.30 (br. s, 1H), 3.84 (s, 3H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 154.7, 147.7, 133.9, 131.0, 129.7, 129.3, 127.3, 126.8, 126.7, 122.6, 122.5, 114.7,55.2, 51.9, 29.0; HRMS (ESI) m/z calcd for C₂₀H₂₂BrN₂O⁺, 385.0910, found 385.0906.

4-Bromo-N-(tert-butyl)-3-(4-chlorophenyl)quinolin-2-amine (**6ca**). Light yellow solid (126 mg, 65%): mp 109–111 °C; IR (KBr) 3435, 2962, 1586, 1514, 1411, 1218, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J_1 = 1.0 Hz, J_1 = 8.8 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.57–7.50 (m, 3H), 7.28–7.22 (m, 3H), 4.15 (br. s, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 147.8, 135.7, 134.7, 133.8, 131.3, 130.0,129.7, 127.3, 126.8, 125.8, 122.8, 122.4, 52.1, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉BrClN₂⁺, 389.0415, found 389.0409.

4-Bromo-N-(tert-butyl)-3-(3-chlorophenyl)quinolin-2-amine (**6da**). Light yellow solid (107 mg, 55%): mp 100–102 °C; IR (KBr) 3435, 2979, 2362, 1764, 1243, 1054, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J_1 = 1.2 Hz, J_1 = 8.4 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.53–7.49 (m, 1H), 7.45–7.39 (m, 2H), 7.27–7.20 (m, 2H), 7.13–7.11 (m, 1H), 4.09 (br. s, 1H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 139.0, 135.1, 133.8, 130.7, 130.1, 130.0, 128.9, 128.0, 127.3, 126.8, 125.6, 122.9, 122.3, 108.8, 52.2, 29.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉BrClN₂⁺, 389.0415, found 389.0411.

4-Bromo-N-(tert-butyl)-3-(4-fluorophenyl)quinolin-2-amine (**6ea**). White solid (87 mg, 47%): mp 92–94 °C; IR (KBr) 3434, 2980, 2362, 1764, 1379, 1242, 1057, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J_1 = 1.2 Hz, J_1 = 8.4 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.53–7.49 (m, 1H), 7.24–7.16 (m, 5H), 4.12 (br. s, 1H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, J = 247.0 Hz), 154.3,

147.8, 133.9, 133.2 (d, J = 3.5 Hz), 131.7 (d, J = 8.1 Hz), 129.9, 127.3, 126.8, 126.0, 122.7, 122.4, 116.5 (d, J = 21.5 Hz), 52.0, 29.0; HRMS (ESI) m/z calcd for C₁₉H₁₉BrFN₂⁺, 373.0710, found 373.0706.

Typical Experimental Procedure for Synthesis of 11-Chloro-6H-indolo[2,3-b]quinolines. To the mixture of 2-((2bromophenyl)ethynyl)aniline (1j, 0.5 mmol), PdCl₂ (5 mol %) and LiCl (2.0 equiv) in DMSO were added successively in a test tube. After stirring for 5 min at room temperature, isocyanide (2, 0.6 mmol) was added, and then the mixture was stirred at 140 °C for 12 h under 1 atm of O2. Upon completion, the reaction mixture was extracted with ethyl acetate $(3 \times 10 \text{ mL})$, and the organic layers were combined, dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. Then Pd2(dba)3 (5 mol %), P(o-tol)3 (10 mol %) and toluene (2.0 mL) were added to the residue and heated at 85 °C for further 12 h. Upon completion, the reaction mixture was extracted with ethyl acetate $(3 \times 10 \text{ mL})$, and the organic layers were combined, dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue was separated by flash column chromatography (the eluents phases were pure hexane, and the stationary phases were 300-400 mesh silica gel) to give the pure products 7.

6-Butyl-11-chloro-6H-indolo[2,3-b]quinoline (**7a**). White solid (131 mg, 85%): mp 132–134 °C; IR (KBr) 2970, 2361, 1731, 1665, 1475, 1369, 1135, 701; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 7.6 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.44–7.34 (m, 2H), 7.23 (d, J = 8.0 Hz, 1H), 7.18–7.14 (m, 1H), 4.33 (t, J = 7.6 Hz, 2H), 1.81–1.73 (m, 2H), 1.34–1.25 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 146.9, 142.1, 135.3, 129.1, 128.3, 127.8, 124.2, 123.9, 123.4, 122.2, 120.0, 119.8, 115.3, 108.7, 41.2, 30.5, 20.3, 13.8; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₈ClN₂⁺, 309.1153, found 309.1149.

6-(*tert-Butyl*)-11-*chloro-6H-indolo*[2,3-*b*]*quinoline* (**7b**). Yellow solid (128 mg, 83%): mp 99–101 °C; IR (KBr) 2991, 2362, 1765, 1391, 1243, 1054, 748; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 7.6 Hz, 1H), 8.40 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.73–7.70 (m, 1H), 7.54–7.49 (m, 2H), 7.30 (t, *J* = 7.6 Hz, 1H), 2.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 146.0, 142.8, 134.5, 128.9, 128.4, 127.8, 124.3, 123.7, 123.6, 121.8, 121.1, 119.5, 115.7, 113.2, 60.3, 30.6; HRMS (ESI) *m/z* calcd for C₁₉H₁₈ClN₂⁺, 309.1153, found 309.1161.

11-Chloro-6-cyclohexyl-6H-indolo[2,3-b]quinoline (**7c**). Light yellow solid (134 mg, 80%): mp 203–205 °C; IR (KBr) 3847, 3737, 2924, 2357, 1553, 1463, 1249, 742; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.0 Hz, 1H), 8.41 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.75–7.71 (m, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.59–7.50 (m, 2H), 7.33–7.29 (m, 1H), 5.14 (br. s, 1H), 2.63–2.54 (m, 2H), 1.98–1.37 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 146.7, 141.6, 135.3, 129.2, 128.0, 128.0, 124.4, 123.9, 123.6, 122.1, 120.3, 119.7, 115.5, 110.7, 53.7, 30.1, 26.3, 25.7; HRMS (ESI) *m/z* calcd for C₂₂H₂₀ClN₂⁺, 335.1285, found 335.1310.

6-Benzyl-11-chloro-6H-indolo[2,3-b]quinoline (**7d**). Light yellow solid (140 mg, 82%): mp 178–180 °C; IR (KBr) 3745, 2362, 1743, 1555, 1465, 1403, 1244, 744, 692; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.67–7.63 (m, 1H), 7.47–7.38 (m, 2H), 7.22–7.11 (m, 7H), 5.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 147.0, 142.0, 137.0, 135.6, 129.3, 128.6, 128.5, 128.0, 127.4, 127.2, 124.2, 124.0, 123.7, 122.5, 120.5, 120.0, 115.5, 109.4, 45.0; HRMS (ESI) *m/z* calcd for C₂₂H₁₆ClN₂⁺, 343.0997, found 343.0981.

11-Chloro-6-(4-methoxyphenyl)-6H-indolo[2,3-b]quinoline (**7e**). Yellow solid (141 mg, 79%): mp 227–229 °C; IR (KBr) 3849, 3734, 2355, 2324, 1745, 1515, 1244, 611; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 8.0 Hz, 1H), 8.43 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.71–7.67 (m, 1H), 7.59–7.51 (m, 4H), 7.39–7.36 (m, 2H), 7.14 (d, *J* = 8.8 Hz, 2H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 152.6, 147.00, 143.1, 135.8, 130.9, 129.3, 129.0, 128.6, 128.4, 124.2, 124.0, 123.9, 122.8, 121.0, 120.0, 115.7, 115.0, 109.9, 55.6; HRMS (ESI) *m*/*z* calcd for C₂₂H₁₆ClN₂O⁺, 359.0946, found 359.0941.

ASSOCIATED CONTENT

S Supporting Information

Copies of ¹H and ¹³C NMR spectra for all products and the crystallographic data of **3ka** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jianghf@scut.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to the National Natural Science Foundation of China (20932002), National Basic Research Program of China (973 Program) (2011CB808600), the Changjiang Scholars and Innovation Team Project of Ministry of Education, Guangdong Natural Science Foundation (10351064101000000) and the Fundamental Research Funds for the Central Universities (2012ZP0003) for financial support.

REFERENCES

(a) Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H. W.
 H.; Neefs, J.; Winkler, H.; Gestel, J. V.; Timmerman, P.; Zhu, M.; Lee,
 E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.;
 Truffot-Pernot, C.; Lounis, N.; Jarlier, V. Science 2005, 307, 223.
 (b) Bax, B. D.; Chan, P. F.; Eggleston, D. S.; Fosberry, A.; Gentry, D.
 R.; Gorrec, F.; Giordano, I.; Hann, M. M.; Hennessy, A.; Hibbs, M.;
 Huang, J.; Jones, E.; Jones, J.; Brown, K. K.; Lewis, C. J.; May, E. W.;
 Saunders, M. R.; Singh, O.; Spitzfaden, C. E.; Shen, C.; Suhillings, A.;
 Theobald, A. J.; Wohlkonig, A.; Pearson, N. D.; Gwynn, M. N. Nature 2010, 466, 935.

(2) For classical methods on quinoline synthesis, see: (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M.; do, C.; Soriano, E. *Chem. Rev.* **2009**, *109*, 2652. (b) Cheng, C.; Yan, S. *Org. React.* **1982**, *28*, 37. (c) Wu, Y.; Liu, L.; Li, H.; Wang, D.; Chen, Y. J. Org. Chem. **2006**, *71*, 6592. (d) Akbari, J.; Heydari, A.; Kalhor, H. R.; Kohan, S. A. J. Comb. Chem. **2010**, *12*, 137. (e) Manske, R. H. F.; Kukla, M. Org. React. **1953**, *7*, 59. (f) Reitsema, R. H. Chem. Rev. **1948**, 43, 43. (g) Bergstrom, F. W. Chem. Rev. **1944**, *35*, 77.

(3) For selected recent examples, see: (a) Xia, X.; Zhang, L.; Song, X.; Liu, X.; Liang, Y. Org. Lett. **2012**, *14*, 2480. (b) Ali, S.; Zhu, H.; Xia, X.; Ji, K.; Yang, Y.; Song, X.; Liang, Y. Org. Lett. **2011**, *13*, 2598. (c) Gao, G.; Niu, Y.; Yan, Z.; Wang, H.; Wang, G.; Shaukat, A.; Liang, Y. J. Org. Chem. **2010**, *75*, 1305. (d) Matsubara, Y.; Hirakawa, S.; Yamaguchi, Y.; Yoshida, Z. Angew. Chem., Int. Ed. **2011**, *50*, 7670. (e) Cao, K.; Zhang, F.; Tu, Y.; Zhuo, X.; Fan, C. Chem.—Eur. J. **2009**, *15*, 6332.

(4) Selected recent examples: (a) Ji, X.; Huang, H.; Li, Y.; Chen, H.; Jiang, H. Angew. Chem., Int. Ed. 2012, 51, 7292. (b) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323. (c) Zhang, X.; Song, X.; Li, H.; Zhang, S.; Chen, X.; Yu, X.; Wang, W. Angew. Chem., Int. Ed. 2012, 51, 7282. (d) Kulkarni, A.; Török, B. Green Chem. 2010, 12, 875.

(5) (a) Cheng, Y.; Judd, T. C.; Bartberger, M. D.; Brown, J.; Chen, K.; Fremeau, R. T.; Hickman, D., Jr.; Hitchcock, S. A.; Jordan, B.; Li, V.; Lopez, P.; Louie, S. W.; Luo, Y.; Michelsen, K.; Nixey, T.; Powers, T. S.; Rattan, C.; Sickmier, E. A.; Jean, D. J. S.; Wahl, R. C., Jr.; Wen, P. H.; Wood, S. J. Med. Chem. 2011, 54, 5836. (b) Takenaka, N.; Chen, J.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. J. Am. Chem. Soc. 2010, 132, 4536. (c) He, C.; Hao, J.; Xu, H.; Mo, Y.; Liu, H.; Han, J.; Lei, A. Chem. Commun. 2012, 48, 11073. (d) Inglis, S. R.; Jones, R. K.; Booker, G. W.; Pyke, S. M. Bioorg. Med. Chem. Lett. 2006, 16, 387.

(6) (a) Tomioka, T.; Takahashi, Y.; Maejima, T. Org. Biomol. Chem. 2012, 10, 5113. (b) Yin, J.; Xiang, B.; Huffman, M. A.; Raab, C. E.; Davies, I. W. J. Org. Chem. 2007, 72, 4554.

(7) (a) Payne, J. T.; Andorfer, M. C.; Lewis, J. C. Angew. Chem., Int. Ed. 2013, 52, 5271. (b) Sun, X.; Shan, G.; Sun, Y.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52, 4440. (c) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416. (d) Andrews, S.; Burgess, S. J.; Skaalrud, D.; Kelly, J. X.; Peyton, D. H. J. Med. Chem. 2010, 53, 916.

(8) For selected reviews, see: (a) Gulevich, A. V.; Zhdanko, A. G.;
Orru, R. V. A.; Nenajdenko, V. G. Chem. Rev. 2010, 110, 5235.
(b) Lygin, A. V.; de Meijere, A. Angew. Chem., Int. Ed. 2010, 49, 9094.
(c) Dömling, A. Chem. Rev. 2006, 106, 17. (d) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. (e) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899.

(9) For recent examples on palladium-catalyzed processes to synthesis of N-containing heterocycles involving isocyanide insertion, see: (a) Bochatay, V. N.; Boissarie, P. J.; Murphy, J. A.; Suckling, C. J.; Lang, S. J. Org. Chem. 2013, 78, 1471. (b) Wang, Y.; Zhu, Q. Adv. Synth. Catal. 2012, 354, 1902. (c) Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270. (d) Tobisu, M.; Imoto, S.; Ito, S.; Chatani, N. J. Org. Chem. 2010, 75, 4835. (e) Miura, T.; Nishida, Y.; Morimoto, M.; Yamauchi, M.; Murakami, M. Org. Lett. 2011, 13, 1429. (f) Curran, D. P.; Du, W. Org. Lett. 2002, 4, 3215. (g) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem, Int. Ed. 2012, 51, 13058. (h) Wang, Y.; Wang, H.; Peng, J.; Zhu, Q. Org. Lett. 2011, 13, 4604. (i) Hu, Z.; Liang, D.; Zhao, J.; Huang, J.; Zhu, Q. Chem. Commun. 2012, 48, 7371. (j) Qiu, G.; Chen, C.; Yao, L.; Wu, J. Adv. Synth. Catal. 2013, 355, 1579.

(10) For selected reviews, see: (a) Stahl, S. S. Science 2005, 309, 1824. (b) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733. (c) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.

(11) (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.
(b) Shiri, M. Chem. Rev. 2012, 112, 3508. (c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215. (d) Xu, C.; Murugan, V. K.; Pullarkat, S. A. Org. Biomol. Chem. 2012, 10, 3875. (e) Gabriele, B.; Veltri, L.; Mancuso, R.; Salerno, G.; Costa, M. Eur. J. Org. Chem. 2012, 2012, 2549. (f) Guo, Y.; Tang, R.; Li, J.; Zhong, P.; Zhang, X. Adv. Synth. Catal. 2009, 351, 2615. (g) Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron 1994, 50, 11803. (h) Han, X.; Lu, X. Org. Lett. 2010, 12, 3336.

(12) (a) Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett.
2011, 13, 1028. (b) Liu, B.; Li, Y.; Jiang, H.; Yin, M.; Huang, H. Adv. Synth. Catal. 2012, 354, 2288. (c) Li, Y.; Zhao, J.; Chen, H.; Liu, B.; Jiang, H. Chem. Commun. 2012, 48, 3545. (d) Liu, B.; Li, Y.; Yin, M.; Wu, W.; Jiang, H. Chem. Commun. 2012, 48, 11446. (e) Liu, B.; Yin, M.; Gao, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78, 3009.

(13) (a) Pan, X.; Luo, Y.; Wu, J. Chem. Commun. 2011, 47, 8967.
(b) Pan, X.; Luo, Y.; Wu, J. Org. Biomol. Chem. 2012, 10, 1969.
(c) Abbiati, G.; Arcadi, A.; Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2005, 70, 6454. (d) Arcadi, A.; Aschi, M.; Marinelli, F.; Verdecchia, M. Tetrahedron 2008, 64, 5354. (e) Toriia, S.; Okumotoa, H.; Xua, L. H.; Sadakanea, M.; Shostakovskyb, M. V.; Ponomaryovb, A. B.; Kalininb, V. N. Tetrahedron 1993, 49, 6773. (f) Schmittel, M.; Steffen, J.-P.; Rodríguez, D.; Engelen, B.; Neumann, E.; Cinar, M. E. J. Org. Chem. 2008, 73, 3005. (g) Alajarín, M.; Bonillo, B.; Vidal, Á.; Bautista, D. J. Org. Chem. 2008, 73, 291. (h) Du, W.; Curran, D. P. Org. Lett. 2003, 5, 1765. (i) Jonckers, T. H. M.; van Miert, S.; Cimanga, K.; Bailly, C.; Colson, P.; De Pauw-Gillet, M.-C.; van den Heuvel, H.; Claeys, M.; Lemière, F.; Esmans, E. L.; Rozenski, J.; Quirijnen, L.; Maes, L.; Dommisse, R.; Lemière, G. L. F.; Vlietinck, A.; Pieters, L. J. Med. Chem. 2002, 45, 3497.

(14) The influence of chloride ion content on halopalladation, see: (a) Ma, S.; Lu, X. J. Org. Chem. **1991**, 56, 5120. (b) Wang, Z.; Lu, X. Tetrahedron Lett. **1997**, 38, 5213.

(15) The crystallographic data of **3ka** was deposited at the Cambridge Crystallographic Data Centre and the allocated the

deposition number is 936575. For more details, see the Supporting Information.

(16) The major byproducts detected by GC-MS were 3-bromo-2-phenyl-1*H*-indole, 2-phenyl-1*H*-indole.

(17) (a) Mei, Z.; Wang, L.; Lu, W.; Pang, C.; Maeda, T.; Peng, W.;
Kaiser, M.; Sayed, I. E.; Inokuchi, T. J. Med. Chem. 2013, 56, 1431.
(b) Sidoryk, K.; Świtalska, M.; Wietrzyk, J.; Jaromin, A.; Piętka-Ottlik,
M.; Cmoch, P.; Zagrodzka, J.; Szczepek, W.; Klaczmarek, Ł.;
Peczyńska-Czoch, W. J. Med. Chem. 2012, 55, 5077.

(18) (a) Ali, S.; Li, Y.; Anwar, S.; Yang, F.; Chen, Z.; Liang, Y.-M. J. Org. Chem. 2012, 77, 424. (b) Hostyn, S.; Baelen, G. V.; Lemière, G. L. F.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 2653. (c) Sundaram, G. S. M.; Venkatesh, C.; Kumar, U. K. S.; Ila, H.; Junjappa, H. J. Org. Chem. 2004, 69, 5760. (d) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 8369. (e) Gupta, S.; Kumar, B.; Kundu, B. J. Org. Chem. 2011, 76, 10154.

(19) (a) Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 15914. (b) Shen, Q.; Hartwig, J. F. Org. Lett. 2008, 10, 4109.

(20) (a) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 2488. (b) Tang, S.; Yu, Q.; Peng, P.; Li, J.; Zhong, P.; Tang, R. Org. Lett. 2007, 9, 3413. (c) Shen, Z.; Lu, X. Adv. Synth. Catal. 2009, 351, 3107.