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SUMMARY

Hydroamination reactions involving the addition of
an amine to an inactivated alkene are entropically
prohibited and require strong chemical catalysts.
While this synthetic process is efficient at generating
substituted amines, there is no equivalent in small
molecule-mediated enzyme inhibition. We report an
unusual mechanism of proteasome inhibition that
involves a hydroamination reaction of alkene deriva-
tives of the epoxyketone natural product carmaphy-
cin. We show that the carmaphycin enone first forms
a hemiketal intermediate with the catalytic Thr1 resi-
due of the proteasome before cyclization by an
unanticipated intramolecular alkene hydroamination
reaction, resulting in a stable six-memberedmorpho-
line ring. The carmaphycin enone electrophile, which
does not undergo a 1,4-Michael addition as previ-
ously observed with vinyl sulfone and a,b-unsatu-
rated amide-based inhibitors, is partially reversible
and gives insight into the design of proteasome in-
hibitors for cancer chemotherapy.

INTRODUCTION

Hydroamination of unactivated alkenes is a challenging process

because such reactions are generally not very exothermic and

are entropically disfavored (Beller et al., 2004; Hultzsch, 2005).

In general, these reactions require protonation of the alkene

p-bond, leading to a carbocation intermediate that is then

attacked by the amine nucleophile (Beller et al., 2004). Whereas

this process can be promoted by alkali, transition, or rare earth

metals, as well as by Lewis or Brønsted acids and bases (Beller

et al., 2004; Schlummer and Hartwig, 2002; Hultzsch, 2005), no

equivalent in small molecule-mediated enzyme inhibition has
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been reported. The entropic penalty for a biochemical hydroami-

nation reaction, however, may conceivably be overcome by pre-

organization in an enzyme reactive site. In this work, we report

enzyme inhibition mediated by hydroamination using protea-

some inhibitors derived from natural products. The scaffolds of

these small molecules interact tightly with the protein, which

facilitates hydroamination by the enzyme N-terminal amine.

The proteasome functions as the central hub of nonlysosomal

cellular proteolysis where it mediates a number of key processes

such as cell cycle control, cell differentiation, immune response,

amino acid recycling, and apoptosis (Goldberg, 2007; Murata

et al., 2009). These biological processes can thus be manipu-

lated through the addition of small molecules that selectively

target the proteolytically active b subunits of the proteasome

(Kisselev et al., 2012; Moore et al., 2008; Borissenko and Groll,

2007). Due to the importance of the proteasome to malignant

cells and the immune process, it is considered a biological target

of high interest for pharmaceutical development. Two protea-

some inhibitors, the epoxyketone carfilzomib (Kyprolis) and the

peptide boronate bortezomib (Velcade), are now used clinically

as anticancer agents and others are in development.

Several proteasome inhibitors have been reported from natu-

ral and synthetic sources and include both noncovalent and

covalent inhibitors (Kisselev et al., 2012). The covalent protea-

some inhibitors can display reversible or irreversible inhibition

profiles and present, in most cases, a peptidic core and an elec-

trophilic warhead. The peptidic core is responsible for forming a

stable antiparallel b sheet with the enzyme, which in turn posi-

tions the warhead in ideal geometry for covalent attachment of

the Thr1 proteasome catalytic residue. The Thr1 side chain oxy-

gen (Thr1Og) is the nucleophile responsible for the attack on

electrophilic substrates, including the natural peptidic substrate

and several classes of inhibitor electrophiles, thus forming cova-

lent adducts (Kisselev et al., 2012). Taking advantage of the

inhibitor stability and warhead positioning conferred by the

peptidic core of proteasome inhibitors, we used the recently

discovered natural product carmaphycin (1; Pereira et al.,
Ltd All rights reserved

mailto:michael.groll@tum.de
mailto:wgerwick@ucsd.edu
mailto:bsmoore@ucsd.edu
http://dx.doi.org/10.1016/j.chembiol.2014.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chembiol.2014.04.010&domain=pdf


Figure 1. Natural Product Proteasome Inhibitors

Carmaphycin A (1), syringolin A (2), and derivatives 3–6.

Table 1. Inhibitory Activity of Carmaphycin and Analogs as

Measured in Human Cell Assays and with the Purified Yeast 20S

Proteasome

ChTL (b5)a TL (b2)b H-460c HCT-116d

1 1.5 ± 0.2 46.2 ± 6.0 16.4 ± 2.7 19.4 ± 0.1

3 1.2 ± 0.1 112.4 ± 7.0 19.6 ± 2.4 10.7 ± 2.3

4 164.5 ± 5.6 >50,000 1,667.0 ± 82.0 727.4 ± 167.1

IC50 values (nM) are presented.
aPurified yeast proteasome, Suc-LLVY-Amc is a peptide substrate to

specifically determine ChTL activity.
bPurified yeast proteasome, Ac-LRR-Amc is a peptide substrate to

specifically determine TL activity.
cH-460 human lung cancer cell line.
dHCT-116 human colon cancer cell line.
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2012) and its derivatives (Figure 1) to challenge the Thr1 nucleo-

phile in interacting with enone electrophiles.

Structurally, 1 features a leucine-derived a0,b0-epoxyketone
warhead (the P1 residue) directly connected to amethionine sulf-

oxide (the P2 residue), which in turn is connected to a valine (the

P3 residue) and an alkyl chain terminal tail (Figure 1). a0,b0-epoxy-
ketones, as exemplified in 1, the bacterial natural product epox-

omicin (Groll et al., 2000; Meng et al., 1999), and its recently US

Food and Drug Administration (FDA)-approved derivative carfil-

zomib (Molineaux, 2012) are potent, selective, and irreversible

proteasome inhibitors. Epoxyketone warheads form stable mor-

pholine derivatives with the active site Thr1 residues in the six

proteolytic sites of the 20S proteasome core particle (Groll

et al., 2000; Meng et al., 1999). The warhead carbonyl and

epoxide undergo two successive nucleophilic attacks performed

by Thr1Og and Thr1N, respectively (Groll et al., 2000).

Another class of proteasome inhibitor warheads of interest are

a,b-unsaturated systems, such as a,b-unsaturated amides, as

seen in the proteasome inhibitor and plant pathogen virulence

factor syringolin A (Groll et al., 2008; 2), and vinylsulfones (Kisse-

lev et al., 2012). These undergo 1,4-Michael addition with the

Thr1Og nucleophile, forming a one-step irreversible covalent

adduct with Thr1Og.

We thushypothesized that replacing the epoxyketonewarhead

in 1 with a complementary a,b-unsaturated carbonyl as in 2

would probe the plasticity of the proteasome and change the

nature of the chemical reactions between the inhibitor and the

enzyme. Herein we report an unusual mechanism of proteasome

inhibition that involves a hydroamination reaction of alkene

derivatives of the carmaphycin class of proteasome inhibitors.

RESULTS

Synthesis of Carmaphycin Derivatives
Due to the unstable redox properties of the methionine sulfoxide

at the P2 residue position of natural carmaphycin A (1), we re-
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placed this residue with N,N-dimethylglutamine. Based on alter-

ations to our original total synthesis (Pereira et al., 2012) of 1, we

prepared epoxyketone 3, enones 4 and 5, and ketone 6. These

synthetic analogs along with natural product 1 were used in

this study to explore and compare the relative inhibitory effect

of different ketone derivatives in the carmaphycin series. The

complete synthetic procedures are reported in the Supplemental

Experimental Procedures and Experimental Procedures.

Activity Assays
We first interrogated the chymotrypsin-like (ChTL) inhibitory

activity of the carmaphycin analog 3 and measured a similar

potency in comparison with the natural compound 1 (1.2 nM

versus 1.5 nM with the purified proteasome, respectively), sug-

gesting the functional similarity of their P2 residues (Table 1).

We next analyzed the carmaphycin/syringolin chimera 4, which

also displayed high potency with nanomolar inhibition of the

purified proteasome, albeit with a 100-fold loss in activity

(164 nM). The proteasome trypsin-like activity (TL, b2 subunit)

was also measured, showing preferable inhibitor binding to

ChTL over TL for the three inhibitors tested. Overall, the relative

potencies of ChTL inhibition matched the cell toxicity properties

of these new derivatives, with compound 3 being of highest

potency, whereas 4 displayed decreased activity yet still had

effects in the nanomolar range (Table 1).

We further showed the importance of the alkene or epoxide

groups in the warhead of these inhibitors by preparing and

testing saturated ketone 6. Compound 6 was not active in the

enzyme nor in the cell-based assays, even at concentration

as high as 1 mM.

To more fully explore the consequence of replacing the epox-

yketone in 3 with the enone warhead in 4, we separately incu-

bated 1, 3 and 4 with the yeast and human 20S proteasomes

to measure their relative binding properties (Figures S1 and S2

available online). Compounds 1 and 3 showed a clear reversible

mode of binding after 2 hr of incubation with the ligand (Figures

S1A and S1D). However, the reversibility was less evident after

6 hr (Figures S1B and S1E) and after 24 hr was irreversible (Fig-

ures S1C and S1F). This inhibition profile suggests a two-step

mechanism of interaction with the proteasome, much like that

observed for the prototype epoxomicin (Groll et al., 2000;

Meng et al., 1999), and is highly anticipated for epoxyketone

warheads. Epoxyketones undergo a fast reversible inhibition
782–791, June 19, 2014 ª2014 Elsevier Ltd All rights reserved 783



Figure 2. Crystal Structures of the Yeast 20S Proteasome Binding the Natural Product Carmaphycin A (1) and Derivatives Containing

Epoxyketone and Enone Warheads

(A–H) General view of the ChTL catalytic unit binding 1 (A) and detailed view of 1 (B) and 3 (C) epoxyketone warheads. The enone chimera 4 is shown in (D) and a

detailed view of the enone warhead bound to the b2 (TL) and b5 (ChTL) subunits are presented in (E) and (F), respectively. Ligands are contoured by the 2Fo-Fc

omit maps at 1s (blue net). A hemiketal adduct was trapped at the TL subunit binding compound 4 (E), unequivocally showing a 1,2 addition reaction of the

Thr1Og to the enone carbonyl. In contrast, a cyclic adduct was found at the ChTL subunit (F). Differentiation between six (morpholine) and seven (oxazepine)

membered ring adducts was possible by the use of enone 5 derivative, which contains an extra methyl group attached to the enone beta carbon. The super-

position of morpholine (green) with oxazepine (light gray) modeled adducts is shown in (G) and a detailed view of 5 binding the ChTL subunit is shown in (H). The

Fo-Fc difference map calculated from experimental data after modeling the oxazepine ring is contoured at 3s (G). Positive and negative peaks are presented in

green and red nets, respectively. Extra electron density near the wrong N-Cb bond (red net) and missing density at the extra methyl position for morpholine ring

possibility (green net) were found, indicating the correctness of the 6-membered morpholine ring as the final product. Sequence numbering is based on the

primary sequence alignment of the respective yeast subunit with that of Thermoplasma (Löwe et al., 1995). Figures were generated with the Pymol software

(Schroedinger). Oxygen, nitrogen, and sulfur atoms are shown in red, blue, and yellow, respectively.
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step, followed by a second reaction leading to irreversible inhibi-

tion of the proteasome.

Enone 4 also exhibited this inhibition profile in the ChTL

subunit, thus suggesting a similar stepwise reaction with the

proteasome (Figures S1G–S1I). Compound 4 had a prolonged

reversible phase, with reversible profiles at 2 and 6 hr of inhibitor

incubation with the enzyme, indicating a less favored irreversible

reaction step when compared to epoxyketones. We further

measured the proteasome TL activity, showing that epoxyke-

tones 1 and 3 are irreversible, whereas enone 4 is a reversible in-

hibitor of this proteasome catalytic unit (Figures S1J–S1L).

Taken together, these results suggest a different mode of pro-

teasome binding for the a,b-unsaturated carbonyl system in

compound 4. Although one might anticipate the enone moiety

of 4 to function as a one-step covalent irreversible inhibitor

undergoing a 1,4-Michael reaction such as compound 2 (Groll

et al., 2008), the reversible nature of the first step of inhibition

observed for compound 4 precludes the possibility of a 1,4-addi-

tion, which would lead to an irreversible adduct. Furthermore,
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the binding data of enone 4 is similar to that observed for

epoxyketone inhibitors 1 and 3, showing a first reversible and a

second irreversible reaction stepwith the proteasomeChTL sub-

unit, thereby suggesting the likelihood of a 1,2-addition on the

ketone of compound 4 as the first reversible step.

Crystal Structures
To characterize the binding modes of the carmaphycin deriva-

tives, compounds 1, 3, and 4 were crystallized with the yeast

20S proteasome and diffraction data collected to 2.8 Å resolu-

tion (Figures 2 and S3). All three structures were refined to final

Rfree values below 24.3% and root-mean-square deviation

bond and angle values less than 0.006 Å and 1.0�, respectively
(Table S1).

Using inhibitor concentrations in the millimolar range for crys-

tal soaking, compounds 1, 3, and 4 targeted all three active sites

of the proteasome through covalent linkages, establishing that

they are catalytically active in the crystalline state (Figure S3A).

The backbones of bound inhibitors were well defined as
Ltd All rights reserved



Figure 3. Detail of the Reactive Center of the Proteasome Catalytic

Subunits as Found in the Crystallographic Structures of 2 and 4 in

Complex with the 20S Proteasome

The Thr1Og is the general nucleophile, but the electrophile can vary depending

upon warhead accommodation at the reactive center. The a,b-unsaturated

amide and carbonyl systems of proteasome inhibitors 2 (pale yellow; Protein

Data Bank ID 2ZCY) and 4 (green) are superposed at the TL (b2) catalytic unit.

The Cb of 2 is in prone position for an irreversible 1,4 addition type nucleophilic

attack by Thr1Og. On the other hand, the carbonyl of 4 and the carbonyl of the

natural peptide substrate (not shown) are positioned to undergo reversible 1,2

addition. Figures were generated with the Pymol software (Schroedinger).

Oxygen, nitrogen, and sulfur atoms are shown in red, blue, and yellow,

respectively.

Table 2. Interaction of the Proteasome Catalytic Center with the

Natural Substrate and Inhibitors

Substrate/Inhibitor Electrophile Reaction Nucleophile

Natural substrate Carbonyl (C) 1,2-addition Og from Thr1

Compound 1 Carbonyl (C) 1,2-addition Og from Thr1

Compound 2 b carbon (Cb) 1,4-addition Og from Thr1

Compound 4 Carbonyl (C) 1,2-addition Og from Thr1

Reaction types, nucleophiles, and electrophiles involved are described.
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antiparallel b sheets with contacts formed to the main chain

atoms of residues Gly47N, Gly47O, Thr21N, Thr21O, and

Ala49N as well as the side chain of Asp126 (Figure 2). The P1

leucine side chain was in proximity to the structurally rearranged

Met45, as well as Ala20, Val31, and Ala49 in the S1 pocket. The

methionine sulfoxide (via 1) and N,N-dimethylglutamine (via 3

and 4) P2 side chains were equally aligned and did not form

any direct interactionwith protein residues. The P3 valine residue

was effectively stabilized in the S3 pocket by three alanine resi-

dues (Ala20, Ala22, and Ala27), whereas a hydrophobic cluster

comprised of Pro104, Tyr106, Pro127, and Val128 accommo-

dated the hexanoate tail in the ChTL (b5) and TL (b2) sites. This

aliphatic group was exposed to solvent in the b1 subunit

(caspase-like activity), where it adopts a random arrangement

(Figure S3A).

Structural refinement and electron-density map calculations

revealed that the epoxyketone inhibitors 1 and 3 bind to the

Thr1 residue in a manner highly similar to that previously

observed for epoxomicin (Groll et al., 2000; Huber et al., 2012)

and its derivatives (Figure S3B). Unambiguously, a morpholine

ring was formed between the catalytic Thr1 residue and the

epoxyketone warheads (Figures 2A–2C), as a result of a two-

step reaction between the protein and the inhibitors. As previ-

ously reported (Huber et al., 2012), the 1,2-addition of Thr1Og

to the carbonyl carbon of the a0,b0-epoxyketone first occurs to

form a hydrolysable hemiketal adduct. Subsequently, the

epoxide group is prearranged for a nucleophilic attack by the

Thr1 free N-terminal amine nitrogen. This reaction occurs at

the C2 position of the epoxide and results in the final morpholine

ring product (Figures 2A–2C), which is stabilized by interactions

with Lys33Nε and Ser129Og.
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In contrast, enone 4 adopts two different ligand states in the

crystal structure that give insight into the observed partial revers-

ibility of 4 (Figures 2D–2F). The electron densities calculated for

the TL subunit in the 2FO-FC omit as well as in the FO-FC differ-

ence maps clearly displayed the attachment of 4 to Thr1Og via

a hemiketal linkage involving the carbonyl group of the ligand

(Figure 2E). The resulting alkoxide is stabilized in the oxyanion

hole, interacting with the main chain of Gly47NH, similar to that

observed in an epoxyketone-derived intermediate recently re-

ported (Huber et al., 2012). The preference for a 1,2-addition

over a 1,4-addition to the a,b-unsaturated system of 4 (Figure 2E)

might be a consequence of warhead accommodation at the

proteasome reactive center (Figure 3 and Table 2). Compound

4 positions the carbonyl of the enone in a position for nucleo-

philic attack by the Thr1Og nucleophile, thus enabling the

1,2-addition reaction. This scenario is different with 2, which

positions the b carbon of its a,b-unsaturated system at this reac-

tive site, thus facilitating a 1,4-addition (Groll et al., 2008).

Structural inspection of the ChTL and caspase-like sites, on

the other hand, revealed that enone 4 binds in an alternative

mode at these catalytic centers (Figure 2F). Notably, 4 forms a

cyclic adduct with the Thr1 residue involving both the ketone

and alkene functional groups. Inspection of the diffraction data

at 2.8 Å resolution and molecular fitting, however, did not un-

equivocally differentiate whether the cyclic product involved a

6-membered morpholine ring or a 7-membered oxazepine ring.

Both adducts are structurally distinct and would involve different

mechanistic paths. In a first hypothesis, the hemiketal intermedi-

ate of 4, as observed in the TL subunit (Figure 2E), would

undergo an unprecedented hydroamination reaction at the

alkene residue with Thr1N. Depending on the regiochemistry of

the reaction, two outcomes are plausible and would generate

either morpholine or oxazepine adducts.

Formation of the oxazepine, however, could alternatively be

achieved by a different reaction mechanism first involving a

1,4-addition of Thr1N to the enone followed by addition of the

Thr1Og to the ketone (Figure S10). In this scenario the first cova-

lent adduct would represent the irreversible product derived

from 1,4-addition and the proteasome nucleophile would

change from Thr1Og to Thr1N. Considering that Thr1Og is the

general nucleophile reported in all proteasome covalent interac-

tions to date, including the innate proteolytic mechanism (re-

viewed in Kisselev et al., 2012), and that Thr1N is protonated

under physiological conditions, it is unlikely that Thr1N should

act as the initial nucleophile. Furthermore, our reversibility exper-

iments clearly show that 4 undergoes a stepwise reaction with

the proteasome, in which the first step is reversible (Figures

S1G–S1I). While this orthogonal mechanism is not consistent
782–791, June 19, 2014 ª2014 Elsevier Ltd All rights reserved 785



Figure 4. Quantum Chemical Calculations of the Regiochemistry of

the ChTL Site Alkene Hydroamination of Inhibitors 4 and 5
(A and B) Computed structures (distances are approximate) of models for (A)

the morpholine product and (B) a possible alternative oxazepine product and

their computed relative free energies (kcal/mol).

(C) Model system used to examine proton transfer to carbon a versus

carbon b. The transition state structure for proton transfer to Cb is favored by

5 kcal/mol over that for transfer to Ca.

Chemistry & Biology

Enzyme Inhibition by Hydroamination
with our biochemical observations and with previously observed

proteasome biochemistry, our structural data did not unequivo-

cally rule it out.

To address this issue, we designed compound 5 as a struc-

tural probe to help discern between the six- and seven-

membered ring formation scenarios. Compound 5 contains an

additional carbon atom at the g position of the enone. If the

cyclized product was morpholine-based, then an ethyl side

chain would be expected. On the other hand, an oxazepine-

based adduct would be reflected by two adjacent methyl

groups. The crystal structure of the proteasome bound to 5,

obtained at 2.5 Å resolution (Table S1), revealed a cyclized

adduct occupying proteasome binding pockets similar to those

observed with analogs 1, 3, and 4 (Figure 2H). Importantly, we

clearly saw the telltale ethyl side chain in the 2FO-FC omit map

of 5 binding the proteasome (Figure 2H) and, further inspection

of the FO-FC differencemapswas consistent only with amorpho-

line cyclic product (Figure 2G). These data definitely exclude a

1,4-addition mechanism and reveal that the regiochemistry of

the hydroamination reaction proceeds in a Markovnikov sense

in generating the morpholine ring as final product.

Quantum Chemical Calculations
To further evaluate the reactivity of enone 4with the proteasome,

we modeled transition state structures for 1,2- and 1,4-addition

as the first reaction step (Figures S4–S6), in the absence of the

surrounding active site, using density functional theory calcula-

tions (M06-2X/6-31+G(d,p); see Experimental Procedures and

Supplemental Experimental Procedures for details). The data

indicate that the 1,2-addition (Figure S5) is favored over the

1,4-addition (Figure S6) by approximately 1 kcal/mol. We further
786 Chemistry & Biology 21, 782–791, June 19, 2014 ª2014 Elsevier
investigated the regiochemistry of the ChTL site alkene hydroa-

mination of 4 and 5, by calculating the relative energies of both

reaction products and transition state structures for formation

of their carbocation precursors. These calculations indicate

that 4 has an inherent thermodynamic and kinetic preference

formorpholine over oxazepine ring formation (Figure 4). Themor-

pholine product is predicted to be approximately 8 kcal/mol

lower in free energy than the oxazepine product (Figures 4A

and 4B). In addition, proton transfer (the first step in the hydroa-

mination reaction) to the alkene CH2 group is predicted to be

favored over proton transfer to the more substituted carbon by

5 kcal/mol (Figure S9), as expected.

These theoretical calculations are in agreement with the

experimental results, leading to a consistent mechanistic model

in which the enone warhead in 4 undergoes an initial 1,2-addi-

tion, followed by hydroamination of the alkene, which occurs in

a Markovnikov sense, leading to a morpholine ring as the final

product.

DISCUSSION

As with the well-studied epoxyketone pharmacophore first

described with the proteasome inhibitor epoxomicin (Groll

et al., 2000), we show here that the enone functional group

supports a two-step reaction leading to a cyclic adduct

formation. The ketone groups of both electrophilic inhibitors

are first attacked by the proteasome Thr1Og, followed by a sec-

ond attack of the Thr1N on either the epoxy or alkene groups

(Figure 5).

Based on the complementary results from our quantum chem-

ical calculations and the crystallographic data obtained with

compound 5, we demonstrated that a morpholine ring, as

observed in epoxyketone proteasome inhibitors, is also gener-

ated in the case of the enone pharmacophore. The general ligand

binding in the proteasome-inhibitor complexes of epoxyketones

1 and 3 and enones 4 and 5 is identical (Figure S3), andmarkedly

different to that observed in the 2-derived proteasome complex

(Groll et al., 2008; Figure 3). Consequently, the proteasome inhi-

bition mechanism suggested for enones 4 and 5 is more similar

to that verified for its parent scaffold-containing compounds 1

and 3 than to that for its parent warhead-containing compounds

as in 2 and vinylsulfones (Kisselev et al., 2012; Figures 3 and 5).

Contemplating the reaction mechanism of the proteasome

with inhibitor 4, we considered several scenarios to dissect the

mechanism of enzyme inhibition by this enone compound. First,

the hemiketal intermediate is formed following the classical pro-

teasome 1,2-addition mechanism involving the Thr1Og nucleo-

phile and the inhibitor carbonyl, which is ideally positioned at

the proteasome reactive center (Figure 3). After the formation

of the hemiketal intermediate, the alkene residue is no longer

activated. Thus, attack by the Thr1 amino group may proceed

either directly with the isolated olefin (Figure 5C) or indirectly

(Figure 5D).

While the aminolysis of epoxides is known to occur in water

under mild conditions, the direct hydroamination of an inacti-

vated alkene (Figure 5C), although thermodynamically feasible,

generally requires a catalyst (Hultzsch, 2005). The geometric re-

strictions conferred by the hemiketal intermediate, however,

should favor hydroamination, which is otherwise prohibited in
Ltd All rights reserved



Figure 5. Proposed Reaction Mechanisms

Involving the Proteasome Active Site Resi-

due Thr1 and Inhibitors Containing Different

Reactive Functional Groups

(A–D) Inhibitory reaction mechanisms are shown

for (A) the epoxyketone warhead in epoxomicin

(Huber et al., 2012, Wei et al., 2012) and 1, (B) the

natural a,b-unsaturated-amide system present in

2 (Groll et al., 2008), and (C and D) the enone

warhead in the synthetic derivatives 4 and 5.
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solution. Direct hydroamination of the inactivated alkene may be

facilitated by proton transfer from the free Thr1 amine to the C-C

double bound, because the free amine is predicted to be proton-

ated. The geometric restrictions conferred by the hemiketal bond

and the overall ligand and warhead positioning in the enzyme

binding pocket further reduce the entropic penalty for amine

approach to the alkene p-bond. In addition, the Ser129Og side

chain is approximately 3 Å from the Thr1 amine nitrogen atom

in both cyclized and hemiketal adducts. Consequently, the

placement of this residue at this proximate positionmay increase

the nucleophilicity of the amine, thereby facilitating amine addi-

tion to the alkene (Schlummer and Hartwig, 2002).

An alternative mechanism involving an indirect hydroamina-

tion reaction is also plausible (Figure 5D). Here the hemiketal in-

termediate may first undergo an intramolecular rearrangement in

which the generated alkoxide reacts with the adjacent olefin, the

latter requiring activation by an acidic proton. This newly formed
Chemistry & Biology 21, 782–791, June 19, 2014
epoxide intermediate would then react

with the free amine from Thr1 to complete

the reaction and form the morpholine

adduct. Thismechanistic pathway is sup-

ported by quantum chemical calculations

that predict barrierless formation of the

epoxide intermediate (in the gas phase),

and consequently, align the inhibitory

mechanisms of the epoxyketone and

enone functional groups.

Irrespective of the mechanistic route,

the energetic barrier for the final step in

the morpholine ring formation from the

enone is expected to be greater than

that of the epoxyketone, which may

explain the decreased potency (Table 1)

and partial reversibility of derivative 4

(Figure S1). Interestingly, when the func-

tional group adjacent to the ketone is

removed as in acylketone 6, proteasome

inhibition potency and cell activity are

both abolished. This observation further

suggests that the reactive epoxide and

alkene functional groups are key to avoid-

ing rapid hydrolysis of the initially formed

hemiketal adduct. The nature of the

warhead functional group and viability of

the second reaction step to form an irre-

versible final product strongly contributes

to the potency of these agents (Table 1).
Although derivatives of 4 have not yet been observed in nature,

recent biosynthetic studies of the epoxyketone proteasome in-

hibitors epoxomicin and eponemycin suggest the biosynthetic

intermediacy of enone intermediates in those natural products

that may foretell their future discovery (Schorn et al., 2014).

The modulated reactivity observed with compound 4 is some-

what reminiscent of the potent proteasome inhibitor fluoro-

salinosporamide, which also reacts with the proteasome in a

two-step reaction mechanism involving a fast and reversible

attachment to Thr1 followed by a slow and irreversible fluoride

displacement reaction (Eustáquio and Moore, 2008; Groll et al.,

2009). A major difference between these two inhibitors involves

the nature of the reversibility of the initial proteasome adducts.

In the case of fluorosalinosporamide, the b-lactone warhead is

destroyed upon hydrolysis, whereas in compound 4, the reverse

reaction of the hemiketal intermediate would restore the reactive

enone warhead.
ª2014 Elsevier Ltd All rights reserved 787
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The FDA approval of carfilzomib for treatment of multiple

myeloma in 2012 sparks hope for a broader application of pro-

teasome inhibitors as pharmaceutical agents, especially with re-

gard to their unexploited potency for treatment of other cancer

subtypes and immunological diseases. Although carfilzomib

shows decreased side effects compared to bortezomib, it still

suffers from its highly reactive warhead and toxic effects with

prolonged use (Arastu-Kapur et al., 2011). Increasing the revers-

ibility window with the newly established enone mechanism of

action may be a promising approach to further improvements

in this inhibitor class.

In summary, our data reveal that the a,b-unsaturated

carbonyl systems in compounds 4 and 5 bind in an inverted

orientation with respect to warhead positioning reported for 2,

thereby allowing for the initial attack on the carbonyl versus

the conjugated alkene (Figures 3 and 5). This inversion of the

innate chemical properties of the Michael-system can be

ascribed to reactive group positioning for nucleophilic attack

by Thr1Og (Figure 3). We demonstrated that the remaining

alkene derived from the enone warhead of compounds 4 or 5

can undergo a second nucleophilic attack by proteasome

Thr1N, leading to a cyclic morpholine adduct. Although this

second reaction is slower, it is ultimately essential for inhibitor

potency. We anticipate that alkene hydroamination could be

exploited for enzyme inhibitor design in situations where a

nucleophile and an acid are in proximity and under ideal geo-

metric constrains to the target alkene, allowing for an otherwise

entropically unfavorable reaction to yield a stable enzyme

adduct.
788 Chemistry & Biology 21, 782–791, June 19, 2014 ª2014 Elsevier
SIGNIFICANCE

The proteasome is a validated biochemical target for cancer

chemotherapy and is inhibited by natural products and

synthetic molecules, following reversible or irreversible

reaction mechanisms. The proteasome Thr1 catalytic resi-

due actively participates in the inhibitory mechanisms

through its side chain oxygen (Thr1Og) and its terminal

amine (Thr1N) nucleophiles that attack the inhibitor’s

warhead electrophiles. We here report the crystal structures

of the yeast 20S proteasome bound to carmaphycin and its

derivatives containing epoxyketone and enone warheads,

together with cell-based and mechanism-based assays.

These data, along with quantum chemistry calculations,

reveal previously unknown proteasome inhibitory biochem-

istry showing that the enone compounds are partially

reversible and display promising biological properties. The

proposed mechanism for the newly established enone pro-

teasome inhibitor electrophile involves a two-step reaction,

involving a 1,2-addition of Thr1Og to the ketone, followed by

a hydroamination reaction of the inhibitor’s inactivated

alkene by Thr1N. This is an example of enzyme inhibition

by hydroamination, and the suggested mechanism is well

supported by the data presented. We were able to trap the

reaction intermediate for the enone inhibitor in crystal struc-

tures, showing that warhead positioning in the enzyme

active center is essential for defining the nature of chemical

interactions with the Thr1Og nucleophile. In the carmaphy-

cin derivatives series, the carbonyl moiety of epoxyketone
Ltd All rights reserved
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and enone warheads is ideally positioned for 1,2-addition of

Thr1Og, resulting in a reversible hemiketal adduct as the

first reaction product. The second reaction step involves

the covalent attachment of Thr1N to the epoxide or to the

alkene, following intramolecular aminolysis or hydroamina-

tion, respectively. Hydroamination is slower than aminolysis

and represents a new chemical reaction for enzyme inhibi-

tion that allows for controlling the irreversibility of protea-

some inhibitor binding.

EXPERIMENTAL PROCEDURES

Chemicals

All chemicals used in the present work were of reagent grade quality.

Crystal Structures

The 20S proteasome was purified from Saccharomyces cerevisiae as

described previously (Gallastegui and Groll, 2012; Groll et al., 1997; Groll

and Huber, 2005). Crystals were grown in hanging drops at 24�C, using a pro-

tein solution at 40 mg/ml in 10 mM morpholino-ethane-sulphonic acid (MES)

pH 7.5 and EDTA (1 mM). Drops contained 1 ml of protein and 1 ml of the reser-

voir (30 mM of magnesium acetate, 100mM of MES [pH 7.2] and 12% ofMPD)

solutions (Groll et al., 1997; Groll and Huber, 2005). Crystals were soaked with

compounds 1, 3, 4, 5, or 6 at final concentrations ranging from 2 to 10 mM for

24 hr. Crystals were then transferred to a cryoprotecting buffer (30% 2-methyl-

2,4-pentanediol, 20 mM magnesium acetate, 100 mM Tris [pH 6.9]) before

cooling in liquid nitrogen.

Data collections were carried out at 100 K in a stream of liquid nitrogen gas

(Oxford Cryo Systems). Crystals formed in the P21 space group with cell

dimensions of about a = 135 Å, b = 301 Å, c = 144 Å and b = 113� (Table

S1). Data to 2.5 Å were collected using synchrotron radiation with l = 1.0 Å

at the X06SA-beamline in SLS/Villingen/Switzerland. X-ray intensities and

data reduction were evaluated using the XDS program package (Kabsch,

2010). Conventional crystallographic rigid body, positional, and temperature

factor refinements were carried out with PHENIX (Adams et al., 2010) using

the yeast 20S proteasome structure as starting model (Protein Date Bank

accession code 3UN8; Huber et al., 2012). Cycles of maximum likelihoodmini-

mization, solvent modeling, and anisotropic correction were conducted in

PHENIX (Adams et al., 2010), using grouped B-factor and noncrystallographic

symmetry refinement. Real space refinement and inhibitor modeling were con-

ducted using Coot (Emsley and Cowtan, 2004). Ligand construction, geometry

file elaboration, and covalent ligand-protein linkage were carried out using

JLigand (CCP4, 1994) and Avogadro software. The last step of refinement

was performed in Refmac5 (Murshudov et al., 1997), using noncrystallo-

graphic symmetry and TLS refinement.

Omit maps were calculated using the program Omit (Bhat, 1988).

Inhibition Measurements

Inhibition assays of the purified 20S proteasome core particle from

S. cerevisiae was conducted as previously reported (Pereira et al., 2012),

with minor modifications. One nanomolar of proteasome was incubated with

different inhibitor concentrations in Tris 25 mM pH 7.5; SDS 0.03%; EDTA

0.5 mM for 15 min at 37�C in 96-well plates, in a final reaction volume of

40 mL. Ten microliters of specific fluorogenic proteasome substrate Suc-

LLVY-Amc (CTL substrate) or Ac-LRR-Amc (TL substrate) at 200 mM were

added, resulting in a final substrate concentration of 40 mM. Samples were

incubated for 15 min at 37�C and then the fluorescence in each well was

measured. Fluorescence was normalized to the control conducted in the

same conditions, however without inhibitor (related to 100% of enzyme activ-

ity), and plotted on a graph of inhibitor concentration versus remaining enzyme

activity. The experimental data were fitted using the logistic four parameters

equation in GraphPad software version 5 (GraphPad Prism).

Cell Assays

Cytotoxicity to H-460 human lung cancer and HCT-116 human colon cancer

cell lines was determined as previously reported (Mevers et al., 2011; Gross
Chemistry & Biology 21,
et al., 2010; Tidgewell et al., 2010) with cell viability being determined by

MTT reduction.

Reversibility Experiments

Yeast or human 20S proteasomes (10 nM) were incubated with 1 mM of inhib-

itor 4 or 0.01 mMof 1 or 3 for 2, 6, or 24 hr (yeast) or 1 hr (human) in Tris 100 mM

pH 7.0. The proteolytic activity was measured with fluorescence, using ChTL

(Suc-LLVY) or TL (Ac-LRR) 7-amino-4-methylcoumarin chromophoric sub-

strates after 10-fold dilution of the protein and inhibitor. A control group main-

tained at the same experimental conditions but with constant initial inhibitor

concentration ([4] = 1 mMor [1] or [3] = 0.01 mM)was performed for comparison.

Protein activity in groups maintained at the same experimental condition,

however in the absence of the inhibitor (DMSO control) was monitored to

guarantee protein integrity during the different time points (Figures S1G–S1I

in black). ChTL activity was stable up to 24 hr. However, TL catalytic activity

was unstable in the incubation buffer after the first 4 hr; therefore, only data

derived within the first 2 hr of incubation are reported for this latter enzyme

activity.

Computational Details

All calculations were carried out using the M06-2X/6-31+G(d,p) method

(Hohenstein et al., 2008; Zhao and Truhlar, 2008) with a continuum treatment

for solvation (the SMD approach [Marenich et al., 2009], using chloroform, i.e.,

a solvent with a dielectric constant in the range of estimates for enzyme active

sites), as implemented in Gaussian 09 (Gaussian). Explicit active site residues

were not included in the calculations, so the preferences described here reflect

inherent reactivity. Conformations of computed structures represent produc-

tive conformations for formation of the morpholine and oxazepine products.

Structural drawings were produced using Ball & Stick (Müller et al., 2004).

Computations on proton transfer did not include solvent and were carried

out using the model system shown in Figure 4C in the main text. N–H and

Ca/b–H distanceswere frozen to 1.30 Å for the two systems shown in Figure S9

and the remainder of each system was allowed to fully relax. The 5 kcal/mol

energy difference discussed in the main text corresponds to the difference

in electronic energies between these two optimized structures.

Synthesis

Compounds 7, 9, 12, and 15 were synthesized as previously described (Per-

eira et al., 2012) and compounds 3–6 were synthesized according to Figure 6.

Detailed synthetic procedures are reported in the Supplemental Experimental

Procedures.

Optical rotations were measured on a JASCO P-2000 polarimeter. UV and

infrared spectra were recorded on a Beckman DU800 spectrophotometer

and on a Nicolet 100 FT-IR spectrometer, respectively. 1H, 13C, and two-

dimensional nuclear magnetic resonance spectra were collected at a 1H reso-

nance frequency of either 400 MHz (Varian Mercury), 500 MHz (Varian VX500),

or 600 MHz (Bruker Avance III equipped with 1.7 mm and 5 mm TCI cryo-

probes). Chemical shifts were calibrated internally to the residual signal of

the solvent in which the sample was dissolved (CDCl3, dH 7.26, dC 77.0).

High-resolution mass spectra were obtained on a ThermoFinnigan MAT900XL

mass spectrometer or an Agilent Technologies 6530 Accurate-Mass Q-time-

of-flight liquid chromatography/mass spectrometer. High-performance liquid

chromatography was carried out using a dual Waters 515 pump system equip-

ped with a Waters 996 photodiode array detector. Vacuum and flash chro-

matographic separations were performed using type H (10–40 mm, Aldrich)

silica and silica gel 60 (40–63 mm, EMD), respectively. Merck thin-layer chro-

matography (TLC) sheets (silica gel 60 F254) were used for analytical TLC

(aluminum-supported, layer thickness 200 mm) and preparative TLC (glass-

supported, layer thickness 250 mm). All chemical reagents were obtained

from Aldrich in an analytical or higher grade and were used as received unless

stated otherwise. Solvents were acquired as high-performance liquid chroma-

tography grade. All reactions were performed under dry nitrogen using glass-

ware previously oven dried (150�C), unless otherwise specified. Glassware

was allowed to reach room temperature under a flow of inert gas. Likewise,

glass syringes and stainless steel needles, used to handle anhydrous reagents

and solvents, were oven dried, cooled in a desiccator, and flushed with inert

gas prior to use. Anhydrous THF was purchased from Aldrich or distilled

from sodium/benzophenone; CH2Cl2 was distilled from CaH2.
782–791, June 19, 2014 ª2014 Elsevier Ltd All rights reserved 789
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