Nonenzymatic Kinetic Resolution of 3-Hydroxyalkanamides with Chiral Copper Catalyst

Yosuke Demizu, Yuki Kubo, Yoshihiro Matsumura, Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan Fax +81(95)8192476; E-mail: onomura@nagasaki-u.ac.jp Received 29 October 2007

Abstract: Kinetic resolution of 3-hydroxyalkanamides with good to high selectivities was achieved by benzoylation using copper(II) triflate and (R,R)-PhBox [2,2'-isopropylidenebis(4-phenyl-2-oxazoline)] as catalyst, which also mediated enantioselective tosylation of 2,2-bis(hydroxymethyl)alkanamides with high efficiency.

Key words, kinetic resolution, 3-hydroxyalkanamides, acylations, chiral copper complex, molecular recognition

Optically active 3-hydroxyalkanoic acid derivatives are important precursors for the preparations of various biologically active compounds.¹ A variety of enzymatic kinetic resolution methods has been developed for the preparation of optically pure 3-hydroxyalkanoic acid derivatives.² To the best of our knowledge, nonenzymatic method has been little known to date.³ Recently, we have reported an efficient method for kinetic resolution of 1,2diols **1**. The method is based on the recognition of **1** by copper ion associated with chiral ligand (*R*,*R*)-PhBox⁴ to afford the activated intermediates **2** followed by benzoylation (Scheme 1).^{5–9}

We report herein nonenzymatic kinetic resolution of 3-hydroxyalkanamides by benzoylation with Cu(II)-(R,R)-Ph-Box catalyst affording optically active 3hydroxyalkanamide derivatives in good to high yields and enantioselectivities.

We began our investigation by trying the benzoylation of ethyl DL-3-hydroxybutanoate (4) as a model compound to see whether it could be recognized by chiral copper(II) complex or not. We found out the following: in the absence of copper(II) triflate and (R,R)-PhBox the reaction of 4 with BzCl barely took place, while in the presence of the catalysts, benzoylated product 5 was obtained in 19% yield based on 4. In contrast, DL-3-hydroxy-*N*-phenylbutanamide (6a) was benzoylated more efficiently in the presence of Cu(II)–(R,R)-PhBox to afford the benzoylated product 7a in 41% yield (Scheme 2). These results imply that 6a was efficiently recognized by the Cu(II)–(R,R)-Ph-Box complex.

Next, we tried the competitive reaction between **6a** and 2,4-pentanediol (**8**) (*syn/anti* \approx 50:50) with or without Cu(II)–(*R*,*R*)-PhBox (Scheme 3). In the presence of Cu(II)–(*R*,*R*)-PhBox or Cu(II)–*rac*-PhBox, **7a** was exclu-

SYNLETT 2008, No. 3, pp 0433–0437 Advanced online publication: 16.01.2008 DOI: 10.1055/s-2008-1032057; Art ID: U10507ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Asymmetric benzoylation of 1,2-diols 1 based on the recognition by Cu(II)-(R,R)-PhBox

 $Cu(OTf)_2$ (0.1 equiv)41% based on 6a(R,R)-PhBox (0.1 equiv)41% based on 6a

Scheme 2 Benzoylation of ester **4** and amide **6a** in the absence or presence of $Cu(OTf)_2$ and (R,R)-PhBox

sively formed, whereas in the absence of Cu(II)–(*R*,*R*)-PhBox only the monobenzoylated diol **9** (*syn/anti* \approx 63:37) was generated. From these results, we deduced that **6a** was preferentially recognized over **8** by the copper catalyst.^{10,11} Acceleration of benzoylation of **6a** was also observed in the presence of Cu(OTf)₂ without (*R*,*R*)- or *rac*-PhBox.

In our quest to get excellent reaction conditions for kinetic resolution of DL-6a, we investigated the effect of bases and solvents on benzoylation.¹² These results are summarized in Table 1. They show a dependence of yield and

Scheme 3 Competitive reaction between 6a and 8 by benzoylation in the absence or presence of Cu(OTf)₂ and (*R*,*R*)- or *rac*-PhBox

%ee of the product **7a** as well as the reaction time on the solvents and bases used. Use of EtOAc as a solvent and K_2CO_3 as a base gave (*S*)-**7a**^{13,14} in 41% yield and a high enantioselectivity (85% ee) with a selectivity *s* value¹⁵ of 27 for two hours (entry 1). THF and 1,4-dioxane gave comparable results to EtOAc (entries 2 and 3), while CH₂Cl₂ and Et₂O were less efficient (entries 4 and 5). Moreover, use of alcohols such as *i*-PrOH or EtOH gave (*S*)-**7a** in high enantioselectivity (entries 6 and 7). K_2CO_3 was the most effective base (entry 1) among the tested bases (entries 8–11). Use of 0.05 equivalent of Cu(OTf)₂

and (R,R)-PhBox led to a slightly inferior result compared to that using 0.1 equivalent of chiral Cu(II) catalyst (entry 12).

Utilizing the conditions optimized in Table 1, we screened the effect of amide N-substituents shown in Table 2. The *s* value of *N*-4-chlorophenyl amide **6b** was slightly lower than that of **6a** (entry 1), while *N*-4-meth-ylphenyl amide **6c** gave high *s* value of 34 (entry 2). Ben-zoylation of *N*-3,5-dimethylphenyl amide **6d** and the corresponding hexafluorinated amide **6e** required longer reaction times, and the *s* values were moderate for **6d** and

Table 1 Kinetic Resolution of	f DL-3-Hydroxy-N	/-phenylbutanamide	(DL -6a) ^a
-------------------------------	------------------	--------------------	-------------------------------

ОН	O ↓ _Ph _	(<i>R</i> , <i>R</i>)-PhBox Cu(OTf) ₂	OBz (⊃ ∠Ph	OH O	∠Ph			
DL-	N H 6a	BzCl (0.5 equiv) base (1.0 equiv) solvent, r.t.	(S)-7a	N T H	(<i>R</i>)-6:	N´ H a			
Entry	Solvent	Base	Time (h)	Product (S)-7	Product (S)-7a		Recovered (R)-6a		
				Yield (%)	ee ^b (%)	Yield (%)	ee ^b (%)	3	
1	EtOAc	K ₂ CO ₃	2	41	85	52	74	27	
2	THF	K ₂ CO ₃	2	45	83	55	64	21	
3	1,4-dioxane	K ₂ CO ₃	12	44	85	56	52	21	
4	CH_2Cl_2	K ₂ CO ₃	12	38	74	62	45	10	
5	Et ₂ O	K ₂ CO ₃	2	40	75	60	48	11	
6	<i>i</i> -PrOH	K ₂ CO ₃	12	37	78	63	47	13	
7	EtOH	K ₂ CO ₃	24	18	88	82	27	20	
8	EtOAc	Li ₂ CO ₃	24	26	68	74	28	7	
9	EtOAc	Na ₂ CO ₃	24	45	82	46	80	25	
10	EtOAc	NaHCO ₃	24	48	70	52	64	11	
11	EtOAc	DIPEA	24	30	73	70	36	9	
12 ^c	EtOAc	K ₂ CO ₃	2	37	85	63	56	22	

^a Reaction conditions: DL-6a (0.5 mmol), $Cu(OTf)_2$ (0.05 mmol), (*R*,*R*)-PhBox (0.05 mmol), BzCl (0.25 mmol), base (0.5 mmol) in a solvent (2.0 mL) at r.t.

^b Determined by HPLC.

^c Reaction conditions: DL-6a (0.5 mmol), $Cu(OTf)_2$ (0.025 mmol), (*R*,*R*)-PhBox (0.025 mmol), BzCl (0.25 mmol), K₂CO₃ (0.5 mmol) in EtOAc (2.0 mL) at r.t.

Synlett 2008, No. 3, 433-437 © Thieme Stuttgart · New York

OH		(R,R)-PhBox (0.1 equiv) Cu(OTf) ₂ (0.1 equiv) BzCl (0.5 equiv) K ₂ CO ₃ (1.0 equiv), EtOAc	→ /	OBz O 	1 +	OH O N R ²	.R ¹				
DL-	6b–j	23(1-7)	,	(S)-7b-j		(<i>R</i>)-6b–j					
Entry	Substrate	R^1	\mathbb{R}^2	Time (h)	Produ	uct (S)- 7b–j ^b		Recovered	(R)- 6b -j	Selectivity	
						Yield (%)	ee^{c} (%)	Yield (%)	ee ^c (%)	5	
1	6b	$4-ClC_6H_4$	Н	2	7b	46	79	54	66	17	
2	6c	$4-MeC_6H_4$	Н	3	7c	44	88	56	73	34	
3	6d	3,5-diMeC ₆ H ₃	Н	24	7d	47	78	53	65	16	
4	6e	3,5-diCF ₃ C ₆ H ₃	Н	24	7e	30	57	70	27	5	
5	6f	$2-MeC_6H_4$	Н	1.5	7f	37	89	63	56	30	
6	6g	Bn	Н	3	7g	48	78	47	65	16	
7	6h	Ph	Me	12	7h	37	84	53	60	21	
8	6i	Me	Me	3	7i	46	76	7	31	10	
9	6j	-(CH ₂) ₂ O(CH ₂) ₂ -		24	7j	39	82	23	57	18	

 Table 2
 Kinetic Resolution of DL-3-Hydroxybutanamide Derivatives DL-6b-j^a

^a Reaction conditions: DL-6b-j (0.5 mmol), $Cu(OTf)_2$ (0.05 mmol), (*R*,*R*)-PhBox (0.05 mmol), BzCl (0.25 mmol), K₂CO₃ (0.5 mmol) in EtOAc (2.0 mL) at r.t.

^b Absolute stereoconfigurations of 7b-j were deduced on the basis of that of (S)-7a.

^c Determined by HPLC.

 Table 3
 Kinetic Resolution of Various DL-3-Hydroxyalkanamides DL-6ap-aw^a

R ³ OH	O N H	(<i>R</i> , <i>R</i>)-PhBox (0.1 e Cu(OTf) ₂ (0.1 equi BzCl (0.5 equiv) K ₂ CO ₃ (1.0 equiv),	quiv) v) EtOAc, r.t.	OBz C	Ph +	R ³ OH	O N H			
Entry	-aw Substrate	R ³	Time (h)	Product 7a	np—aw	recovered	Recovered 6	ap–aw		Selectivity
					Yield (%)	ee^{b} (%)		Yield (%)	ee ^b (%)	5
1	6ap	Et	12	(S)- 7ap	38	67	(R)-6ap	62	41	8
2	6aq	<i>n</i> -Pr	24	(S)-7aq	34	68	(R)-6aq	64	45	8
3	6ar	<i>i</i> -Pr	24	(R)- 7ar	20	64	(S)-6ar	80	24	6
4	6as	<i>i</i> -Bu	24	(S)- 7as	23	58	(R)- 6as	52	37	5
5	6at	cyclohexyl	24	7at	0	-	6at	100	0	_
6	6au	Ph	24	(R)-7au	18	74	(S)-6au	82	20	8
7	6av	Br ()4 §	2	(S)- 7av	40	80	(R)-6av	60	58	16
8	6aw	Boc N ()3	12	(S)- 7aw	40	82	(R)- 6aw	50	55	18

^a Reaction conditions: **6ap–aw** (0.5 mmol), $Cu(OTf)_2$ (0.05 mmol), (*R*,*R*)-PhBox (0.05 mmol), BzCl (0.25 mmol), K₂CO₃ (0.5 mmol) in EtOAc (2 mL) at r.t.

^b Determined by HPLC.

poor for **6e** (entries 3 and 4). *N*-2-Methylphenyl amide **6f** was smoothly asymmetrically benzoylated to afford **7f** with 89% ee. *N*-Benzyl amide **6g** was inferior to *N*-phenyl amide **6a** (entry 6). *N*,*N*-Disubstituted amides **6h**, **6i** and **6j** also gave slightly lower *s* values compared to that of **6a** (entries 7–9).

Table 3 summarizes kinetic resolution of various 3-hydroxyalkanamides **6ap**-aw by benzoylation under the optimized reaction condition. Compounds 6ap substituted with Et and **6aq** with *n*-Pr group were asymmetrically benzoylated to afford the corresponding optically active (S)-7ap¹⁶ and (S)-7aq,¹⁶ respectively, in good yield and moderate enantioselectivity, (entries 1 and 2). Although compounds 6ar and 6as substituted with i-Pr and i-Bu, respectively, were kinetically resolved with moderate enantioselectivity, the yield was low (entries 3 and 4). Benzoylation of cyclohexylated compound 6at did not proceed (entry 5), while phenylated 6au was benzoylated to afford (*R*)-7 au^{17} in moderate yield and good enantioselectivity (entry 6). Straight-chained carbon compounds 6av terminally functionalized with Br atom and 6aw with N-Boc-protected amino group gave good s value of 16 and 18, respectively (entries 7 and 8).

To increase the scope of our reaction, we tried enantioselective benzoylation and tosylation¹⁸ of 2,2-bis(hydroxymethyl)alkanamides **10a–c**. The results are shown in Table 4. Asymmetric benzoylation and tosylation of **10a–c** smoothly proceeded to give the corresponding monobenzoylated compounds **11a–c**¹⁹ and monotosylated compounds **12a–c**¹⁹ with good to high yields and enantioselectivities (entries 1–6). It is noteworthy that **12a–c** were obtained in higher enantiomeric purity than **11a–c** (entries 4–6), partially due to an intramolecular acyl transfer²⁰ which caused racemization of optically pure benzoylated compound **11c**, but did not happen in the case of tosylation. This is illustrated in Scheme 4.

Scheme 4 Racemization of $11c\ \text{and}\ 12c$

In summary, we have accomplished the nonenzymatic kinetic resolution of 3-hydroxyalkanamides by benzoylation and desymmetrization of 2,2bis(hydroxymethyl)alkanamides by tosylation utilizing chiral copper catalyst. The mechanistic study of these reactions and their synthetic applications²¹ are underway.

Table 4 Asymmetric Benzoylation and Tosylation of Prochiral $10a{-}c^{\rm a}$

OH C R ⁴	H N O C	R ⁵ CI (<i>R</i> , <i>R</i>)-F Cu(OT K₂CO ₃ EtOAc r.t.	$\begin{array}{c} \begin{array}{c} & OH OR^{5} \\ \hline \\ DTf)_{2} \\ D_{3} \\ Ac \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
Entry	Substrate	\mathbb{R}^4	R ⁵	Product	Yield (%)	ee ^b (%)	
1	10a	Н	Bz	11a	73	75	
2	10b	Me	Bz	11b	95	77	
3	10c	Et	Bz	11c	76	71	
4	10a	Н	Ts	12a	89	85	
5	10b	Me	Ts	12b	99	90	
6	10c	Et	Ts	12c	85	85	

^a Reaction conditions: **10a**–c (0.5 mmol), $Cu(OTf)_2$ (0.05 mmol), (*R*,*R*)-PhBox (0.05 mmol), R⁵Cl (0.5 mmol), K₂CO₃ (0.75 mmol) in EtOAc (2 mL) at r.t. for 4 h (benzoylation) or 12 h (tosylation).

^b Determined by HPLC.

Acknowledgment

O.O. and Y.D. are grateful for a Grant-in-Aid for Scientific Research (C) (19550109) from the Japan Society for the Promotion of Science and a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, respectively.

References and Notes

- (a) Berks, A. H. *Tetrahedron* **1996**, *52*, 331. (b) Pàmies, O.; Bäckvall, J.-E. *Adv. Synth. Catal.* **2002**, *344*, 947.
 (c) Genet, J.-P. *Acc. Chem. Res.* **2003**, *36*, 908.
 (d) Mlynarski, J. *Eur. J. Org. Chem.* **2006**, 4779.
- (2) For recent literature on kinetic resolution of 3hydroxyalkanoic acid derivatives by enzymatic methods, see: (a) Xu, C.; Yuan, C. *Tetrahedron* 2005, *61*, 2169.
 (b) Turcu, M. C.; Kiljunen, E.; Kanerva, L. T. *Tetrahedron: Asymmetry* 2007, *18*, 1682.
- (3) Ishihara, K.; Kosugi, Y.; Akakura, M. J. Am. Chem. Soc. 2004, 126, 12212.
- (4) For a recent review of chiral bis(oxazoline) ligands, see: Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.
- (5) For monobenzoylation, see: Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am. Chem. Soc. 2003, 125, 2052.
- (6) For monocarbamoylation, see: Matsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y. *Tetrahedron Lett.* **2006**, *47*, 8453.
- (7) For monooxidation of 1,2-diols, see: Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y. *Tetrahedron Lett.* 2007, 48, 8668.

- (8) For benzoylation of *vic*-aminoalcohols, see: Mitsuda, M.; Tanaka, T.; Tanaka, T.; Demizu, Y.; Onomura, O.; Matsumura, Y. *Tetrahedron Lett.* **2006**, *47*, 8073.
- (9) For a review, see: Matsumura, Y.; Onomura, O.; Demizu, Y. Yuki Gosei Kagaku Kyokaishi 2007, 65, 216.
- (10) For representative literature on nonenzymatic asymmetric desymmetrization of 1,3-diols, see:
 (a) Monocarbamoylation: Otera, J.; Sakamoto, K.; Tsukamoto, T.; Orita, A. *Tetrahedron Lett.* **1998**, *39*, 3201. For monobenzoylation, see: (b) Oriyama, T.; Taguchi, H.; Terakado, D.; Sano, T. *Chem. Lett.* **2002**, *31*, 26. (c) Trost, B. M.; Mino, T. *J. Am. Chem. Soc.* **2003**, *125*, 2410.
 (d) Mizuta, S.; Tsuzuki, T.; Fujimoto, T.; Yamamoto, Y. Org. Lett. **2005**, *7*, 3633.
- (11) For monoacetylation of 2-amino-1,3-diols, see: Honjo, T.; Nakano, M.; Sano, S.; Shiro, M.; Yamaguchi, K.; Sei, Y.; Nagao, Y. Org. Lett. 2007, 9, 509.
- (12) Typical Procedure for Kinetic Resolution: To a solution of Cu(OTf)₂ (0.05 mmol, 18.1 mg) and (*R*,*R*)-PhBox (0.05 mmol, 16.7 mg) in EtOAc (2 mL) were added DL-6a (0.5 mmol, 89.6 mg), K₂CO₃ (0.5 mmol, 69.1 mg) and benzoyl chloride (0.25 mmol, 0.029 mL). After stirring for 2 h at r.t., to the reaction mixture H₂O (10 mL) was added. The organic portion was extracted with EtOAc (3×20 mL). The combined organic layer was dried over MgSO₄ and the solvent was removed in vacuo. The residue was chromatographed on SiO₂ (n-hexane-EtOAc, 3:1) to afford (S)-**7a** (58.1 mg, 41% yield, 85% ee) as a white solid; mp 98–99 °C; $[\alpha]_{D}^{23}$ +55.4 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, $CDCl_3$): $\delta = 8.03$ (d, J = 7.2 Hz, 1 H), 7.78 (br s, 1 H), 7.56 (t, J = 9.0 Hz, 1 H), 7.38–7.51 (m, 4 H), 7.29 (t, J = 9.0 Hz, 3 H), 7.09 (t, J = 9.0 Hz, 1 H), 5.50–5.63 (m, 1 H), 2.85 (dd, *J* = 6.3, 14.4 Hz, 1 H), 2.68 (dd, *J* = 6.3, 14.4 Hz, 1 H), 1.51 (d, J = 6.3 Hz, 3 H). Optical purity of product (S)-7a was determined by chiral HPLC: Dicel Chiralcel OD-H column (\$\operatorname{: 4.6 mm, 1: 250 mm}), n-hexane-isopropanol (10:1), wavelength: $\lambda = 220$ nm, flow rate: 1.0 mL/min, $t_{\rm R} =$ 20.0 min [(*R*)-7a], $t_{\rm R} = 22.5$ min [(*S*)-7a].

- (13) The absolute stereoconfiguration of recovered (*R*)-**6a** was determined by comparing with the specific rotation of an authentic sample. Compound (*R*)-**6a** (74% ee): $[\alpha]_D^{22}$ -28.6 (*c* = 1.1, CHCl₃) [lit.¹⁴ (*R*)-**6a** $[\alpha]_D^{20}$ -37 (*c* = 1.0, CHCl₃)].
- (14) Gendre, P. L.; Offenvecher, M.; Bruneau, C.; Dixneuf, P. H. *Tetrahedron: Asymmetry* **1998**, *9*, 2279.
- (15) The selectivity factor *s* was determined using the equation $s = k_{rel(\text{fast/slow})} = \ln[(1 - C)(1 - ee_A)]/\ln[(1 - C)(1 + ee_A)],$ where $C = ee_A/(ee_A + ee_B)$, $ee_A = ee$ of recovered starting material, $ee_B = ee$ of product: Kagan H. B., Fiaud J. C.; *Topics in Stereochemistry*; Vol. 18. Eliel E. L.; Wiley & Sons: New York, **1988**; 249–330.
- (16) Absolute stereoconfigurations of **7ap–at,av,aw** shown in Table 3 were deduced on the basis of those of (*S*)-**7a** and (*R*)-**7au**.
- (17) The absolute stereoconfiguration of (*R*)-**7au** was determined by comparing with that of authentic (*S*)-**7au**, which was prepared from commercially available (*S*)-(-)-3-hydroxy-3phenylpropionitrile: Dicel Chiralcel OD-H column (ϕ : 4.6 mm, l: 250 mm), *n*-hexane–isopropanol (10:1), wavelength: $\lambda = 220$ nm, flow rate: 1.0 mL/min, $t_R = 36$ min [(*R*)-**7au**], $t_R = 42$ min [(*S*)-**7au**]. (*R*)-**7au** (74% ee): $[\alpha]_D^{25}$ –13.8 (*c* = 1.0, CHCl₃).
- (18) Kinetic resolution of DL-6a with p-TsCl gave S-configured tosylated product with somewhat lower yield (36%) and enantioselectivity (67% ee) than those of benzoylation.
- (19) Specific rotations. **11a**: $[\alpha]_D^{28} 16.4 (c = 1.0, CHCl_3)$. **11b**: $[\alpha]_D^{28} + 6.9 (c = 1.0, CHCl_3)$. **11c**: $[\alpha]_D^{28} + 0.6 (c = 1.0, CHCl_3)$. **12a**: $[\alpha]_D^{24} + 15.2 (c = 0.95, CHCl_3)$. **12b**: $[\alpha]_D^{24} 21.8 (c = 1.0, CHCl_3)$. **12c**: $[\alpha]_D^{26} 43.2 (c = 1.0, CHCl_3)$.
- (20) Edin, M.; Martín-Matute, B.; Bäckvall, J.-E. *Tetrahedron: Asymmetry* **2006**, *17*, 708.
- (21) Mesylation of (*R*)-**6a** followed by cyclization under basic conditions gave the corresponding optically active β -lactam with complete stereoinversion.¹⁶
- (22) Sakaki, J.; Kobayashi, S.; Sato, M.; Kaneko, C. *Chem. Pharm. Bull.* **1989**, *37*, 2952.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.