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Tandem palladium-catalysed aryl and alkenyl C–N bond

formation allows the synthesis of a variety of indoles bearing

sterically demanding N-substituents, including the natural

product demethylasterriquinone A1.

The remarkable range of biological and medicinal properties

displayed by indole-containing molecules has resulted in sustained

interest in developing new syntheses of these important hetero-

cycles.1 N-Substituted indoles represent an important subclass2

and, given the low nucleophilicity of indole nitrogen atoms, they

can represent a significant synthetic challenge.3 This is particularly

true when the N-substituent is sterically demanding, such as the

reverse-prenyl group contained in the simple natural products 14

and demethylasterriquinone A1 2 (Scheme 1).5

The majority of indole syntheses involve cyclisation of an acyclic

precursor that contains the key N-atom. To adapt these syntheses

to the preparation of N-substituted indoles requires that either the

precursors must be modified (to include the substituent), or an

efficient and selective functionalisation of an indole N–H must be

achieved. This is often problematic; for example, syntheses of the

simple natural product 1, and related structures, resort to

functionalisation of indoline derivatives with modified, more

reactive, alkylating reagents.6 This then necessitates re-oxidation

to the indole oxidation level and modification of the appended

group to achieve the target structure. A strategy that avoids these

difficulties relies on introducing the N-atom, together with any

N-substituent, at the final stage of the synthesis. In this

communication we demonstrate how such a strategy, employing

sequential inter- and intramolecular palladium-catalysed amina-

tion reactions, can be used to prepare a range of indoles bearing

sterically demanding N-substituents, including the natural product

demethylasterriquinone A1 (Scheme 2).

Recently, we have reported indole syntheses based on the

general disconnection presented in Scheme 2 and have shown that

they are effective for a variety of N-nucleophiles, including simple

amines, anilines, amides, carbamates and sulfonamides.7 However,

these protocols failed when we attempted to employ bulky amines

such as tert-butylamine. Although disappointing, Pd-catalysed aryl

amination and etherification reactions often display high levels of

substrate specificity,8 and we reasoned that it should be possible to

identify a catalyst system that was efficient for tandem coupling of

sterically demanding N-nucleophiles with alkenyl-aryl dihalides

(Table 1).

We selected the coupling of reverse-prenyl amine 39 with simple

dihalogenated styrenes 4 as our test system; the attempted union of

3 and 4a employing a catalyst composed of Pd(OAc)2 and BINAP

using NaOtBu as base resulted in no reaction (entry 1). We next

turned our attention to the use of electron-rich biphenyl ligands 5,

6 and 7.10 Although ligands 5 and 6 were ineffective, the use of

ligand 7 delivered indole 8 in 17% yield (entries 2–4). Increasing the

temperature from 100 to 130 uC improved this to 37% (entry 5).

Due to poor mass balance we suspected decomposition of the

styrene substrate was occurring and reasoned that the alkenyl-

chloride variant of the substrate would be more stable; thus,

reaction of the Cl, Br-styrene 4b for a shorter reaction time

delivered the indole 8 in a similar yield (entry 6). Unreacted

starting material was also recovered, suggesting decomposition

was no longer a problem. The bulky electron-rich phosphine PtBu3

has been shown to be a particularly effective ligand for a variety of

palladium catalysed processes employing aryl chloride substrates,11

and we were pleased to find that the use of this ligand with the Br,

Cl-substrate delivered the required indole in 68% yield (entry 7).

The final entry confirmed that the higher temperature was required

to achieve an efficient reaction.

We next evaluated the range of sterically demanding

N-nucleophiles that could be coupled to the Cl, Br-styrene (4b)

using the optimised conditions (Table 2). The reaction proved to

be efficient for a range of bulky alkyl amines with the substituted
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Scheme 1 N-Functionalised indole natural products.

Scheme 2 A palladium-catalysed N-annulation route to sterically

demanding N-functionalised indoles.
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indoles being isolated in good yields in all cases (entries 1–5).

a-Methyl benzylamine was also coupled effectively (entry 6),

as were a range of ortho- and di-ortho-substituted anilines

(entries 7–10). The formation of the adamantyl- and 2,6-

di(isopropyl)phenyl-substituted examples highlight that very

hindered couplings are possible using this system (entries 5 and 9).

Variation of the styrene component was also possible (Table 3).

All of the substrates shown in Table 3 were prepared from the

corresponding benzaldehyde (or keto) derivative using simple

Wittig chemistry. Introduction of 6-methyl-, 5,6-dioxalane- and

5-fluoro-substituents were all possible and coupling reactions with

tert-amylamine delivered the indoles in good yields (entries 1–3).

The use of a nitro-substituted styrene resulted in poor conversion,

with only 34% of the indole being isolated (entry 4). Entry 5

demonstrated that the formation of 3-substituted indoles was also

possible, with a trisubstituted Cl-alkene-substrate performing well.

The low Z : E ratio of several of the substrates used in Table 3

confirms that both geometrical isomers of the substrates can be

converted to the indole products;7b in entry 5 the E-isomer of the

substrate dominates.

With N-reverse-prenyl substituted indole (8) available in only

two steps from o-bromobenzaldehyde it represents a useful sub-

unit for synthesis. We elected to utilise indole 8 in a short synthesis

of the natural product demethylasterriquinone A1 (Scheme 3).12

The asterriquinones are a family of fungal natural products based

on a central dihydroxy-quinone core appended with two indolyl

units.13 The indoles are decorated in various positions with prenyl-

and reverse-prenyl groups, and the quinone core can also feature

bis(methyl)ethers. The asterriquinones display a range of biological

functions,14 including antitumour activity and use as insulin

mimetics. With indole 8 readily available, our approach to the

Table 1 An N-annulation route to indole 8a

Entry
X, Y
(substrate) Ligand Time/h Temperature/uC

Yield
(%)b

1 Br, Br (4a) BINAP 18 100 0
2 Br, Br (4a) 5d 18 100 0
3 Br, Br (4a) 6d 18 100 0
4 Br, Br (4a) 7d 18 100 17
5 Br, Br (4a) 7d 18 130 37
6 Br, Cl (4b) 7d 5 130 36
7c Br, Cl (4b) PtBu3 5 130 68
8c Br, Cl (4b) PtBu3 5 90 0
a Conditions: styrene (1.0 equiv.), amine (3.0 equiv.), Pd(OAc)2

(5 mol%), ligand (12 mol%), NaOtBu (2.5 equiv.), PhMe, sealed
tube. Br, Br-substrate used as a 5 : 1 ratio of Z : E isomers; Cl, Br-
substrate as a 4.3 : 1 ratio. b Isolated yields. c Ligand used as HBF4

salt. d

Table 2 Coupling of styrene 4b with sterically demanding
N-nucleophilesa

Entry Amine Yield (%)b Entry Amine Yield (%)b

1 68 6 77

2 64 7 85

3 65 8 83

4 61 9 73

5 66 10 78

a Conditions: styrene 4b (1.0 equiv.), amine (3.0 equiv.), Pd(OAc)2

(5 mol%), HBF4?PtBu3 (12 mol%), NaOtBu (2.5 equiv.), PhMe, 130 uC,
4 h, sealed tube. Substrate used as a 4.3 : 1 ratio. b Isolated yields.

Table 3 Coupling of Cl, Br-styrenes with tert-amylaminea

Entry Substrate Z : E Yield (%)b

1 3.3 : 1 76

2 1.8 : 1 64

3 2 : 1 65

4 1.4 : 1 34

5 1 : 1.4 66

a Conditions: styrene (1.0 equiv.), tert-amylamine (3.0 equiv.),
Pd(OAc)2 (5 mol%), HBF4?PtBu3 (12 mol%), NaOtBu (2.5 equiv.),
PhMe, 130 uC, 4 h, sealed tube. b Isolated yields.
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synthesis of demethylasterriquinone A1 (DAQ A1) was based on

achieving a direct nucleophilic addition of two molecules of indole

8 onto an activated quinone core. Although a number of literature

protocols for the addition of a variety N-H indoles to activated

quinones are known,15 examples featuring N-alkyl indoles are

scarce.16 In the event, addition of indole 8 to 2,5-dichloroquinone

could be promoted by HCl;17 subsequent treatment with DDQ

delivered the mono-substituted indole 9 in 65% yield. Attempts to

introduce a second indole unit using the same conditions were

unsuccessful, resulting in the return of both reaction partners.

Addition of a second indole unit to quinone 9 could be achieved

under the action of Zn(OTf)2.
18 Re-oxidation to the quinone

oxidation level was again achieved with DDQ, providing

bis(indole) 10 in 64% yield. Treatment of 10 with NaOH resulted

in hydrolysis of the two quinone chloro-substituents and delivered

demethylasterriquinone A1 in 98% yield.19 The stepwise addition

of the two indole units paves the way for the preparation of non-

symmetrical members of the asterriquinone family and related

structures.

In summary, we have demonstrated that indoles bearing

sterically demanding N-alkyl substituents can be conveniently

prepared using a tandem Pd-catalysed alkenyl-aryl-amination

approach. Significant variation in both the acyclic substrate and

amine are possible, allowing access to a variety of indole structures.

The utility of the method has been demonstrated in a short

synthesis of demethylasterriquinone A1.
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