Oxidation of Chloride to Chlorine by Ce^{IV} lons mediated by Different Ru^{IV} and Ir^{IV}Oxide-based Catalysts

Andrew Mills* and David Worsley

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP, UK

A number of different, characterised, supported and unsupported oxides of Ru^{IV} and Ir^{IV} have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce^{IV} ions. All the different materials tested gave yields of chlorine of >90% and first-order kinetics for the reduction of the Ce^{IV} ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce^{IV} ions by brine were studied in detail using an Ru^{IV} oxide prepared by the Adams method and supported on TiO₂ and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce^{IV} ions. In support of this model the measured activation energies for the oxidation of brine by Ce^{IV} ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18–21 kJ mol⁻¹) to that expected for a diffusion-controlled reaction (*ca*. 15 kJ mol⁻¹).

A chlorine catalyst is a substance which can mediate the oxidation of brine to chlorine by a strong oxidant, Ox, *i.e.*

$$2Cl^{-} + 2Ox \xrightarrow{Cl_2 \text{ catalyst}} Cl_2 + 2Red$$
(1)

provided this reaction is also thermodynamically feasible. Reaction (1) is an example of redox catalysis and from the results of numerous studies^{1,2} of other redox catalysed reactions it appears that the redox catalyst simply provides a medium for the movement of electrons from one redox couple to another. This electrochemical model of redox catalysis has been extensively and successfully tested over many years for a large number of different redox reactions and catalysts.^{1,3} From this model it follows that any material which is found to be a 'good' catalyst of reaction (1) may also show promise as an electrocatalyst for the oxidation of brine to chlorine in the world-wide chloralkali industry and vice versa. Thus, a reasonable, simple, first stage in the evaluation of a new material as a chlorine electrocatalyst could be a test of its activity as a Cl_2 catalyst of reaction (1). Given the possible relevance of such work to the chloralkali industry it is surprising to note that very little work^{4,5} has been carried out in the area of chlorine redox catalysis.

For reaction (1) to be thermodynamically feasible the redox potential of the Ox/Red couple must be greater than that of the Cl_2/Cl^- couple [E° (Cl_2/Cl^-) = 1.36 V vs. NHE]. Thus, at pH 0, a suitable choice is the Ce^{IV}/Ce^{III} couple in 0.5 mol dm⁻³ H₂SO₄ since its respective formal redox potential is 1.44 V vs. NHE. Previous work⁵ has established that in 0.5 mol dm⁻³ H₂SO₄ the oxidation of brine to chlorine by Ce^{IV} ions in homogeneous solution proceeds very slowly under ambient conditions and that a Cl₂ catalyst is required to promote the reaction, *i.e.*

$$2Cl^{-} + 2Ce^{IV} \xrightarrow{Cl_2 \text{ catalyst}} Cl_2 + 2Ce^{III}$$
(2)

One of the major problems in finding suitable materials to catalyse reaction (2) is the strongly oxidising environment involved which is such that many materials are either rendered inactive (by the growth of an inert, insulating oxide surface film) or undergo anodic dissolution.

Anodes in the chloralkali industry usually comprise an Ru^{IV} and/or Ir^{IV} oxide combined intimately with TiO_2 to form a 'dimensionally stable anode', *i.e.* one which is mechanically robust, readily releases chlorine and does not undergo passivation or serious dissolution with extensive

use.⁶ It would seem likely, therefore, that an Ru^{IV} and/or Ir^{IV} oxide will act as a Cl₂ catalyst in reaction (2). However, it has been shown² that the two well established, extreme forms of Ru^{IV} oxide, *i.e.* highly hydrated $RuO_2 \cdot xH_2O$ (24% $\ge H_2O$) and anhydrous RuO₂, behave quite differently, and not at all ideally, under strongly oxidising conditions. Thus, under acidic conditions and in the presence of a high concentration of chloride ions (2 mol dm⁻³) $RuO_2 \cdot xH_2O$ undergoes partial corrosion by the Ce^{IV} ions to form RuO₄ whilst mediating reaction (2), whereas anhydrous RuO_2 appears largely inactive as a Cl₂ catalyst. Further work has shown that annealing $RuO_2 \cdot xH_2O$ in air for 5 h at *ca.* 144 C, produces a partially dehydrated form of the oxide, which we have named thermally activated ruthenium dioxide hydrate or $RuO_2 \cdot yH_2O^*$ for short (ca. 10% H₂O).⁷ $RuO_2 \cdot yH_2O^*$ is much more stable than $RuO_2 \cdot xH_2O$ towards anodic corrosion to RuO₄ by Ce^{IV} ions and can act as a Cl₂ catalyst in reaction (2). To our knowledge this is the first reported⁵ example of a very stable, heterogeneous Cl₂ catalyst.

Further work is still required to identify the combination of properties which go to make a good Cl₂ catalyst. Thus, in this paper we report the results of a detailed investigation of the characteristics and activities, as chlorine catalysts in reaction (2), of a series of Ru^{IV} , and some Ir^{IV} , oxide-based materials. The catalysts investigated include $RuO_2 \cdot xH_2O$, $RuO_2 \cdot yH_2O^*$, anhydrous RuO_2 and RuO_2 prepared by the Adams method. In addition, the results of a kinetic study of Cl_2 catalysis by Ru^{IV} and Ir^{IV} oxides prepared by either thermal activation or the Adams method, and deposited onto high surface area, inert supports, such as TiO_2 , SnO_2 or SiO_2 , are reported.

Experimental

Materials

The ruthenium and iridium trichloride hydrates $(\text{RuCl}_3 \cdot n\text{H}_2\text{O} \text{ and } \text{IrCl}_3 \cdot n\text{H}_2\text{O}, \text{ respectively})$ used in the preparation of all the Ru^{IV} and Ir^{IV} oxide-based catalysts was supplied by Johnson Matthey. The titanium(IV) and tin(IV) oxide supports were supplied by Laporte (Tiona AG, anatase) and Alfa Ventron (batch no. 87779), respectively. All Ce^{IV} solutions were prepared from an Analytical Volumetric Solution of 0.1 mol dm⁻³ Ce^{IV} sulphate in 0.5 mol dm⁻³ H₂SO₄ using 0.5 mol dm⁻³ H₂SO₄ as the diluent. All other materials were supplied by BDH in the highest purity available. The water used was doubly distilled and deionised.

Highly hydrated ruthenium dioxide hydrate (RuO₂ · xH₂O, $x \ge 2.3$) was prepared by adding 0.1 g of RuCl₃ · nH₂O to 100 cm³ of water thermostatted at 60 °C and adjusting the pH of the solution to pH 6 using 0.1 mol dm⁻³ NaOH solution. The resulting black suspension was stirred for several hours to ensure complete conversion of RuCl₃ · nH₂O to RuO₂ · xH₂O and was then filtered, washed thoroughly with water and dried in air. The conversion of RuO₂ · xH₂O to thermally activated ruthenium dioxide hydrate (RuO₂ · xH₂O for 5 h in air at 144 °C.

Adams Ru^{IV} oxide was prepared by grinding together a mixture of 0.1 g $RuCl_3 \cdot nH_2O$ with 5 g of NaNO₃ and heating the subsequent blend for 30 min at 450 °C. The melt was then cooled in air at room temperature and the black Ru Adams (450) powder was recovered from the final cake by dissolving the NaNO₃ component in water. The Ru Adams (450) was filtered off, washed thoroughly with water and dried in air. A similar procedure was used to prepare another Adams-type catalyst, Ru Adams (500); although, as the name suggests, with the latter catalyst the annealing temperature was 8 min).

A series of powders was prepared in which $\operatorname{RuO}_2 \cdot yH_2O^*$, Ru Adams (450) or Ru Adams (500) were deposited onto a variety of different high-surface-area, inert supports, such as TiO₂, SnO₂, Al₂O₃ or SiO₂, using the same procedures as used in the preparation of the unsupported powders but including 1 g of the support chosen in the initial reaction mixture. A few powders were also prepared in which the RuCl₃ · nH_2O was partly or wholly replaced by IrCl₃ · nH_2O .

Methods

30

20

10

0

10

0

20

wt. loss (%)

A number of different analytical techniques were used to characterise the prepared powders. Thermogravimetric analysis (TG) and differential thermal gravimetric analysis (DTG), as illustrated in Fig. 1, were performed using a Stanton Redcroft TG-760 coupled to an x/t chart recorder. For each sample the observed total weight loss was determined from its TG profile and taken as a measure of the sample's total H₂O content. In this work typically 6–9 mg of the sample were heated from ambient temperature (*ca.* 22 °C) to 1000 °C at a rate of 30 °C min⁻¹. In all cases a nitrogen flow rate of 40 cm³ min⁻¹ was employed. Surface areas were determined by a single-point B.E.T. method using an instrument built to a similar design and specification as a Perkin-Elmer 212-D Sorptometer and incorporating a Gow-Mac 24-152 thermal conductivity detector. Prior to the surface

(a)

(*b*)

(d)

1000

20 *T/*°C

(c)

1000

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

area measurement samples were degassed for 48 h at ambient temperature using a continuous stream of dried nitrogen.

Transmission electron microscopy was carried out using an electron microscope (Phillips EM 400T) (Fig. 2 and 3). The samples were loaded onto copper grids covered with a support film of carbon. Some of the more active of the powder dispersions were subjected to particle-size analysis by a dynamic light scattering technique using a Malvern Instruments Mastersizer model S3.01. The X-ray powder diffraction patterns for a number of the unsupported powders were recorded on film using the Guinier technique and Cu-K $\alpha_1\alpha_2$ radiation as the X-ray source.

A flow system⁸ was used to determine the extent of corrosion undergone by each of the catalysts for reaction (2) investigated. The system comprised two Dreschel bottles coupled in series through which a continuous flow of N₂ was passed. The first Dreschel bottle (the reaction vessel) contained 10 mg of the sample catalyst (or 0.1 g for the supported catalysts) under test dispersed in 100 cm³ of a 0.5 mol dm⁻³ H₂SO₄ plus 2 mol dm⁻³ NaCl solution. The second, much smaller, Dreschel bottle (the trap vessel) contained 10 cm³ of a 0.1 mol dm⁻³ NaOCl plus 1 mol dm⁻³ NaOH solution. Reaction (2), with any accompanying corrosion of the catalyst, was initiated with the injection into the reaction vessel of 2 cm³ of a 0.1 mol dm⁻³ Ce^{IV} stock solution in 0.5 mol dm⁻³ H₂SO₄ via a rubber septum. The degree of corrosion was determined from the amount of RuO₄ generated during the reaction and subsequently swept out by the N2 gas stream and trapped out as perruthenate in the second Dreschel bottle. Further details of this flow system are given elsewhere.8

A similar flow system was also used to determine the Cl₂ yield for each catalyst determined for reaction (2) under a set of typical reaction conditions which were also used in the subsequent kinetic study. The reaction conditions in the first Dreschel bottle were the same as for the corrosion flow system, with the exception that only 1 cm³ of the Ce^{IV} stock solution was injected. The second Dreschel bottle contained 100 cm³ of an aqueous solution comprising 0.36 mol dm⁻³ KI, 0.025 mol dm⁻³ NaOH and 0.049 mol dm⁻³ potassium hydrogenphthalate. Any Cl_2 generated in the first Dreschel bottle following the injection of the Ce^{IV} solution was swept out to the second Dreschel bottle where it was reduced by the iodide present to form triiodide; quantitative analysis of the latter was then carried out spectrophotometrically. Previous work⁹ has shown that this flow system is 100% efficient for the quantitative determination of chlorine yields of 10 mm³ to 10 cm³. In our work, following the injection of the Ce^{IV} ions into the Cl₂ catalyst test system contained in the first Dreschel bottle, a 100% Cl₂ yield will correspond to the liberation of 1.22 cm^3 of Cl_2 .

The results arising from the characterisation studies of each of the Cl_2 catalysts, using the different techniques described above, are summarised in Table 1.

The kinetics of reaction (2) were studied by monitoring spectrophotometrically ($\lambda = 430$ nm) the decrease in the concentration of Ce^{IV} ions as a function of time.¹⁰ For each catalyst a stock dispersion was prepared, containing 7 mg (typically) of the catalyst dispersed (using 5 min of ultrasound from an ultrasound bath) in 100 cm³ of a 2 mol dm⁻³ NaCl plus 0.5 mol dm⁻³ H₂SO₄ solution. Each stock dispersion was then stirred continuously and used only after a minimum period of 2 h, and before 10 h, from the time it was prepared. In the study of the kinetics of reaction (2) for each catalyst an aliquot of 2.5 cm³ of the stock dispersion was dispensed into a 1 cm, thermostatted (30.00 ± 0.05 °C) quartz fluorescent cell placed in the sample beam of a double-beam spectrophotometer (Perkin-Elmer Lambda 3); the dispersion was then stirred continuously (*ca.* 1000 r.p.m.). The reaction was initi-

3277

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

Fig. 2 Electron micrographs of unsupported powders tested as Cl_2 catalysts: (a) $RuO_2 \cdot yH_2O^*$, (b) RuO_2 -Adams (500), (c) RuO_2 (anhyd.)

ated with the injection of 90 mm³ of a 0.5 mol dm⁻³ H₂SO₄ solution containing 0.1 mol dm⁻³ Ce^{IV} ions. The subsequent decrease in absorbance, due to the reduction of the Ce^{IV} ions, as a function of time was recorded digitally using a microcomputer (BBC MasterClass) and stored on floppy disc. The microcomputer was also used in the subsequent analysis of the data. For kinetic runs carried out under identical experimental conditions the data were reproducible to within \pm 5%, as determined from the observed variation in first-order rate constant.

Results

The kinetics of reaction (2) catalysed by each of the materials listed in Table 1 were studied under the typical reaction conditions described above. Fig.4A shows the observed variation in absorbance due to Ce^{IV} ions as a function of time for several Cl_2 catalysts with widely differing activities. Interestingly, the observed kinetics of catalysis for these [see Fig. 4B] and all the other Cl_2 catalysts tested gave an excellent fit (1 \geq correlation coefficient \geq 0.9995) to a first-order analysis.

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

Fig. 3 Electron micrographs of supported powders tested as Cl_2 catalysts: (a) TiO_2 , (b) $RuO_2 \cdot yH_2O^*$ on TiO_2 (ca. 10 wt.% loading), (c) RuO_2 -Adams (500) on TiO_2 (ca. 10 wt.% loading)

For each catalyst, from the first-order plot of the kinetic data, the respective first-order rate constant, k_1 , could be gleaned. From previous work^{5,10} and results described later in this paper it appears that k_1 is proportional to the catalyst concentration. One way in which the different catalysts may be assessed is through a comparison of the values of their specific first-order rate constants, *i.e.* k'_1 , where $k'_1 = k_1/(\text{amount} \text{ of catalyst used})$.

With all of the catalysts studied in this work the catalytically active component is an expensive platinum-group metal (PGM), although, clearly, a desirable feature of any catalyst will be low cost. One route by which the cost of such

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

Table 1 Catalyst characterisation data

					· · · · · · · · · · · · · · · · · · ·
catalyst	H ₂ O ^a	surface area ^b	corr. ^c	Cl_2^d	XRD
(powder colour)	(%)	$/m^2 g^{-1}$	(%)	(%)	pattern
RuO ₂ (anhyd.) (black)	0	7.7	< 0.05	94	Ru ^{IV} oxide (rutile) XRD pattern
$RuO_2 \cdot xH_2O$	24		$4-8^{e}$	85)	very clear with sharp mics
(black)	4.0			}	no discernible pattern
(black)	10	95	0.4	96)	
$RuO_2 \cdot yH_2O^*/TiO_2$	<1	19 (18)	0.20	98]	
(light grey)		10 (12)	0.05		no discernible pattern for the PGM
(grev)	<1	10 (12)	< 0.05	103	oxide (only the support)
$RuO_2 \cdot yH_2O^*/Al_2O_3$	< 1	99 (100)	0.26	96	
(grey)					
$RuO_2 \cdot yH_2O/SiO_2$	<1	201 (200)	0.37	98	no discernible pattern for the
Ru-Adams (450)	3	205	< 0.05	93	Ru^{IV} oxide (rutile) XRD pattern
(black)				2	broad lines but discernible
Ru-Adams (450)/TiO ₂	0	19	< 0.05	95	
Ru-Adams (450)/SnO ₂	0	12	< 0.05	96	no discernible pattern of PGM
(grey)	-				oxide (only the support)
Ru-Adams (450)/Al ₂ O ₃	0	96	< 0.05	97)	
(grey) Ru-Adams (450)/SiO	0	105	< 0.05	95	no discernible pattern for the
(blue-grey)	0	175	< 0.05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PGM oxide or support
Ru-Adams (500)	6	230	< 0.05	98	Ru ^{IV} oxide (rutile) XRD pattern
(black)	0	17	.0.05	07.)	very broad lines but discernible
(grey)	0	17	< 0.05	97	no discernible pattern of PGM oxide
Ru-Adams (500)/SnO ₂	0	15	< 0.05	96)	(only the support)
(grey) Ir-Adams (500)	12	182	_	101	Ir ^{IV} oxide (rutile) XRD pattern
(black)	12	102		101	barely discernible
Ru/Ir (1 : 1)-Adams (500)	8	209		97	Ru ^{IV} oxide (rutile) XRD pattern
$IrO_2 \cdot yH_2O^*$	4	7		95)	no discomble netters (event of
(black)				}	support)
$\frac{IrO_2 \cdot yH_2O^*/SnO_2}{(dark grey)}$	0	12	—	93)	Support

^{*a*} Total water content as measured by the total weight loss (%) undergone by the sample upon heating it from ambient to 700 °C and determined from its TG profile. ^{*b*} Surface area measured by B.E.T. (error \pm 5%), surface areas in parenthesis refer to the supports alone. ^{*c*} Degree of corrosion (%) measured using the Ce^{IV} reaction vessel/HOCl trap flow system. ^{*d*} Cl₂ (%) arising from reaction (2), measured using the Ce^{IV} reaction vessel/triiodide trap flow system (error \pm 3%). ^{*e*} Estimated from the absorption spectrum of the reaction solution 24 h after the injection of the Ce^{IV} ions; see Discussion section for further details.

catalysts may be lowered is by coating the active component onto a cheap, inert support with a high surface area, such as TiO_2 , SiO_2 , SnO_2 or Al_2O_3 . A catalyst which is economical with the PGM active material involved will be most readily identified by a high value for its first-order rate constant per mole of metal, *i.e.* k_1'' .

For each of the Cl_2 catalysts tested and k_1 measured, values for k'_1 and k''_1 have been calculated (Table 2).

The results of a detailed study of the kinetics of reaction (2) mediated by an unsupported PGM oxide, *i.e.* $RuO_2 \cdot yH_2O^*$, have been reported earlier.⁵ It is likely that the nature of the kinetics of catalysis exhibited by the other unsupported PGM oxides used in this study [*i.e.* RuO_2 (anhyd.), Ru-Adams and Ir-Adams] will be similar to those of $RuO_2 \cdot yH_2O^*$ and fit the same electrochemical model; a fundamental aspect of which, as we shall see, is a predicted first-order dependence of rate on oxidant concentration.

The kinetics of catalysis by a supported PGM oxide catalyst have not been studied in any detail before and, as a result, using one of the most active of the supported catalysts, Ru-Adams (500)/TiO₂, we investigated the effect of varying [Ce^{IV}], [Ce^{III}], [Cl⁻], [cat.] and temperature on k_1 (an Arrhenius plot of the data arising from the latter work is

shown in Fig. 5, from which an activation energy of 21.4 ± 1.3 kJ mol⁻¹ can be calculated). The results from this detailed kinetic study are summarised in Table 3.

Discussion

From the results in Table 1 it appears that all the unsupported and supported PGM-based catalysts tested are able to act as efficient Cl₂ catalysts (Cl₂ yields $\approx 95-100\%$) in reaction (2) and are stable (corrosion typically $\ll 1\%$) towards anodic corrosion by the Ce^{IV} ions, or the Cl₂ generated. RuO₂ · xH₂O appears to be the only PGM material tested that shows some tendency towards anodic corrosion.

Catalyst Corrosion

The nature of the corrosion of $\text{RuO}_2 \cdot x\text{H}_2\text{O}$ was unusual and merits a brief discussion. The corrosion yield for $\text{RuO}_2 \cdot x\text{H}_2\text{O}$ calculated from the RuO_4 trap alone was *ca*. 0.6%. Instead the corrosion of $\text{RuO}_2 \cdot x\text{H}_2\text{O}$ was made manifest by the gradual pale yellow-orange colouration of the reaction solution over 24 h from the time of injection of the Ce^{IV} ions. Note that the catalysis of reaction (2) by $\text{RuO}_2 \cdot x\text{H}_2\text{O}$ was

Fig. 4 Kinetic study of the oxidation of brine by Ce^{IV} ions and mediated by a series of different catalysts. The reduction of the Ce^{IV} ions was monitored spectrophotometrically (A) and the data (typically > 200 points) were then subjected to a first-order analysis (B). The different runs illustrated correspond to: (a) no catalyst, (b) RuO₂ (anhyd.) (75 µg cm⁻³), (c) RuO₂ · yH₂O* (56 µg cm⁻³), (d) Ru-Adams (500) (77 µg cm⁻³), (e) Ir-Adams (500) (87 µg cm⁻³). In a typical run a normalised absorbance of 1 correspond to an actual absorbance of 1. The normalised absorbance refers to the actual absorbance, the absorbance due to the catalyst, A_{∞}

very rapid (5–10 min) and that after this reaction there was little spectrophotometric evidence of RuO_4 in the reaction vessel (or, subsequently, in the RuO_4 trap).

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

Although RuO₄ is known¹¹ to be unstable in a solution containing 0.5 mol dm⁻³ H₂SO₄ and 2 mol dm⁻³ NaCl, the reaction is very slow (12–24 h) and blank experiments showed that if any (*i.e.* > 0.05%) RuO₄ was generated in the reaction vessel in this medium that it would be rapidly swept out by the nitrogen stream and almost quantitatively trapped as perruthenate in the second trap. Interestingly, the absorption spectrum of an RuO₄ solution containing 0.5 mol dm⁻³ H₂SO₄ and 2 mol dm⁻³ NaCl which has been allowed to decompose is very similar to that observed in the reaction vessel, 24 h after the injection of the Ce^{IV} ions, when RuO₂ · xH₂O (and no other catalyst) was used to mediate reaction (2). From these results it appears that some corrosion of the RuO₂ · xH₂O particles takes place subsequent to catalysis of reaction (2).

Previous work¹² has shown that after the oxidation of water to O₂ by Ce^{IV} ions, catalysed by RuO₂ · yH_2O^* , the RuO₂ · yH_2O^* particles are 'charged', *i.e.* they appear to possess more oxidising equivalents after catalysis compared with before. This observation is in line with the electrochemical model of redox catalysis, which predicts that prior to catalysis the powder particles must charge up the redox potential necessary for catalysis (E_{mix}). For an Ru^{IV} oxide catalyst the charging process will involve the creation of higher oxidation states of the metal throughout the particle and, in the case of RuO₂ · xH_2O , it appears that after catalysis the 'charged' RuO₂ · xH_2O particles can discharge slowly by undergoing anodic dissolution.

The product of this anodic dissolution appears to exhibit similar UV–VIS spectral characteristics to those arising from the reduction of RuO₄ by the 0.5 mol dm⁻³ H₂SO₄ and 2 mol dm⁻³ NaCl solution. The reduction of RuO₄ by HCl to form a variety of Ru^{IV} chloro-aquo complexes, identified from their characteristic absorption spectra as Y₁, Y₂ and Y₃ has been studied by several groups.^{13–16} The spectral changes we have observed in the reaction vessel arising from the use of RuO₂ · xH₂O as a Cl₂ catalyst are similar to a combined mixture of Y₂ and Y₃, which have tentatively been assigned by others^{14–16} to the species (H₂O)Cl₃Ru(μ O)₂RuCl₃(H₂O) and (H₂O)Cl₄Ru-O-RuCl₄(H₂O), respectively. Using the reported¹³ molar absorptivities for these species and the observed spectral changes in the reaction vessel, we estimated a maximum degree of corrosion of 4–8% for RuO₂ · xH₂O (see Table 1).

Table 2 Catalyst rate constant data

catalyst	mass in 100 cm ³ H ₂ O/mg	$/10^{-3} \mathrm{s}^{-1}$	/s ⁻¹ g ⁻¹	k_1'' /mol ⁻¹ metal s ⁻¹	$k_{1}^{'''}$ /s ⁻¹ m ⁻²
RuO, (anhyd.)	7.5	0.767	4.11	5.41	0.53
RuO, xH,O	7.3	2.73	14.9	25.8	
$RuO_{2} \cdot yH_{2}O^{*}$	5.6	2.11	15.1	22.1	0.159
$RuO_2 \cdot yH_2O^*/TiO_2$	6.4	1.41	8.80	202	0.463
$RuO_2 \cdot yH_2O^*/SnO_2$	6.7	1.41	8.42	193	0.842
$RuO_2 \cdot yH_2O^*/Al_2O_3$	6.6	1.25	7.57	179	0.076
$RuO_{2}^{*}yH_{2}^{*}O^{*}/SiO_{2}^{*}$	7.4	0.714	3.86	86.4	0.019
Ru-Adams (450)	8.1	4.38	21.6	29.3	0.106
Ru-Adams (450)/TiO ₂	8.8	0.990	4.50	108	0.237
Ru-Adams $(450)/SnO_2$	8.0	0.944	4.72	104	0.393
Ru-Adams $(450)/Al_2O_3$	6.7	0.544	3.25	73.6	0.034
Ru-Adams $(450)/SiO_2$	7.2	0.509	2.81	66.9	0.014
Ru-Adams (500)	7.7	5.28	27.4	38.5	0.119
Ru-Adams (500)/TiO ₂	7.7	2.06	10.7	255	0.628
Ru-Adams $(500)/SnO_2$	8.0	2.01	10.0	240	0.669
Ir-Adams (500)	8.7	10.0	46.0	60.9	0.252
Ru/Ir (1:1)-Adams (500)	6.7	5.78	34.5	44.7	0.165
$IrO_2 \cdot yH_2O^*$	7.2	0.415	2.30	2.8	0.328
$IrO_2 \cdot yH_2O^*/SnO_2$	6.2	0.818	5.28	45.8	0.44

 k_1 , first-order rate constant; k'_1 , first-order rate constant per g of catalyst; k''_1 , first-order rate constant per mole of PGM; k''_1 , first-order rate constant per unit surface area [*i.e.* = $k'_1/S(B.E.T.)$].

Fig. 5 Arrhenius plot of $\ln(k_1)$ vs. T^{-1} for the Ru-Adams (500)/TiO₂ catalyst. The temperature was varied over the range 20–70 °C. All other reaction conditions were as described in the Experimental, with the exception that [cat.] = 58 µg cm⁻³ (not 70 µg cm⁻³). From the gradient of this plot an activation energy of 21.4 ± 1.3 kJ mol⁻¹ was estimated

Catalyst Characterisation

Characterisation of the hydrated oxides of ruthenium and iridium is a difficult task⁸ since, invariably, these oxides exhibit a featureless IR spectrum and are amorphous to X-rays (see Table 1). One analytical technique which does yield some useful information is thermal analysis, in particular TG and its derivative form DTG. For any sample, from its TG profile the overall weight change due to loss of physically and chemically bound H₂O (i.e. %H₂O content) in the sample can be determined (see Table 1). Previous work^{7,8} carried out in the absence of a high concentration of chloride ions has shown that the H₂O content in a sample of RuO₂·xH₂O provides a good guide to its susceptibility towards anodic corrosion. Thus, samples of $RuO_2 \cdot xH_2O$ with $H_2O < 10\%$ are very stable towards anodic dissolution to RuO_4 by Ce^{IV} ions, but unstable if the H_2O content > 23%. The rationale for these observations is that the H₂O content provides a reflection of the degree of disorder within the powder microcrystallites. Thus, the greater the H₂O content, the greater the disorder and, consequently the more prone the powder is to corrosion. The DTG profiles (Fig. 1) help to identify the different types of bound water associated with hydrated samples of Ru^{IV} and Ir^{IV} oxides. Thus, from the DTG profile for $RuO_2 \cdot xH_2O$ it appears that there are at least three different types of water,¹⁷ i.e. physical (largely removed at T > 100 °C), and two chemically bound types [T(peak) 200 °C and 450 °C, respectively].

The process of thermal activation, which converts $RuO_2 \cdot xH_2O$ to $RuO_2 \cdot yH_2O^*$ and markedly reduces the corrosion susceptibility exhibited by $RuO_2 \cdot xH_2O$, appears from the DTG data illustrated in Fig. 1 to reduce substantially the amount of the low-temperature, chemically bound H_2O . It is thought that the high susceptibility towards anodic corrosion exhibited by $RuO_2 \cdot xH_2O$ may be due to the presence of a particular type of surface-defect site in which the ruthenium atoms are coordinated with one or more H_2O molecules. Thermal activation appears to largely remove this defect, probably through a condensation reaction between two hydroxyl groups on adjacent Ru surface atoms with the concomitant formation of an Ru—O—Ru bond. This process would lead to a less defective surface which might be expected to be less prone to corrosion.¹⁷

Unlike $RuO_2 \cdot xH_2O$ and $RuO_2 \cdot yH_2O^*$, Ru-Adams (450) exhibits a clear, albeit broad, XRD pattern and, therefore, shows evidence of a moderate degree of crystallinity. It is likely, therefore, that Ru-Adams (450) will have a substantially lower number of defect sites than $RuO_2 \cdot xH_2O$ and $RuO_2 \cdot yH_2O^*$ and, consequently, show evidence only for a high-temperature chemically bound type H_2O in its DTG profile as appears to be the case (see Table 1).

The Adams method of preparing Ru^{IV} (and Ir^{IV}) oxides appears to produce a material that effects an excellent compromise between the extreme forms of Ru^{IV} oxide and their favourable and unfavourable characteristics as catalysts, *i.e.* $RuO_2 \cdot xH_2O$ with its amorphous nature [see Fig. 2(*a*)] and high surface area but certain susceptibility towards anodic corrosion and Ru^{IV} oxide (anhyd.) with its high crystallinity [see Fig. 2(*c*)] and stability towards corrosion but low surface area [due to the extensive sintering which occurs at its high temperature of formation (*ca.* 900 °C)]. Thus, Ru-Adams (450) and the slightly less crystalline form, Ru-Adams (500) [see Fig. 2(*b*)], are two of the catalysts with the highest surface areas of the materials tested and experiments show them to be very resistant indeed toward corrosion by Ce^{IV} ions and Cl₂.

Kinetics of Catalysis and the Electrochemical Model

In the electrochemical model of redox catalysis it is assumed^{1,2} that the catalyst particles act simply as microelectrodes providing a medium through which electrons can flow from one redox couple to the other. At any time, t, during a redox catalysed reaction the total flow of electrons through the particles, *i.e.* the mixture current, $i_{mix}(t)$ is related to the rate of reaction at that instant, R(t), via the expression,

$$R(t) = i_{\rm mix}(t)/F \tag{3}$$

variable ^b	range (units)	plot	n	m (units)	c (units)	r
[Ce ^{IV}]	3.6-36 (10 ⁻⁴ mol dm ⁻³)	$R_i^c vs. [Ce^{iv}]_0$	6	$\frac{1.21 \pm 0.04}{(10^{-3} s^{-1})}$	$-(1.4 \pm 0.9)$ $(10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1})$	0.9967
[Ce ^{III}]	4-40 (10 ⁻⁴ mol dm ⁻³)	k_1 vs. [Ce ^{III}] ₀	6	$(10^{-2} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1})$	$\frac{1.47 \pm 0.06}{(10^{-3} \text{ s}^{-1})}$	0.3078
[Cl ⁻] ^d	0.2-2 (mol dm ⁻³)	$k_1 vs. [Cl^-]$	5	-1.4 ± 1.1 (10 ⁻⁴ mol ⁻¹ dm ³ s ⁻¹)	(4.7 ± 0.1) $(10^{-3} s^{-1})$	0.5306
[cat.]	7-70 (mg dm ⁻³)	k_1 vs. [cat.]	6	$\frac{2.59 \pm 0.16}{(10^{-2} \text{ s}^{-1} \text{ g}^{-1} \text{ dm}^3)}$	-2.8 ± 4.8 (s ⁻¹)	0.9950
Т	20–70 (°C)	$\ln(k_1/s^{-1})$ vs. $1/T$	6	-2.57 ± 0.16 (10 ³ K)	9.96 ± 0.47	0.9938

Table 3 Results of kinetic study of reaction (2) using Ru-Adams (500)/TiO₂ as the Cl₂ catalyst^a

^{*a*} Typical reaction conditions were as follows: 90 mm³ of a 0.1 mol dm⁻³ Ce^{IV} solution were injected into 2.5 cm³ of the catalyst dispersion (5.8 mg/100 cm³) containing 2 mol dm⁻³ NaCl and 0.5 mol dm⁻³ H₂SO₄ and thermostatted at 30 °C. The decrease in absorbance due to Ce^{IV} ions was monitored spectrophotometrically (see Experimental). ^{*b*} All other experimental conditions fixed. ^{*c*} R_i or initial rate = k_1 [Ce^{IV}]₀, where [Ce^{IV}]₀ is the initial (*i.e.* t = 0) concentration of Ce^{IV} ions present. ^{*d*} [cat.] = 16.4 mg/100 cm³.

Provided the redox catalyst is chemically inert under the reaction conditions employed and that the redox couples involved act independently of each other (the Wagner-Traud additivity principle) it is possible to predict, using this electrochemical model, the kinetics of catalysis from a knowledge of the current vs. voltage behaviour of the two redox couples on the redox catalyst.

A detailed investigation of the kinetics of the oxidation of water to O_2 by Ce^{IV} ions, mediated by thermally activated ruthenium dioxide hydrate (RuO₂ · yH₂O*), has been carried out recently.¹⁰ The observed kinetics gave an excellent fit to an electrochemical model of redox catalysis in which the reduction of the Ce^{IV} ions was considered as a Nernstian reaction and the oxidation of water to O_2 as an irreversible reaction. A similar electrochemical model is likely to apply in our work on the catalysis of reaction (2) by the PGM-based materials listed in Table 1. An important consequence of this particular model is that at any time, *t*, during the redox reaction the mixture current will be given by the expression:

$$i_{\rm mix} = \frac{k_{\rm d} F A_{\rm cat}([{\rm Ce}^{4+}]_t - [{\rm Ce}^{3+}]_t \exp\{F(E_{\rm mix} - E_{\rm Ce}')/RT\})}{1 + \exp\{F(E_{\rm mix} - E_{\rm Ce}')/RT\}}$$
(4)

where k_d is the mass-transfer coefficient of the Ce^{IV} and Ce^{III} ions, A_{cat} is the total effective surface area of the redox catalyst particles (and is directly proportional to [RuO₂ · yH₂O*]), $E_{mix, t}$ is the redox potential adopted by the particles at time, t and E'_{Ce} is the formal redox potential of the Ce^{IV}/Ce^{III} couple. In this model, if the following parameters are large: (i) the [Ox]/[Red] ratio, (ii) the separation between the equilibrium potentials for the Ce^{IV}/Ce^{III} and Cl₂/Cl⁻ couples and (iii) the exchange current density for the latter couple on the catalyst, then it is likely that the mixture potential adopted by the catalyst particles will be significantly different from the equilibrium potential of the Ce^{IV}/ Ce^{III} couple. As a result, the parameter $(E_{mix} - E'_{Ce})$ may be sufficiently large and negative that the expression for the mixture current, i.e. eqn. (4), reduces to that for a diffusioncontrolled reaction,18 i.e.

$$i_{\rm mix} = FD[{\rm Ce}^{4+}]A_{\rm cat}/\delta \tag{5}$$

where D is the diffusion coefficient of the Ce^{IV} ions (= $k_d \delta$), and δ is the thickness of the diffusion layer. δ is essentially a function of the hydrodynamic flow around the microelectrode particles and in our work this was fixed by using a set stirring speed for all the kinetic runs made. Fig. 6 provides a sche-

Fig. 6 Likely individual current vs. voltage curves for the Cl_2/Cl^- and Ce^{IV}/Ce^{II} couples on a Cl_2 catalyst. In this electrochemical representation of chlorine catalysis the mixture current is diffusion-controlled and, therefore, will give rise to first-order kinetics with respect to $[Ce^{IV}]$

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

matic illustration of the current vs. voltage curves for a redox catalyst coupled process involving (i) the Nernstian, reduction reaction: $Ce^{IV} \rightarrow Ce^{III}$ and (ii) the irreversible oxidation reaction: $Cl^- \rightarrow \frac{1}{2}Cl_2$, when the mixture current passing through the catalyst is diffusion-controlled.

If an example of catalysis of reaction (2) does fit the electrochemical model and is diffusion-controlled then, from eqn. (5), a central feature of the observed kinetics for reduction of Ce^{IV} ions will be a first-order dependence of rate upon $[Ce^{IV}]$. In our work the experimental conditions were such (*i.e.* $[Ce^{III}] = 0 \mod dm^{-3}$ and $[Cl^{-}]$ is high), that assuming the applicability of the electrochemical model, diffusioncontrolled kinetics would be most likely to be observed for each of the catalysts tested. As noted in the early part of the Results section, we found that the kinetics of Ce^{IV} reduction were near-perfect first-order for all the Cl_2 catalysts tested and this observation provides support for the assumption that the electrochemical model can be used to interpret our results on Cl_2 catalysis.

Table 2 lists the first-order rate constants, k_1 , and the specific first-order rate constants determined for all the materials examined. From the values of k'_1 listed in Table 2, the pure Ru, Ir and Ru/Ir Adams (500) catalysts appear the most active. In fact all these Adams-type catalysts appear to possess the highly desirable combination of a high surface area per g and a high specific first-order rate constant.

If the use of Adams-type catalysts as Cl₂ catalysts has a draw-back it is that their cost is likely to be high, given that they are examples of pure PGM oxides. However, when Ru Adams (500) is supported on an inert material, such as TiO₂ [see Fig. 3(c)] or SnO₂, with a high surface area, the product appears appreciably superior to the other supported PGM oxide catalysts, including RuO₂ · yH_2O^* [see Fig. 3(b)] and Ru-Adams (450), as can be seen from a comparison between the different values of $k_1^{"}$ calculated for the different catalysts and listed in Table 2.

In the electrochemical model the rate of catalysis depends directly upon the effective catalytic surface area which, in turn, depends upon the true surface area, S, and the activity of the material per unit area, ϕ , *i.e.*

$$A_{\rm cat} = S\phi \tag{6}$$

the latter parameter providing a measure of the number of active sites per unit surface area. A commonly employed measure of S is the surface area per g of the powder as determined using a B.E.T. technique, S(B.E.T.), and in Table 2 the first-order rate constants per m², *i.e.* $k_1''' = k_1'/S(B.E.T.)$, for all the catalysts are listed. However, previous work⁷ in which $RuO_2 \cdot yH_2O^*$ was used as a catalyst for the oxidation of water to O_2 by Ce^{IV} ions showed that a more appropriate estimate of S in eqn. (6) is the surface area of the aggregated particles in solution, rather than that of the powder after it has been dried and degassed, which is a necessary part of the procedure in making a surface area measurement using the B.E.T. technique. An estimate of the surface area of the aggregated particles in solution can be obtained from a particlesize analysis of the dispersion using dynamic light scattering and the expression:

$$S(\text{disp.}) = 6/(\rho d) \tag{7}$$

where ρ is the density of the catalyst in g m⁻³ and d is the average aggregate particle size (in m). The ratio of $k'_1/S(\text{disp.})$ we defined as ϕ' since it provides a measure of ϕ , the activity of the Cl₂ catalyst per unit area. Table 4 lists the values of S(disp.) and k'''_1 determined for RuO₂ · yH₂O* and several RuO₂ · yH₂O* supported catalysts as well as the associated value of ϕ' estimated as described above.

J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87

Table 4 S(disp.) and ϕ' data

	• • •		
sample	S(disp.) /m ² g ⁻¹	$/s^{-1}m^{-2}$	$(s^{-1}m^{-2})^{\phi'}$
RuO ₂ · yH ₂ O*	0.08	0.159	189
$RuO_{2} \cdot yH_{2}O^{*}/TiO_{2}$	2.88	0.463	3.1
$RuO_{2}^{*} \cdot yH_{2}O^{*}/SnO_{2}^{*}$	1.45	0.842	5.8
$RuO_{2} \cdot yH_{2}O^{*}/Al_{2}O_{3}$	0.63	0.076	12.0
$RuO_2 \cdot yH_2O^*/SiO_2$	0.14	0.019	27.6

S(disp.), surface area per g calculated using eqn. (6), with d = number average particle diameter in a powder dispersion as measured by light dynamic scattering. ϕ' , First-order rate constant per unit area (of the powder dispersed in solution) = $k'_1/S(\text{disp.})$; a 'wet' measure of the number of active sites. k''_1 , First-order rate constant per unit area (of the powder dispersed in solution) = $k'_1/S(\text{B.E.T.})$; a 'dry' measure of the number of active sites.

From a comparison of the values of S(disp.) in Table 4 and S(B.E.T.) in Table 1 it appears that a substantial degree of aggregation of the powder particles occurs, with a concomitant drop in effective surface area per g, upon dispersing the powders in aqueous solution. This general trend was confirmed from the results of an optical microscopy study on the same aqueous powder dispersions.

The results in Table 4 also indicate that the number of sites per unit surface area is lower on a supported, rather than unsupported, catalyst. The reason for this is apparent from the electron micrographs of the supported catalysts (see Fig. 3) which show for both $RuO_2 \cdot yH_2O^*$ and Adams (500), that the surface coverage of the support is not even and the PGM oxides tend to form a series of catalyst islands on the surface of the support.

In theory, for a supported catalyst in which the PGM oxide uniformly and completely covered the surface of the support and retained the same morphology as the original unsupported PGM catalyst then its value for ϕ' will be the same as the latter (189 s⁻¹ m⁻² in the case of RuO₂·yH₂O^{*}; see Table 4). From the different values for ϕ' listed in Table 4 it appears that this is not the case with any of the supported catalysts. SiO₂, which has a very high B.E.T. surface area (200 m² g⁻¹), exhibits the highest coverage [*i.e.* = $\phi'(\text{RuO}_2 \cdot \text{yH}_2\text{O}^*/\text{SiO}_2)/\phi'(\text{RuO}_2 \cdot \text{yH}_2\text{O}^*)$] of 14.6%. If a supported catalyst exhibited a ϕ' value which was greater than that of the original PGM material then a synergistic effect due to the support would usually be invoked as the likely cause.

As noted earlier, all the catalysts exhibited first-order kinetics with respect to the concentration of Ce^{IV} ions. This general observation is readily interpreted using the electrochemical model if the reaction is diffusion-controlled since i_{mix} (and, therefore, the rate) then depends directly upon the parameters identified in eqn. (7), one of which is [Ce^{IV}]. A detailed study of the kinetics of an unsupported PGM catalyst of reaction (2), *i.e.* $RuO_2 \cdot yH_2O^*$, has been reported previously⁵ and provides further support for the electrochemical model. The results of our kinetic study of reaction (2) mediated by a supported PGM catalyst, i.e. Ru-Adams (500), summarised in Table 3, also provide support for the electrochemical model and the applicability of eqn. (6). Thus, using Ru-Adams (500)/TiO₂ as the Cl₂ catalyst in reaction (2), the kinetics of Ce^{IV} reduction were found to be first-order not only at one typical concentration of Ce^{IV} ions, but also over the range [Ce^{IV}] $(3.6-36) \times 10^{-4}$ mol dm⁻³. In addition the first-order rate constant k_1 , where $k_1 \equiv DA_{cat}/\delta$, was found to be independent of [Ce^{III}] and [Cl⁻], since a plot of k_1 vs. [Ce^{III}] or [Cl⁻¹] was found to be a horizontal line (see Table 3) as indicated by the low value for the correlation coefficients and low value gradients with large errors. (Note

3283

that the correlation coefficient for a line approaching a perfect horizontal has a correlation coefficient and gradient both tending to zero.) In eqn. (6) the parameter, A_{cat} is proportional to the catalyst concentration, [cat.]. Thus, for Ru-Adams (500)/TiO₂ a plot of k_1 vs. [cat.] should, according to the electrochemical model, be a good straight line with a zero intercept; this prediction appears to be confirmed by the results of such a plot, summarised in Table 3.

If reaction (2) is diffusion-controlled for Ru-Adams (500)/TiO₂ then the activation energy should be that for a typical^{19,20} diffusion-controlled reaction, *i.e.* 15-19 kJ mol⁻¹. It is possible, however, that this activation energy may be modified slightly due to temperature-induced changes in the nature of the diffusing species, which are Ce^{IV} ions complexed with an undefined mixture of water, chloride and sulphate groups, the proportions of which may change with increasing temperature; these changes are evidenced by concomitant UV-VIS spectral changes. A measure of the activation energy for the Ce^{IV} in the medium (*i.e.* 0.5 mol dm⁻³ H₂SO₄ plus 2 mol dm⁻³ NaCl) used in our catalytic study can be obtained by measuring the diffusion-controlled current, arising from the electrochemical reduction of Ce^{IV} ions in the same medium using a gold working electrode, as a function of temperature. Fig. 7 illustrates a typical current vs. voltage profile. From this work an activation energy of $14.8 \pm 0.5 \text{ kJ mol}^{-1}$ was calculated for the diffusion-controlled reduction of Ce^{IV} ions on a gold cathode in 0.5 mol dm⁻³ H_2SO_4 plus 2 mol dm⁻³ NaCl. In the study of the variation of k_1 as a function of temperature for reaction (2) catalysed by Ru-Adams (500)/TiO₂ the activation energy was determined as 21.4 ± 1.3 kJ mol⁻¹, which compares favourably with the value found from our electrochemical studies. A similar study of k_1 as a function of T, using the unsupported Ru-Adams (500) as the Cl₂ catalyst yielded 18.9 ± 1.0 kJ mol⁻¹, which again appears a reasonable value for a diffusion-controlled reaction.

Fig. 7 Cyclic voltammograms recorded using a gold rotating disc cathode in 0.5 mol dm⁻³ H₂SO₄ and 2 mol dm⁻³ NaCl and in (a) the absence and (b) the presence of Ce^{IV} ions (5×10^{-4} mol dm⁻³) for a series of different temperatures. A platinum rod was used as the counter electrode and an SCE as the reference electrode; the voltage sweep rate was 3 V min⁻¹ as the rotation speed 2000 r.p.m. T = 50 °C

We thank Mr. S. Spratt and Johnson Matthey for their help in the electron microscopy study and the SERC for supporting this work.

References

- M. Spiro, Chem. Soc. Rev., 1986, 15, 141, and references therein.
- A. Mills, Chem. Soc. Rev., 1989, 18, 285 and references therein. 2
- 3 M. Spiro and A. B. Ravnö, J. Chem. Soc., 1965, 78.
- J. Kiwi and M. Grätzel, Chem. Phys. Lett., 1981, 78, 241. 4
- A. Mills and A. Cook, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 5 379
- S. Trasatti and G. Lodi, Electrodes of Conductive Metallic 6 Oxides, ed. S. Trasatti, Elsevier, Amsterdam, 1980, vol. B, ch. 10.
- 7 A. Mills, S. Giddings, I. Patel and C. Lawrence, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 2331. A. Mills, S. Giddings and I. Patel, J. Chem. Soc., Faraday Trans.
- 8 1, 1987, 83, 2317.
- A. Mills and A. Cook, Analyst (London), 1987, 112, 1289. 9
- 10 A. Mills and N. McMurray, J. Chem. Soc., Faraday Trans. 1, 1989. 85. 2055.
- S. Aoyama, Sci. Rep. Tokôku Imp. Univ., Ser. 1, 1925, 14, 1. 11
- 12 A. Mills and S. Giddings, Inorg. Chim. Acta, 1989, 159, 7.

- J. CHEM. SOC. FARADAY TRANS., 1991, VOL. 87
- 13 P. Wehner and J. C. Hindman, J. Phys. Chem., 1952, 56, 10.
- I. P. Alimarin, U. P. Khuostova, G. V. Pichugina, I. G. Tikhon-14 ov and Z. A. Kuratashvili, Isv. Sib. Utd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1974, 31. I. G. Tikhonov, V. I. Bodmya and I. P. Alimarin, Vestn. Mosk.
- 15 Univ., Khim., 1975, 16, 714.
- J. L. Woodhead and J. M. Fletcher, UK Atomic Energy Res. 16 Group Rep. AERE, Harwell, R4123.
- R. Mason, A. Mills and D. Milton, J. Less-Common Metals, 17 1989, 155, 89.
- A. Mills and N. McMurray, J. Chem. Soc., Faraday Trans. 1, 18 1989, 85, 2047.
- 19 F. Wilkinson, Chemical Kinetics and Reaction Mechanisms, Van Nostrand Reinhold, London, 1981, p. 140.
- J. W. Moore and R. G. Pearsons, Kinetics and Mechanisms, J. 20 Wiley, New York, 1981, 239.

Paper 1/00706H; Received 14th February, 1991