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Abstract—Three synthetic routes towards a novel estrogen receptor ligand template based on a rigid bicyclo-[3.3.1]-nonene core
have been investigated. The prototype compound exhibits potent binding at the ERb receptor and promising estrogen receptor
subtype selectivity.
# 2003 Elsevier Science Ltd. All rights reserved.
Estrogen receptors (ER) have quickly emerged as
attractive targets for therapeutic intervention in a wide
variety of diseases, including osteoporosis1 and cancer.2

The marketed drug raloxifene3 (1, Fig. 1) shows potent
binding at both ERa and ERb nuclear receptors, and
combines unique pharmacological and pharmacokinetic
properties. Recently, a large number of programs have
focused on core modifications.4 As part of a discovery
effort to find novel estrogen receptor modulator tem-
plates, the bicyclic ether 25 was identified by high
throughput screening.6

Subsequently, we observed that ether 2 is acid-sensitive
(presumably due to easy formation of a benzylic cation),
which makes it a poor lead template structure for an
orally administered drug. We decided to embark on the
preparation of a simplified bicyclo-[3.3.1]-nonene 3 (Fig.
2), possessing a similar rigid template.
We predicted that the correct relative stereochemistry of
the phenyl and the hydroxymethylene groups should be
trans as in estradiol 4.
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Figure 1. Estrogen receptor modulators.
Figure 2. Stable analogue of bicyclic ether 2.
Figure 3. Proposed synthetic routes to bicyclo-[3.3.1]-nonenes.
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Three synthetic routes to the bicyclic core of 3 were
successively investigated (Fig. 3).
Results and Discussion

The three routes differ by the nature of the bond formed
by trans-annular cyclization. Route A is the shortest,
and relies on a radical cyclization (Fig. 4).
The known diene 57 was reacted with tert-butyl acrylate
to form only cyclohexene 6 and none of the undesired
regioisomer.8 Alkylation of ester 6 with E/Z 1,3-
dibromopropene using standard conditions affords 7 as
a mixture of isomers. This mixture was not separated, as
the E- and Z-vinyl radicals are known to interconvert.
Unfortunately, when we subjected 7 to typical radical
cyclization conditions, only the reduced analogue 8
could be isolated, suggesting an intramolecular hydro-
gen transfer. This route was therefore abandoned.

Route B uses an intramolecular enolate cyclization,
resulting in the formation of a bicyclo-[3.3.1]-nonane
framework (Fig. 5). Bromoolefin 99 was coupled with
stannane 1010 using standard palladium-catalyzed reac-
tion conditions, in moderate to good yield. The use of a
trimethyl stannane instead of a tributyl stannane short-
ened the reaction time and improved the overall yield.
Diene 11 is stable at room temperature, and smoothly
reacts with methyl acrylate in refluxing toluene, to
afford cyclohexenes 12a and 12b in a circa 2:3 ratio.
This mixture, which could not be separated, was
hydrogenated, affording cyclohexane 13 as a mixture of
isomers. The latter was deprotected and then converted
to the corresponding mesylate 15a using a standard
protocol. Alternatively, bromide 15b was also obtained.
Unfortunately, intramolecular cyclization of either
mesylate 15a or bromide 15b using LDA in THF with
or without HMPA did not proceed, as only dimeric
products could be isolated.

Route C was finally investigated, despite the fact that it
is not stereoselective, because it forms the other six-
membered ring as a key step (Fig. 6).

The enolate derived from ester 17 was alkylated with
oxirane, cyclized into a lactone, and reduced with dii-
sobutyl aluminum hydride to afford lactol 18. The latter
Figure 4. Route A: (a) PhCH3, reflux, 38%; (b) LDA, THF, �78 �C to
rt, 38%; (c) Bu3SnH, AIBN, tBuOH.
Figure 5. Route B: (a) Pd2(dba)3, NMP, P(Ph)3, 0 �C to rt, 25%;
(b) methyl acrylate, PhCH3, reflux, 64%; (c) H2, cat Pd/C, EtOH,
47%; (d) TBAF, THF, rt, 96%; (e) MsCl, pyridine, CH2Cl2, rt, 57%;
(f) CBr4, Ph3P, CH2Cl2, rt, 80%.
Figure 6. Route C: (a) LDA, THF, oxirane, BF3–OEt2, �78 to 10 �C,
31%; (b) PTSA, PhCH3, reflux, 20 min, quant; (c) DIBAL-H, THF,
�78 to �15 �C, 43%; (d) TBDPSCl, DMF, cat DBU, imidazole, 0 �C
to rt, 57%; (e) allyltriphenyl phosphonium chloride, KOtBu, THF,
�78 �C to rt, 63%; (f) benzyl acrylate, o-xylene, reflux, 30 h, 75%;
(g) TBAF, THF, rt, 16 h, 62%; (h) MsCl, pyridine, CH2Cl2, 0

�C to rt,
95%; (i) LDA, HMPA, THF, �78 �C to rt, 4%; (j) LAH, THF, 0 �C
to rt, quant; (k) BBr3, CH2Cl2, �80 �C to rt, 35%.
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did not react with allyl-triphenyl phosphonium chloride
under Wittig conditions, and was therefore opened
and protected as the silyl ether 19, which in turn was
converted into diene 20. When diene 20 was sub-
jected to benzyl acrylate in refluxing benzene, a very
complex mixture of isomers was formed, and carried
on in the next three steps (desilylation, mesylation,
and intramolecular cyclization). No attempt was
made to separate these mixtures. We expected to
obtain a mixture of isomeric bicyclo-[3.3.1]-nonanes
and bicyclo-[4.3.0]-nonanes from the key cyclization
step. This, however, did not turn out to be the case,
as the desired cyclization product 24 was the only
monomeric product observed among a mixture of
dimerization products. Furthermore, product 24 could
easily be isolated by flash chromatography, albeit in
very low yield. It can be hypothesized that the relative
success of this cyclization is due to a favorable chair-
like transition state. Ester 24 was converted to our
target molecule 3 by reduction with lithium aluminum
hydride followed by demethylation with boron tri-
bromide. The relative stereochemistry of racemic alco-
hol 3 was established by NMR.11 Bicyclic analogue 3
exhibits a very intriguing in vitro pharmacological
profile (Table 1).

According to our data,12 bicyclic alcohol 3 shows
improved binding to ERb, when compared to our ori-
ginal analogue 2. This may be due to increased
lipophilicity, or possibly an unfavorable interaction of
the methyl group in 2 with the receptor. In addition,
there is an apparent reversal of ERa/ERb selectivity by
3 compared to raloxifene 1.13 Unlike raloxifene, both
analogues 2 and 3 show full agonistic activity in MCF-7
cells14 (pS215 gene induction with bDNA detection).

In conclusion, we have prepared a new estrogen recep-
tor ligand prototype, featuring a novel bicyclo-[3.3.1]-
nonene skeleton, using an 11-step route. While the pre-
paration of our first analogue is not stereoselective and
remains impractical on large scale, the existence of this
new series provides an important starting point to
future studies focusing on estrogen receptor subtype
selectivity, and its impact on pharmacology.
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1H (ppm)
 13C (ppm)
1
 1.88 m
 48.6

2
 2.57 m
 51.8

3a
 1.83 m
 33.3

3b
 1.59 m

4a
 1.97 m
 35.3

4b
 1.25 m

5
 43.7

6a
 1.94 m
 22.0

6b
 1.86 m

7
 5.62 m
 126.1

8
 5.36 m
 128.1

9a
 1.68 m
 29.0

9b
 1.33 m

10
 133.8

11
 7.00 d (J=8.5 Hz)
 127.9

12
 6.66 d (J=8.5 Hz)
 115.0

13
 155.5

14a
 3.27 dd (J=5.5 and 10.5 Hz)
 65.6

14b
 3.20 dd (J=5.5 and 10.5 Hz)

13 OH
 9.13 s

14 OH
 4.56 t (J=5.5 Hz)
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