

ortho-Metalation of Unprotected 3-Bromo and 3-Chlorobenzoic Acids with Hindered **Lithium Dialkylamides**

Frédéric Gohier and Jacques Mortier*

Université du Maine and CNRS, Unité de chimie organique moléculaire et macromoléculaire (UMR 6011), Faculté des sciences, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

jacques.mortier@univ-lemans.fr

Received October 3, 2002

Abstract: Upon treatment of 3-chloro/bromobenzoic acids with hindered lithium dialkylamides (LDA or LTMP) at -50°C, lithium 3-chloro/bromo-2-lithiobenzoates are generated. These dianions can be trapped as such to afford after electrophilic quenching a variety of simple 2-substituted-3chloro/bromobenzoic acids. The 3-bromo-2-lithiobenzoate is less stable than the corresponding 3-chloro derivative and partly eliminates lithium bromide, thus setting free lithium 2,3- and 3,4-dehydrobenzoates that can be intercepted in situ with the hindered base.

The deprotonation of arenes usually requires a strong base such as an alkyllithium and a directing group such as a secondary or tertiary amide, an oxazoline, an α -amino alkoxide, or a carbamate.¹ The resulting aryllithium can react with a variety of electrophiles including alkylating agents, aldehydes, ketones, chloroformates, silvlating agents, and trialkylborates. Amides and oxazolines can serve as latent carboxylic acids in the directed metalation; nevertheless, they require harsh conditions for their hydrolysis.

The best protective group is the one that can be omitted.² The directed ortho-metalation of unprotected benzoic acids can be achieved by treatment with 2.2 equiv of s-BuLi/TMEDA in THF at -90 °C;^{3,4} the resulting dilithiated species easily react with a variety of electrophiles to give the ortho-substituted products. Alternatively, 2,3-disubstituted benzoic acids are readily available by lithiating 1,2-disubstituted compounds, metalation occurring to the more effective directing group-neighboring position.^{5,6}

The use of alkyllithium bases limits group functionality, for example, by not allowing for the presence of a bromine or iodine atom on the arene due to competing

J.; Guesnet J.-L. J. Chem. Soc., Perkin Trans. 1 1995, 1265-1271.

TABLE 1. Deprotonation of 3-Chloro and **3-Bromobenzoic Acids with Hindered Lithium** Dialkylamides^a

ontry	reactant	haso	nb	T	t (b) ^c	2-D (%)	yield	concn (mol/L)
<u> </u>	reactant	base	11	(0)	(11)	(70)	(70)	(IIIOI/L)
1	1	LDA	2.2	-78	0.5 - 8	<30	e	0.15
2	1	LDA	2.2	-50	0.5 - 8	<30	е	0.15
3	1	LDA	4	-50	0.5	37	е	0.15
4	1	LTMP	2.2	-50	4	86	80	0.15
5	1	LTMP	2.2	-50	4	90	79	0.05
6	1	LTMP	3	-50	4	93	62	0.05
7	1	LTMP	3	-60	4	83	69	0.2
8	2	LDA	2.2	-78	2	38	36	0.15
9	2	LDA	2.2	-60	2	42	39	0.15
10	2	LTMP	2.2	-78	1	17	16	0.15
11	2	LTMP	2.2	-60	1	64	47	0.15
12	2	LTMP	2.2	-60	4	72	52	0.15
13	2	LTMP	2.2	-50	1	75	53	0.15
14	2	LTMP	2.2	-50	2	78	37	0.15
15	2	LTMP	3	-50	1	78	37	0.15

^a General procedure. To a stirred solution of LDA or LTMP (n equiv) in anhydrous THF at T°C was added dropwise under argon the recrystallized benzoic acid 1 (6.4 mmol) or 2 (5 mmol) dissolved in dry THF (5 mL). After *t* hours at *T*°C, the mixture was treated with an excess of deuterium oxide (5 equiv). Workup in the usual manner (see the Experimental Section) followed by recrystallization provided the benzoic acids 2D-1 and 2D-2, which were characterized by ¹H and ¹³C NMR. ^b Calculated from the starting benzoic acid (1 or 2). ^c Reaction time of the lithium dialkylamide with the starting acid. ^{*d*} Crude yield. ^{*e*} Not determined.

halogen-metal exchange.7 We record here details of our investigations on the metalation of 3-halobenzoic acids (halo = Cl, Br) by hindered lithium dialkylamides.

We have embarked on a detailed investigation of the deprotonations of 3-chlorobenzoic acid (1) and 3-bromobenzoic acid (2), varying the base, metalation temperature, and exposure times (Table 1). Lithium diisopropylamide (LDA) is not suitable for the generation of lithium 2-lithio-3-chloro and 2-lithio-3-bromobenzoates (2Li-1 and 2Li-2, respectively): deuteriation (deuterium oxide quench) at the position flanked by both substituents does not exceed 42% (entries 1-3, 8, and 9).8 Clean lithiation was achieved with lithium 2,2,6,6-tetramethylpiperidide (LTMP, 2.2 equiv) in THF at -50 °C for a concentration of the reactant of 0.15 mol/L (entries 4 and 13). D₂O trapping (4–10 equiv/–50 °C \rightarrow rt/2 h) provided 2D-1 and 2D-2 in satisfying yields. The ¹H and ¹³C NMR

^{*} Fax: +33 (0) 243 83 39 02.

^{(1) (}a) Snieckus, V. Chem. Rev. 1990, 90, 879-933. (b) Quéguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J. Adv. Heterocycl. Chem. **1991**, 52, 187–304. (c) Schlosser, M. Organometallics in Synthesis. A Manual, 2nd ed.; Wiley: Chichester, 2002.

⁽²⁾ Schlosser, M.; Geneste, H. Tetrahedron 1998, 54, 10119-10124. (2) Schlosser, M.; Geneste, H. *Tetrahedron* 1998, *54*, 10119–10124.
(3) (a) Graneto, M. J.; Phillips, W. G.; Van Sant, K. A.; Walker, D. M.; Wong, S. C. Eur. Pat. 538231, 1992. (b) Bennetau, B.; Cain, P. A. U.S. Pat. 5334753, 1994. (c) Cantegril, R.; Croisat, D.; Desbordes, P.; Guigues, F.; Mortier, J.; Peignier, R.; Vors, J.-P. Wo. Pat. 932287, 1993. (4) (a) Mortier, J.; Moyroud, J.; Bennetau, B.; Cain, P. A. *J. Org. Chem.* 1994, *59*, 4042–4044. (b) Bennetau, B.; Mortier, J.; Moyroud, J.; Chem. L. Chem. Son. Bendin Trans. (J. 1005) 1265–1265.

^{(5) (}a) Moyroud, J.; Guesnet, J.-L.; Bennetau, B.; Mortier, J. *Tetrahedron Lett.* **1995**, *36*, 881–884. (b) Mongin, F.; Schlosser, M. *Tetrahedron Lett.* **1996**, *37*, 6551–6554.

⁽⁶⁾ Reviews: (a) Mortier, J.; Vaultier, M. In Recent Research Developments in Organic Chemistry, Transworld Research Network: Drivanfrum, India, 1998; Vol. 2, pp 269–283. (b) Mortier, J.; Vaultier,
 M. C. R. Acad. Sci. Serie IIC 1998, 1, 465–478. ortho-Metalation directed by the carboxylate group was recently investigated by Quéguiner and Mongin in the pyridine and quinoline series: (c) Mongin, F.; Trécourt, F.; Quéguiner, G. *Tetrahedron Lett.* **1999**, *40*, 5483–5486. (d) Rebstock, A.-S.; Mongin, F.; Trécourt, F.; Quéguiner, G. *Tetrahedron* Lett. **2002**, *43*, 767–769.

⁽⁷⁾ Parham, W. E.; Bradcher, C. K. Acc. Chem. Res. 1982, 15, 300-305.

⁽⁸⁾ LDA deprotonates more effectively 4-bromo-3-fluoro and 4-bromo-3-chlorobenzoic acids. See ref 3b.

data allow assignment of the correct deuterium regiochemistry of the reaction products.⁹ Lower concentrations of the reactant or use of an increasing amount of LTMP did not improve the results (entries 5-7 and 15).

Potential deprotonation pathways were envisioned as shown in Scheme 1. The dianion 2Li-1 is presumably more stable than 2Li-2, which partly decomposed over a period of 2 h at -50 °C (entry 14 vs entry 13). Benzoic acids 1 and 2 react regiospecifically to give 2D-1 and 2D-2 where CO₂Li and the halogen groups completely control the deprotonation site. Analysis of the side-products found in the aqueous layer after acidic workup (HCl, 4 M) was informative. After water removal, appreciable amounts of the anilinium chlorides 5 and 6 were isolated from the reaction of 2 (in 20 and 12% yields, respectively). The two isomers were easily separated by chromatography. Formation of anilines from benzynes is well precedented.^{10,11} Steric encumbrance of the amine was said to lower yields considerably.¹² However, LTMP was recently reported to be a good trap for benzynes.¹³ The sideproduct 6 most reasonably arises by para-addition of LTMP to benzyne 4. Formation of 5 proceeds by addition of LTMP to either 3 or 4. Since 5 and 6 were not

deuterated in these conditions (D₂O quench), 2Li-5, 4Li-5, and/or 3Li-6 are protonated more likely in situ by a hydrogen donor such as 2,2,6,6-tetramethylpiperidine (HTMP). 4D-1 and 4D-2 were not isolated presumably because 4Li-1 and 4Li-2 are less stable than 2Li-1 and 2Li-2, respectively, and rapidly decompose to form benzyne 4. In the case of 2, warming the reaction mixture to ambient temperature prior to the hydrolysis step led to 5 and 6 in 34 and 12% yield, respectively. Below -60 °C, the deprotonation rate is slow and yields are poor (entries 7–12).

The relative stability of unsubstituted *ortho*-halogenated phenyllithiums toward elimination of LiX follows the order LiBr (-100 °C) < LiCl (-90 °C).¹⁴ It is highly dependent on the overall electronic effects induced in the ring by the substituents. Consistently, only traces of **5** and **6** were obtained when **1** was allowed to react at -50°C under the same conditions (3 and 2%, respectively). Benzoates 2Li-**1** and 2Li-**2** are stabilized in these transformations presumably by chelation of lithium with the adjacent carboxylate moiety.¹⁴ The higher temperature required to generate the lithium 2-lithio-3-chlorobenzenecarboxylate aryne precursor as compared to its bromo counterpart probably reflects the poorer leaving group ability of chloride ion vs bromide ion.^{15,16}

According to the optimized conditions noted in Table 1 (entries 4 and 13), benzoic acids 1 and 2 were allowed to react with a variety of electrophiles to give the corresponding *ortho*-substituted benzoic acids **9a**–**d**,**f**–**i** and **10a**–**i** (Table 2). Reaction with iodomethane gave the anticipated result of methylation at the site mutually *ortho* to both substituents. Yields decreased when iodo-

^{(9) 3-}Chloro-2-deuteriobenzoic acid (2D-1). ¹H NMR (400 MHz, CDCl₃) δ TMS: 8.00 (dd, J = 7.9, 1.0 Hz; 1H), 7.59 (dd, J = 7.9, 1.0 Hz; 1H), 7.43 (t, J = 7.9 Hz; 1H). ¹³C NMR (100 MHz, DMSO- d_{θ}) δ : 166.0, 133.2, 132.8, 132.6, 130.5, 128.5 (t, J = 25.8 Hz), 127.8, 3-Bromo-2-deuteriobenzoic acid (2D-2). ¹H NMR (400 MHz, CDCl₃) δ TMS: 8.04 (d, J = 7.9 Hz; 1H), 7.74 (d, J = 7.9 Hz; 1H), 7.36 (t, J = 7.9 Hz; 1H). ¹³C NMR (100 MHz, DMSO- d_{θ}) δ : 170.8, 136.8, 132.9 (t, J = 26 Hz), 131.2, 130.0, 128.8, 122.5.

^{(10) (}a) Hoffmann, R. W. *Dehydrobenzene and Cycloalkynes*; Academic Press: New York, 1967. (b) Wickham, P. P.; Hazen, K. H.; Guo, H.; Jones, G.; Hardee Reuter, K.; Scott, W. J. *J. Org. Chem.* **1991**, *56*, 2045–2050.

^{(11) (}a) Biehl, E. R.; Smith, S. M.; Patrizi, R.; Reeves, P. C. J. Org. Chem. **1972**, 37, 137–138 and references therein. (b) Caubère, P.; Derozier, N. Bull. Soc. Chim. Fr. **1969**, 581–582. (c) Meyers, A. I.; Rieker, W. Tetrahedron Lett. **1982**, 23, 2091–2094.

^{(12) (}a) Dougherty, C. M.; Olofson, R. A. J. Am. Chem. Soc. **1973**, 95, 137–138. (b) Fitzgerald, J. J.; Drysdale, N. E.; Olofson, R. A. J. Org. Chem. **1992**, 57, 7122–7126.

⁽¹³⁾ Tripathy, S.; LeBlanc, R.; Durst, T. Org. Lett. **1999**, *1*, 1973–1975.

⁽¹⁴⁾ Caster, K. C.; Keck, C. G.; Walls, R. D. J. Org. Chem. **2001**, 66, 2932–2936.

⁽¹⁵⁾ Huisgen, R.; Zirngibl, L. Chem. Ber. 1958, 91, 2375.

⁽¹⁶⁾ Reaction of 2-bromobenzoic acid and 3-bromo-4-methoxy-, 3-bromo-4-methyl-, and 3-bromo-4,5-dimethoxybenzoic acids with ary-lacetonitriles in the presence of LDA at -70 °C was recently reported to give predominantly 2-cyanobenzoic acids. The reaction was thought to proceed through a benzyne-3-carboxylate. See: Wang, A.; Maguire, J. A.; Biehl, E. *J. Org. Chem.* **1998**, *63*, 2451–2455.

SCHEME 2

13

14

15

16

17

18

19

20

TABLE 2. Synthesis of 2-Substituted 3-Chloro and3-Bromobenzoic Acids

	H 2.2 ec A THF, 4 h (1 h (uiv L1 50 ° I and 2 and	TMP C 7) 8)	► CO ₂ L	i 1) "EX", _50 2) HCl, 4 <i>M</i>	^{0°C} (.	CO_2H E B	
1,2,7,8			2Li- 1,2,7,8					
1, 9 2, 10 7, 11 8, 12	A = CI, B = H A = Br, B = H A = CI, B = F A = Br, B = F	a b c	E = 1 E = E E = I	Me Et PhCH(OH)	d E = CHO e E = CI f E = Br	g E = I h E = Me ₃ S i E = MeS	ŝi	
entry	reactant	A	в	EX	Е	product	yield (%) ^a	
1	1	Cl	Н	MeI	Me	9a	61	
2	1	Cl	Н	EtI	Et	9b	41 ^b	
3	1	Cl	Н	PhCHO	PhCH(OH)	9c ^c	63	
4	1	Cl	Н	DMF	СНО	$\mathbf{9d}^d$	63	
5	1	Cl	Н	$C_2Br_2Cl_4$	Br	9f	68	
6	1	Cl	Н	I_2	Ι	9g	55	
7	1	Cl	Н	Me ₃ SiCl	Me ₃ Si	9h	75^{e}	
8	1	Cl	Н	Me_2S_2	MeS	9i	69	
9	2	Br	Н	MeI	Me	10a	44	
10	2	Br	Н	EtI	Et	10b	15	
11	2	Br	Н	PhCHO	PhCH(OH)	10c ^f	46	
12	2	Br	н	DMF	CHO	10d <i>g</i>	45	

2 Br H DMF CHO 10d8 45 2 Η C_2Cl_6 43 Br Cl 10e 2 Br н C₂Br₂Cl₄ Br 10f 43 2 Br H 10g 50 I_2 2 10**h** 38 Br Η Me₃SiCl Me₃Si 2 42 10i Br Н Me_2S_2 MeS 7 Cl F MeI Me 11a 71 7 Cl F Me₃SiCl Me₃Si 11h 69 8 Br F MeI Me 12a 53

^{*a*} Recrystallized yield except otherwise noted. ^{*b*} Crude yield. ^{*c*} Product **9c** cyclized into lactone **13c**. ^{*d*} Product **9d** cyclized into hydroxyphthalide **13d**. ^{*e*} LDA was used in this example. ^{*f*} Product **10c** was directly cyclized into lactone **14c**. ^{*g*} Product **10d** was directly cyclized into phthalide **14d**.

ethane was reacted under the same conditions (entries 2 and 10). $^{17}\,$

Clean hydroxyalkylation was achieved with benzaldehyde to give **9c** and **10c**, which were directly transformed into lactones **13c** and **14c** (entries 3 and 11). Condensa-

tion of the dilithio intermediates with DMF followed by acid-catalyzed cyclization gave hydroxyphthalides 13d and 14d via ortho-formyl products 9d and 10d. Quenching with electrophiles such as hexachloroethane, 1,2dibromotetrachloroethane, and iodine led to the corresponding ortho-halogenated benzoic acids (entries 5, 6, and 13–15). Reaction of C_2Cl_6 with 3-bromobenzoic acid gave 2-chloro-3-bromobenzoic acid (10e), albeit in moderate yield (43%). It is worthy of note that previous lithiation methods were inefficient for preparing 10e. Thus, LDA deprotonates *ortho*-bromochlorobenzene (15) randomly at the two halogen-adjacent positions (Scheme 2). Both anions presumably isomerize to the less basic and hence thermodynamically more stable 2-bromo-6chlorophenyllithium, which can be trapped as the acid 16.^{5,18} As established by Schlosser, trace amounts of 1,3dibromo-2-chlorobenzene most probably act as a turntable for a base-catalyzed "halogen dance".¹⁸ The isomeric 2-bromo-3-chlorobenzoic acid 9f was prepared from acid **1** and $C_2Br_2Cl_4$ (entry 5).

Reaction of dibromotetrachloroethane with 2Li-2 provided 2,3-dibromobenzoic acid (**10f**) (entry 14), a compound that was attained with difficulty in the past, by demanding, invariably and classically poorly regioselective electrophilic substitution chemistry.¹⁹ The previously unknown 2-iodo-3-chloro and 2-iodo-3-bromobenzoic acids (**9g** and **10g**) were synthesized from iodine (entries 6, 15).²⁰ Silylation of such systems was cleanly achieved. The smooth and high-yield reaction of chlorotrimethylsilane with **1** affording **9h** is indoubtedly related to the in situ compatibility of TMSCl with lithium dialkyl amides.²¹ The process is less efficient with 2Li-**2** possibly

^{(17) 2-}Ethylated product 10b was prepared in higher yield (76%) by treatment of 10a with LDA (3 equiv, $-50~^\circ\text{C/THF}$) and trapping with iodomethane.

⁽¹⁸⁾ Mongin, F.; Schlosser, M. *Tetrahedron Lett.* **1997**, *38*, 1559–1562 and references therein.

⁽¹⁹⁾ Bunnett, J. F.; Rauhut, M. M.; Knutson, D.; Bussell, G. E. J. Am. Chem. Soc. **1954**, 73, 5755–5756.

⁽²⁰⁾ Fu, J.-M.; Zhao, B.-P.; Sharp, M. J.; Snieckus, V. *J. Org. Chem.* **1991**, *56*, 1683–1685.

^{(21) (}a) Lipshutz, B. H.; Wood, M. R.; Lindsley, C. W. *Tetrahedron Lett.* **1995**, *36*, 4385–4388. (b) Schlosser, M.; Guio, L.; Leroux, F. J. Am. Chem. Soc. **2001**, *123*, 3822–3823.

due to its thermal instability. Addition of dimethyl disulfide to the dilithiated benzoates gave the methylsulfenylated derivatives **9i** and **10i** (entries 8 and 17). A fluorine atom located *meta* to the deprotonation site shows acidifying effects (entries 18–20). Quenching with iodomethane and chlorotrimethylsilane led to the corresponding *ortho*-substituted benzoic acids **11a**, **11h**, and **12a**.

In summary, a general and convenient route to 2-substituted-3-chloro/bromobenzoic acids has been devised using the directed *ortho*-metalation protocol. The fact that this method gives such simple compounds that were previously unknown is a testament to its future potential. The directed *ortho*-metalation tactic of unprotected benzoic acids should see wide utility in the synthesis of aromatic compounds by coupling chemistry, among other things.^{3,22}

Experimental Section

For standard working practice, see recent publications (e.g., refs 1c and 22).

Synthesis of 2-Substituted 3-Chlorobenzoic Acids 9. General Procedure. To a stirred solution of *n*-butyllithium 1.6 M in hexanes (17.5 mL, 28.1 mmol) was added 2,2,6,6-tetramethylpiperidine (4.7 mL, 28.1 mmol) in anhydrous THF (40 mL) at -20 °C under argon. After the mixture was cooled (-50 °C), 3-chlorobenzoic acid **1** (12.8 mmol) in anhydrous THF (10 mL) was added dropwise and the mixture was stirred for 4 h. The mixture was then treated with an excess of the appropriate electrophile (50.4 mmol, 4 equiv). The resulting solution was allowed to warm to ambient temperature, after which water was added. The aqueous layer was washed with diethyl ether, shaken, and then acidified with 4 M HCl. The mixture was diluted with diethyl ether, and the organic layer was separated and dried with MgSO₄. Filtration and concentration in vacuo gave the crude benzoic acids, which were purified by recrystallization for characterization in each case.

Synthesis of 2-Substituted 3-Bromobenzoic Acids 10. General Procedure. To a stirred solution LTMP (21.8 mmol) in anhydrous THF (35 mL) was added dropwise 3-bromobenzoic acid 2 (9.9 mmol) in THF (10 mL) at -50 °C under argon. The mixture was stirred for 1 h and then treated with an excess of the appropriate electrophile (39.6 mmol) in THF (8 mL). Workup in the usual manner followed by recrystallization provided benzoic acids 10a-i.

Acknowledgment. This work was supported by the CNRS, Université du Maine, and Institut universitaire de France.

Supporting Information Available: Details of compound characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

JO026514T

^{(22) (}a) Cantegril, R.; Mortier, J.; Croisat, D.; Peignier, R. Wo. Pat. 9602138, 1996. (b) Cantegril, R.; Croisat, D.; Desbordes, P.; Guigues, F.; Mortier, J.; Peignier, R.; Vors, J.-P. U.S. Pat. 5945382, 1999.