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Abstract—In the course of our studies of the structure–activity relationships of himbacine 1, a potent antagonist of the M2 subtype
of muscarinic receptor, the four title compounds, 2, ent-2, 3, and ent-3, were synthesized with a highly stereoselective intermolecular
Diels–Alder reaction of tetrahydroisobenzofuran 4 with achiral furan-2(5H)-one 5 as a key step, followed by simultaneous optical
resolution and epimer separation of the racemic intermediates. Among these compounds, 3-demethylhimbacine (3-norhimbacine) 2,
bearing an absolute configuration corresponding to that of 1, was found to show more potent muscarinic M2 subtype receptor
binding activity than natural 1.
# 2002 Elsevier Science Ltd. All rights reserved.

Himbacine (1) is a piperidine alkaloid isolated from the
bark of Galbulimima Baccata of the magnolia family1

and shows potent antagonistic activity against muscari-
nic M2 subtype receptors, with 10–20-fold selectivity
toward the M1 subtype (Fig. 1).2 Accordingly, it
appears evident that 1 is the reasonable and attractive
lead compound of a drug for the treatment of Alzheimer’s
disease.3

Recently, we reported the novel total synthesis of 1 by a
method featuring a highly stereoselective intermolecular
Diels–Alder reaction of the furan derivative with chiral
furan-2(5H)-one as a key step.4 The efficiency and
directness of our explored synthetic route were demon-
strated by the successful synthesis of various structural
types of himbacine congeners and by the evaluation of
their structure–activity relationships.5 In the course of
our study of 1 from the viewpoint of medicinal chem-
istry, we next focused on the effects of the lactone ring
moiety, especially that of the C-3 methyl group, of 1 on
the M2 receptor subtype antagonistic activity. Thus, we
designed enantiomeric pairs of 3-demethylhimbacine (3-
norhimbacine) (2 and ent-2) and its C4-epimer (3 and

ent-3) for the purpose of further evaluating the struc-
ture–activity relationships, and in order to explore the
advantages of our explored synthetic scheme. We wish
to report here the successful total synthesis of 2, ent-2, 3,
and ent-3 and their muscarinic M2 subtype receptor
binding activity. Among these compounds, the synthetic
himbacine 2, which bears an absolute configuration
corresponding to that of 1, was found to show more
potent receptor binding activity than natural 1.

According to our reported procedure,4 racemic exo-
methylene compound 7 was prepared from the adduct 6,
which was prepared by a highly stereoselective inter-
molecular Diels–Alder reaction of tetra-
hydroisobenzofuran 4 and commercially available
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Figure 1.
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achiral furan-2(5H)-one 5 (Scheme 1).6 Hydroboration–
oxidation of 7 afforded the carbinol 8 as an inseparable
mixture of 4a, 4b-epimers in a ratio of 2:1, as demon-
strated by 1H NMR analysis. In our previous total
synthesis of 1, the stereoselectivity of the hydrobora-
tion–oxidation reaction was 1:8 (4a:4b).4 This difference
in stereoselectivity may have been due to the steric hin-
drance effects of the C-3 methyl group. Without
separation, the racemic epimeric mixture was directly
converted to the O-4-bromobenzoates 9 in a 99% yield.
The compounds were subjected to simultaneous optical
resolution and epimer separation by means of HPLC,
using CHIRALCEL OD, giving four stereoisomers, 9a–
9d, each of which possessed high optical purity.7 In
order to determine the absolute configurations of these
molecules, X-ray crystal structure analysis of 9a and 9c
was performed.8 Based on the results obtained by X-ray
analysis, it was clearly established that 9a bears an
absolute configuration corresponding to that of 1, and
that 9c is the 4a-epimer of 9a. The absolute configur-
ations of 9a–9d were unambiguously determined, and
are shown in Scheme 1. Accordingly, 9a was trans-
formed into the key intermediate sulfone 11a by a three-
step sequence involving alkaline hydrolysis, conversion
to the phenyl sulfide 10a using (cyanomethyl)-
trimethylphosphonium iodide,9 and mCPBA oxidation
of 10a (Scheme 2). A Julia–Lythgoe coupling reaction of
11a with 124 was quenched with excess benzoyl chloride,
followed by treatment of the resulting diastereomeric
mixture of O-benzoates with 5% Na–Hg in the presence
of Na2HPO4, which gave rise to (E)-olefin 13a in a 61%
combined yield. Then, 13a was sequentially subjected to
oxidation of the hemiacetal moiety, deprotection of the
N-Boc group, and reductive N-methylation, furnishing
210,11 in a 40% combined yield. By the same sequences,
9b (ent-9a), 9c, and 9d (ent-9c) were successfully con-
verted to the corresponding target compounds ent-2, 3,
and ent-3, respectively.10,11 To avoid confusion, the com-
pounds carrying the natural configurations corresponding
to that of 1 are only depicted in Scheme 2.

The four 3-demethylhimbacine (3-norhimbacine) deri-
vatives, 2, ent-2, 3, and ent-3, were then subjected to
receptor binding activity assay against M1 and M2 sub-
type muscarinic receptors (Table 1).12 As was hoped, it
was found that 2 bore an absolute configuration corre-
sponding to that of 1, and showed superior affinity to 1.
However, the other three stereoisomers, ent-2, 3, and
ent-3, exhibited only weak receptor binding activity
compared with that of 1 and 2. These results clearly
demonstrated that the C-3 methyl group on the lactone
ring moiety of 1 is not important for its strong mus-
carinic M2 subtype antagonistic activity. In addition,
the stereochemistry at the C-4 position was shown to
play an important role in eliciting M2 antagonistic
activity, in a manner similar to that played by the
stereochemistry of 1 and its 4-epimer.5

Scheme 2. (a) (Cyanomethyl)trimethylphosphonium iodide, thiophe-
nol, N,N-diisopropylethylamine, MeCN, 80 �C, 2.5 h, 92%; (b)
mCPBA, NaHCO3, CH2Cl2, rt, 1.5 h, 82%; (c) (i) nBuLi, 12, 1,2-
dimethoxyethane, �78�0 �C, 3 h; (ii) benzoyl chloride, �78 �C�rt,
1 h; (iii) 3-(dimethylamino)propylamine, rt, 97% (a mixture of dia-
stereomers); (iv) 5% Na–Hg, Na2HPO4, MeOH, rt, 1 h, 63%; (d)
Jones reagent, acetone, rt, 1.5 h, 58%; (e) trifluoroacetic acid, CH2Cl2,
rt, 0.5 h, 87%; (f) 37% HCHO aq NaBH3CN, CH3CN, rt, 1 h, 80%.

Scheme 1. (a) 5 M LiClO4–Et2O, 4,40-thiobis(6-tert-butyl-m-cresol), rt, 48 h, 49%; (b) ref 4, 18% (eight steps); (c) (i) BH3
.THF, THF, 0 �C�rt, 7 h;

(ii) 10% H2O2, 10% NaOH, 0 �C, 0.5 h, 82%; (d) (i) 4-bromobenzoic acid, SOCl2, 80 �C, 1 h; (ii) 8, Et3N, CH2Cl2, 0 �C�rt, 2 h, 99%; (e) CHIR-
ALCEL OD, C6H14/2-propanol=98:2, 9a: 19%, 9b: 18%, 9c: 30%, 9d: 32%; (f) 10% NaOH, EtOH, rt, 0.5 h, 8a: 100%, ent-8a: 100%, 8c: 100%,
ent-8c: 91%.
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In conclusion, we have succeeded in the synthesis of
four novel himbacine congeners, 3-demethylhimbacines
(3-norhimbacines) (2, ent-2, 3, and ent-3) lacking a
methyl group at the C-3 position on the lactone ring of
1. Among them, 2, which bears an absolute configur-
ation corresponding to that of 1, exhibited more potent
binding activity against the M2 subtype receptor than
did natural himbacine 1. Further investigation of the
pharmacological profile of 2 is therefore in progress.
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Table 1. In vitro binding activity of 3-norhimbacines

Entry Compd �logKi

M1 (cortex) M2 (brainstem)

1 1 7.1 7.9
2 2 7.4 8.1
3 ent-2 6.0 6.1
4 3 6.2 6.4
5 ent-3 6.3 6.4
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