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Abstract—We report the asymmetric synthesis of a direct precursor of the C6�C18 trans-decalin portion of tetrodecamycin
utilising an asymmetric intramolecular Diels–Alder (IMDA) reaction as the key step. © 2003 Elsevier Science Ltd. All rights
reserved.

Tetrodecamycin 1 is a novel �-(�-hydroxyacyl) tetronic
acid based polyketide antibiotic isolated from the cul-
ture broth of Streptomyces nashvillensis in 1994 by
Takeuchi and co-workers.1 It shows distinct activity
against Gram-positive bacteria including methicillin-
resistant Staphylococcus aureus (MRSA) as well as
Bacillus anthracis. The unique ring skeleton and abso-
lute configuration of compound 1 were fully elucidated
by 2D NMR and X-ray crystallography.2 However, no
total synthesis of this interesting antibiotic has been
reported so far.

Our approach to tetrodecamycin 1 is based on key
intermediate 2, which is envisioned to arise from alde-
hyde 3 and 4-methoxy-5-methyl-5H-furan-2-one (4),3

involving disconnections of the tetracyclic structure at
the C2�C6 and the C3�O or C15�O bonds (Scheme 1).
In a recent publication we have disclosed an efficient
approach to the core structure 5 of tetrodecamycin,
starting from 4 and an appropriate aldehyde, which
represents a close model of aldehyde 3 (bold type in
Scheme 1).4

In this letter we report the asymmetric synthesis of key
building block 3, which contains four of the six stereo-
genic centres inherent in the target molecule 1.

Our strategy is founded on: (a) the asymmetric
intramolecular Diels–Alder (IMDA) reaction of trien-

imide 6, where the simultaneous generation of the four
stereogenic centres at C1, C2, C4a and C8a of the
resulting octahydronaphthalene ring skeleton was to be
directed by Evan’s chiral 4-benzyl-2-oxazolidinone aux-
iliary,5 and (b) the stereoselective transformation of
acid 7 into lactone 8, suitably functionalised for conver-
sion into target molecule 3 (Scheme 2).

The synthesis of cyclisation precursor 6 was begun by
Li2CuCl4-catalysed cross coupling6 between the Grig-
nard reagent 10, prepared from 2-(3-bromopropyl)-1,3-
dioxolane,7 and commercially available (2E,4E)-
2,4-hexadien-1-yl acetate (9) to yield (6E,8E)-deca-6,8-
dienal (12)8 after hydrolysis of the corresponding acetal
11 with aqueous acetic acid (61% from 9) (Scheme 3).9

Scheme 1.
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Scheme 2.

ment of a dilute solution of the triene 6 in
dichloromethane with dimethylaluminium chloride (1.4
equiv.) at −30°C for 21 h provided the desired cycload-
duct 14 with high diastereoselectivity [d.s. (endo)�98:2;
�endo :�exo�50:1] and in excellent yield (92%). The
relative configuration of C1, C2, C4a and C8a in 1412

was determined on the basis of the 1H–1H J-coupling
values and NOE studies. The absolute configuration
assigned for 14 was confirmed by X-ray diffraction
analysis of the dibromo derivative 1513 (Fig. 1), which
was obtained in 66% yield from 14 on treatment with
bromine (CH2Cl2, 0°C).

To introduce the missing C1 methyl group by alkyla-
tion of an appropriate enolate, the N-acyloxazolidinone
14 was transformed into the methyl ester 17 (Scheme 4).
Since removal of the chiral auxiliary by hydrolysis with
lithium hydroperoxide (2.0 equiv. LiOH, 8.0 equiv.
H2O2, THF/H2O, 0°C to rt)14 failed, due to competing
endocyclic cleavage of the N-acyloxazolidinone,15 the
cycloadduct 14 was first converted into the thioester 16
by Damon’s lithio mercaptide method16 (96% yield;
92% recovery of the chiral auxiliary). Subsequent
hydrolysis of the thioester 16 led to the acid 7, which
was converted to the methyl ester 17 in 90% overall
yield (�4:1 mixture of diastereomers due to partial
epimerisation in the course of alkaline hydrolysis).

Stereoselective methylation at C1 was achieved by con-
verting the methyl ester 17 first into the corresponding
lithio enolate (1.25 equiv. LDA, THF, −78°C to rt) and

Scheme 3. Reagents and conditions : (a) Li2CuCl4 (cat.), THF,
−20°C (69%); (b) AcOH, H2O, THF, 80°C (88%); (c) LiCl,
i-Pr2NEt, CH3CN, rt (91%); (d) Me2AlCl (1.4 equiv.),
CH2Cl2, −30°C (92%); (e) Br2, CH2Cl2, 0°C (66%).

Scheme 4. Reagents and conditions : (a) PrSLi, PrSH, THF,
0°C (96%); (b) 2 M aq NaOH, MeOH, 120°C; (c) trimethyl-
oxonium tetrafluoroborate, i-Pr2NEt, CH2Cl2, rt (90% from
16); (d) (i) LDA, THF, −78°C to rt; (ii) CH3I, −90°C to rt
(84%); (e) 3 M NaOH aq., MeOH, 125°C (91%); (f) PhSeCl,
CH2Cl2, −78°C to rt; (g) MMPP/SiO2, CH2Cl2, rt (90% from
19); (h) DIBAL, CH2Cl2, −78°C (74%); (i) TBDMSOTf,
i-Pr2NEt, CH2Cl2, 0°C (65%).

Figure 1. ORTEP plot of 15.

Modified Horner–Wadsworth–Emmons reaction10 of
aldehyde 12 with the chiral phosphonate 1311 selectively
led to the triene 6 in 91% yield (E :Z�95:5). With the
chiral triene 6 in hand, asymmetric intramolecular
Diels–Alder (IMDA) reaction was performed following
the reaction conditions reported by Evans.5 Thus treat-
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then by reacting it with methyl iodide (−90°C to rt) to
form 18 as the major isomer of a separable 88:12
mixture of diastereomers in 84% yield. The relative
configuration of 18 was assigned on the basis of NOE
experiments. Thus irradiation of the CH3 group at C1
gave rise to a significant NO effect for 2-H.

Hydrolysis of the methyl ester 18 had to be run under
forced conditions (3 M NaOH aq., MeOH, 125°C, 10
h) to obtain acid 19 in good yield (91%). The stereospe-
cific transformation of the �,�-unsaturated acid 19 into
lactone 8 was achieved by phenylselenolactonisation17

(PhSeCl, CH2Cl2, −78°C to rt, 7d) and subsequent
oxidative removal (MMPP/SiO2, CH2Cl2, rt) of the
phenylselenanyl substituent to establish the crucial
C4�C4a double bond. Thus the unsaturated lactone 8
was obtained in high overall yield (90%). Finally con-
version of 8 into TBDMS-protected �-hydroxy alde-
hyde 3 was accomplished by a two-step protocol. First
lactone 8 was reduced to the corresponding lactol 20
(3.0 equiv. DIBAL, CH2Cl2, −90°C) in 79% yield,
which provided the building block 318 in 65% yield on
treatment with TBDMSOTf (i-Pr2NEt, CH2Cl2, 0°C).19

In conclusion, we have developed an efficient synthetic
pathway to a direct precursor of the C6�C18 trans-
decalin portion of tetrodecamycin (1). Further synthetic
studies toward 1 starting from key building block 3 are
now in progress and will be reported in due course.
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