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Cu-Catalyzed Coupling of Aryl Iodides with Thiols Using 
Carbonyl-Phosphine Oxide Ligands 

WANG Haolong, WAN Boshun* 
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China 

Abstract: A series of carbonyl-phosphine oxide ligands were synthesized from 2-bromophenylaldehyde and used in Cu-catalyzed C–S 
coupling reactions. Aryl iodide and aryl bromide reacted with thiols efficiently upon catalysis under mild reaction conditions and a yield 
of up to 99% was obtained. 
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Sulfide ethers are backbones in a very important class of 
organic compounds that play a significant role in a number of 
chemical, material, and pharmaceutical industries [1–8]. For 
this reason the formation of C–S bonds is a subject of interest in 
organic chemistry. However, the traditional Ullmann-type C–S 
cross-coupling reaction which involves the condensation of 
thiols with aryl halides usually requires harsh conditions such 
as more than stoichiometric amounts of copper salts and 
temperatures above 200 °C. In 1980, Migita and co-workers [9] 
reported a palladium catalyzed C–S cross-coupling of aryl 
halides with thiols to overcome these difficulties and this 
resulted in C–S bond formation receiving plenty of interest. 
Over the past few years, several transition metals such as 
palladium [10,11], nickel [12,13], cobalt [14], and iron [15] 
have been used for this purpose. However, the development of 
traditional Cu-catalyzed Ullmann-type C–S cross-coupling 
reactions is still attractive because of the low price and the 
minor toxicity of copper. 

Over the last few years several Cu-catalyzed processes have 
been developed in which the C–S coupling reaction was ac-
celerated by special ligands such as phosphazene [16], ethylene 
glycol [17,18], neocuproine [19,20], N-methylglycine [21], the 
tripod ligand [22], benzotriazole [23], 1,2-diaminocyclohexane 
[24,25], -ketoester [26], L-proline [27], BINAM [28], cate-
chol violet [29], and -aminophenol [30]. Recently, we de-
veloped an oxime-phosphine oxide ligand [31], which was 
used in Cu-catalyzed C–N and C–S cross-coupling reactions 

and good results were obtained. The phosphine oxide was an 
important functional group in these catalytic processes. To 
develop more efficient phosphine-oxide ligands we synthe-
sized a series of ligands that contain a phosphine-oxide and 
carbonyl groups and these were applied to the Cu-catalyzed 
C–S cross-coupling reaction. Excellent yields of up to 99% 
were observed. 

In the first stage, we synthesized the carbonyl 
phosphine-oxide ligands 1a–1c, as shown in Scheme 1. 
2-Bromophenylaldehyde (2) was used as a starting material to 
synthesize 3 as described by Xu et al. [32], which was reacted 
with the Grignard reagent to synthesize 4. 1a and 1b were 
obtained by the oxidation of 4. 1c was synthesized by the 
oxidation of 6, which was obtained by the reaction of 5 with 
lithium diphenylphosphide. 

To determine the best ligand, the coupling of iodobenzene 
and n-butylthiol was selected as a model reaction (Table 1). It 
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Scheme 1.  Synthesis of the studied ligands. 
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was exciting to find that all carbonyl phosphine-oxide ligands 
were useful for the C–S coupling reaction giving high yields 
and the best result was obtained when using 1b as ligand. 

The reaction was screened using several bases, solvents, and 
Cu sources and the results are summarized in Table 2. 
Preliminary results show that Cs2CO3 was a superior base 
compared with Na2CO3, K2CO3, and K3PO4. The solvent effect 
was then investigated and polar solvents gave better results in 
this reaction while CH3CN was found to be the best solvent. 
The Cu sources were also evaluated and CuBr, CuCl, Cu2O, 
and Cu were found to be inferior to CuI. Therefore, the best 
reaction conditions are CuI/1b/Cs2CO3/CH3CN/80°C. 

With the optimized reaction conditions in hand, various aryl 
iodides and thiols were applied to this reaction to explore its 
scope. As shown in Table 3, both iodides with either an elec-
tron-donating group or an electron-withdrawing group were 

tolerated to give the corresponding thioethers in very high 
yields. Sterically hindered aryl iodides such as 2-methylphenyl 
iodide and 2-hydroxyphenyl iodide readily coupled with 
n-butyl thiol (entries 5 and 6). Aryl iodides bearing an addi-
tional halogen atom in the aryl ring could convert exclusively 
to the desired product without being affected by the chloro or 
fluoro groups (entries 12, 13, and 15). Moreover, the reaction 
showed chemoselectivity for the thiol, for example, C–S cou-
pling was preferred in the presence of amino and hydroxyl 

Table 1  Ligand screening for Cu catalyzed C–S cross-coupling 
I

n-BuSH+

S n-Bu

CuI/Ligand

Cs2CO3/CH3CN
 

Entry Ligand Yielda (%) 
1 1a 89 
2 1b 92 
3 1c 91 

Reaction conditions: 0.5 mmol iodobenzene, 0.6 mmol n-butyl thiol, 0.05 
mmol Cu catalyst, 0.05 mmol ligand, 2 mmol base, 80 oC, 12 h.  
aGC yield using n-dodecane as the internal standard. 

Table 2  Effect of Cu source, bases, and solvents 

I

n-BuSH+

S
[Cu]/1c

Base/Solvent

n-Bu

 
Entry [Cu source] Solvent Base Yielda (%)

 1 CuI CH3CN Cs2CO3 92 
 2 CuI CH3CN Na2CO3 — 
 3 CuI CH3CN K2CO3 37 
 4 CuI CH3CN K3PO4 63 
 5 CuI DMF Cs2CO3 72 
 6 CuI DMSO Cs2CO3 69 
 7 CuI toluene Cs2CO3 3 
 8 CuBr CH3CN Cs2CO3 87 
 9 CuCl CH3CN Cs2CO3 87 
10 Cu CH3CN Cs2CO3 84 
11 Cu2O CH3CN Cs2CO3 91 

Reaction conditions: 0.5 mmol iodobenzene, 0.6 mmol n-butyl thiol, 0.05 
mmol Cu catalyst, 0.05 mmol ligand 1b, 2 mmol base 80 oC, 12 h. 

Table 3  Coupling of aryl iodides with thiols 
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Entry Aryl iodide Thiol Product 
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(%)
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groups (entries 3 and 6). 
The reactivity of aryl bromides was also evaluated (Table 3, 

entries 19 and 20), and aryl bromides with elec-
tron-withdrawing groups afforded the products in good yields 
whereas no reaction took place when electron-donating aryl 
bromides were used. 

In summary, a series of carbonyl phosphine-oxide ligands 
1a–1c was synthesized and used in the Cu-catalyzed coupling 
reaction of aryl iodides with thiols in good to excellent yields. 
Further studies to extend the application of this method to 
other catalytic reactions are currently under way. 
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