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Synthesis of 4-hydroxy-2-oxazolidinone derivatives was ac-
complished from the reaction of α-hydroxy ketones with iso-
cyanates in the presence of a catalytic amount of a tin alk-

Introduction

2-Oxazolidinones[1] are important heterocyclic com-
pounds that are useful as intermediates in organic synthesis
and as biologically active compounds.[2] The reaction of α-
hydroxy ketones with isocyanates to give 2-oxazolidi-
nonones is highly atom economical. Recently, reactions un-
der microwave irradiation have been reported by Tamariz
et al.,[3] in which exo-methylene-type oxazolidinones were
produced. We present here the tin-catalyzed reaction of α-
hydroxy ketones with isocyanates under mild conditions to
produce 4-hydroxy-2-oxazolidinones. In the catalytic reac-
tion, the nucleophilic Sn–O and Sn–N bonds work very well
as active catalytic species.[4]

Results and Discussion

Initially, the reaction involving acetoin (1a) and n-butyl
isocyanate was examined, as shown in Table 1. Without a
catalyst, no reaction proceeded at 80 °C for 3 h (Table 1,
Entry 1). In the presence of the tin catalyst (10 mol-%), 4-
hydroxy-4-methyl-1,3-oxazolidin-2-one (2a) was obtained
(Table 1, Entries 2–4). Although heating conditions caused
effective reactions, microwave irradiation also gave desired
2a in only 5 min (Table 1, Entries 5 and 6). THF solvent
was also useful (Table 1, Entry 7).

Next, the reactions were performed by using various α-
hydroxy ketones 1 and isocyanates and were catalyzed by
Bu2Sn(OMe)2 under microwave irradiation (Table 2). In the
reaction of 1a, 4-hydroxy-1,3-oxazolidin-2-one (2b) was ob-
tained (Table 2, Entry 2). Thus, aliphatic and aromatic iso-
cyanates were applicable. Secondary alcohol 1b also reacted
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oxide. The reactions proceeded under mild conditions and
are highly atom economical.

Table 1. Effects of catalysts.[a]

Entry Catalyst Conditions Yield / %

1 none 80 °C, 3 h trace
2 Bu2Sn=O 80 °C, 3 h 62
3 Bu3SnOMe 80 °C, 3 h 68
4 Bu2Sn(OMe)2 80 °C, 3 h 72
5 Bu3SnOMe MW, 110 °C, 5 min[b] 81
6 Bu2Sn(OMe)2 MW, 110 °C, 5 min[b] 87
7 Bu2Sn(OMe)2 MW, 110 °C, 5 min[b,c] 61

[a] The reaction was carried out with 1a (1 mmol), BuN=C=O
(1 mmol), and the catalyst (0.1 mmol) in MeCN (1 mL). [b] 30 W.
[c] THF (1 mL) was used as the solvent.

with isocyanate to give the corresponding oxazolidinones
2c–2e, in which trans-dimethyl-substituted ones predomi-
nated (Table 2, Entries 3–5). Sterically hindered tertiary
alcohol 1c was also reactive under the conditions and gave
tetrasubstituted oxazolidinone 2f (Table 2, Entry 6). Thus,
from these reactions, products possessing labile α-aminal
functionalities were obtained. In almost cases, the desired
products were obtained in only 5 min.

A plausible catalytic cycle is described in Scheme 1. The
Sn–O and Sn–N bonds bear high nucleophilicity.[5] Initially,
tin methoxide reacts with α-hydroxy ketone 1 to give α-stan-
noxy ketone A. The Sn–O bond of A adds to an isocyanate
to form stannyl carbamate B.[6] The resulting Sn–N bond
adds to the remaining carbonyl moiety intramolecularly.
The Sn–O bond of cyclized product C reacts with starting
α-hydroxy ketone 1. As a result, 4-hydroxy-4-methyl-1,3-ox-
azolidin-2-one (2) is obtained with the regeneration of cata-
lytic species A.[7]

When benzoin (3) was used as a starting material, trans-
4,5-diphenyl-substituted oxazolidinone 4 was obtained un-
der heating conditions in 76% yield with high diastereo-
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Table 2. Reaction with α-hydroxy ketones 1 and isocyanates.[a]

[a] The reaction was carried out with 1 (1 mmol), BuN=C=O
(1 mmol), and Bu2Sn(OMe)2 (0.1 mmol) in MeCN (1 mL).
[b] Major stereoisomer was confirmed by X-ray crystallography.[8]

Scheme 1. Plausible cyclization mechanism.

selectivity (Scheme 2). The stereochemistry of the main
product was determined by X-ray crystallography.[8] This
high diastereoselectivity can be explained in terms of the
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steric repulsion between the two phenyl groups in the cycli-
zation step and further by the formation of the thermody-
namically stable 4,5-diphenyl-substituted structure.

Scheme 2. Reaction with the use of benzoin (3).

When an excess amount of isocyanate was treated with
3, a cyclized product involving internal tetrasubstituted alk-
ene 5 was obtained selectively (Scheme 3). This is because
of β-elimination from aminal product 4.[9]

Scheme 3. Reaction with the use of benzoin (3).

The reaction using allyldiphenyl-substituted substrate 6
afforded product 7. In contrast to the formation of 4, the
4,5-diphenyl substituents were oriented cis in product 7
(Scheme 4). The stereochemistry of 7 was determined by an
NOE study. This stereoselective reaction is explained in
terms of steric repulsion between the allyl and vic-phenyl
group in the cyclization step.[10]

Scheme 4. Reaction with the use of allyl-substituted benzoin 6.

The reaction of methyldiphenyl-substituted 8 proceeded
effectively under MW irradiation, and cis-4,5-diphenyl-sub-
stituted product 9 was also obtained (Scheme 5).[8]
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Scheme 5. Reaction with the use of methyl-substituted benzoin 8.

In contrast to the reaction for diphenyl-substituted sub-
strates 3, 6, and 8 (Schemes 2, 4, and 5), the diastereoselec-
tivity of the reaction by using dimethyl-substituted sub-
strate 1b was dependent on the conditions (Table 3). Thus,
under microwave irradiation in polar solvent (Table 2, En-
try 3) or heating conditions (Table 3, Entry 1), trans-di-
methyl-substituted oxazolidinone 2c-trans was obtained
predominantly. On the other hand, heating for a short time
in THF (Table 3, Entry 2) afforded cis-4,5-dimethyl-substi-
tuted isomer 2c-cis as a major product. Prolonged reaction
time increased the ratio of 2c-trans (Table 3, Entry 3). Thus,
it was assumed that a reversible reaction occurred in the
reaction of 1b (Scheme 6).[11] At the initial stage, 2c-cis is
formed as a kinetically controlled product. Heating condi-
tions or prolonged reaction time results in the formation of
thermodynamically stable 2c-trans.[12]

Table 3. Effect of the conditions in the reaction of 1b.[a]

Entry Conditions Yield / % Ratio trans/cis

1 MeCN, 80 °C, 3 h 81 76:24
2 THF, 60 °C, 15 min 87 8:92
3 THF, 60 °C, 60 min 89 26:74

[a] The reaction was carried out with 1b (1 mmol), BuN=C=O
(1 mmol), and Bu2Sn(OMe)2 (0.1 mmol), in solvent (1 mL).

Scheme 6. Reversible reaction of acetoin 1b.

Other than isocyanates, isothiocyanate (RN=C=S) could
be used as an electrophile (Scheme 7). The addition oc-
curred across the C=N group of the isothiocyanate.[13]

Thus, oxazolidin-2-thione 10 was obtained selectively. Sim-
ilar to the case of isocyanates, the α-aminal moiety was in-
volved.
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Scheme 7. Reaction with isothiocyanate.

Conclusions

In summary, various nitrogen heterocyclic compounds
were obtained from α-hydroxy ketones 1. The advantage of
the presented reactions is that they are highly atom eco-
nomical where no side product was obtained at all.

Experimental Section
Representative Procedure for the Preparation of 2-Oxazolidinones
under Heating: A 10-mL round-bottomed flask was flame dried
under reduced pressure. Under an atmosphere of nitrogen, Bu2-
Sn(OMe)2 (0.0295 g, 0.1 mmol), MeCN (1.0 mL), α-hydroxy
ketone 1 (1.0 mmol), and the isocyanate (1.0 mmol) were added.
The mixture was heated at reflux (80 °C) and stirred for 3 h. The
reaction was quenched with H2O (0.5 mL), and the layers were
quickly separated. The aqueous phase was further extracted with
diethyl ether, and the combined extracts were dried with sodium
sulfate and concentrated. The crude product was then purified by
flash column chromatography (hexane/EtOAc, 9:1 to 3:7). The de-
sired product was obtained with an eluent mixture of hexane/
EtOAc = 7:3.

Representative Procedure for the Preparation of 2-Oxazolidinones
under Microwave Irradiation: A 5-mL vial was flame dried under
reduced pressure. Under an atmosphere of nitrogen, Bu2Sn-
(OMe)2 (0.0295 g, 0.1 mmol), MeCN (1.0 mL), α-hydroxy ketone 1
(1.0 mmol), and the isocyanate (1.0 mmol) were added. The vial
was sealed with a septum and was set in the microwave reactor.
The mixture was stirred under microwave irradiation at 30 W for
5 min. The reaction temperature was measured by an IR sensor.
A representative temperature profile is shown in the Supporting
Information. After the reaction, the mixture was quenched with
H2O (0.5 mL), and the layers were quickly separated. The aqueous
phase was further extracted with diethyl ether, and the combined
extracts were dried with sodium sulfate and concentrated. The
crude product was then purified by flash column chromatography
(hexane/EtOAc, 9:1 to 3:7). The desired product was obtained with
an eluent mixture of hexane/EtOAc = 7:3.

Recrystallization of 2e, 4, and 9 was performed from hexane with
the addition of a small amount of Et2O.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental and characterization data of all new compounds.
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