An Approach to *exo*-Enol Ether – Cyclic Ketal Structures Found in Marine Cembranoids, Based on Silver-Assisted Cyclisations of Enynone Precursors

Gerald Pattenden,* Johan M. Winne

School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK Fax +44(115)9513535; E-mail: gp@nottingham.co.uk Received 17 November 2011

Abstract: Treatment of a solution of the (*E*)-enynone **17** in methanol with $AgNO_3$ leads to cyclisation and isolation of the substituted furan **25** in >95% yield, rather than the anticipated *exo*-enol ether-cyclic ketal structure **24**. By contrast, a similar Ag-mediated cyclisation of the related substituted enynone **20** led to the *exo*-enol ether-cyclic ketal structure **28** (50%) alongside the substituted furan **29** (45%). The outcomes of these silver-assisted enynone cyclisations are compared and contrasted with earlier studies with acid-catalysed reactions of furanoepoxides, for example **7**, which also lead to *exo*-enol ether-cyclic ketals, viz. **1**, and to substituted furanmethanol products, that is, **10**.

Key words: enols, enynes, acetals, cyclisation, natural products

The interesting and unusual *exo*-enol ether–cyclic ketal structural unit **1** is present in a number of cembranoid metabolites, for example **2**, **3**, and **4**, isolated from corals of the genus *Sinularia*.¹ In these corals the metabolites **2**–**4** are frequently found alongside furanmethanol and furanoepoxide – containing cembranoids, such as **5** and **6**, respectively (Figure 1).²

In earlier publications we have suggested that the structural unit 1 found in the metabolites 2–4, most likely has its origin in furan-containing congeners akin to 5 and 6, involving acid-catalysed displacement reactions of their oxy centres at C7 (cembranoid numbering) followed by quenching the furanoxonium ion intermediates produced in this manner with methanol (cf. structures 7, 8, and 9 in Scheme 1).² Using the epoxide 7 ($R^2 = R^3 = Me$) as a model, we indeed found that its treatment with PTSA– MeOH led to the enol ether–cyclic ketal 1 ($R^2 = R^3 = Me$). Unfortunately, however, the structure 1 was unstable and became rapidly isomerised under the reaction conditions to its furanmethanol methyl ether positional isomer 10 ($R^2 = R^3 = Me$, Scheme 1).³

In this paper, we have examined an alternative perspective on the relationship between the enol ether–cyclic ketal, furanmethanol, and furanoepoxide structural units in the metabolites **2–6**, surmising that the furanoxonium ion intermediate **9** in Scheme 1 could be formed instead from electrophilic activation of an acetylenic ketone precursor, viz. **13**.⁴ This acetylenic ketone **13** is related to the vinyl carbocation species **14** and also to enedione compounds, viz. **12**, which can be produced in vivo by sequential oxi-

SYNLETT 2012, 23, 723–726 Advanced online publication: 24.02.2012 DOI: 10.1055/s-0031-1290363; Art ID: D68211ST © Georg Thieme Verlag Stuttgart · New York

Figure 1 Structures of enol ether–cyclic ketal metabolites and their congeners in *Sinularia*

Scheme 1 Acid-catalyzed transformations of epoxyfurans to enol ether–cyclic ketals and furanmethanol derivatives

Scheme 2 Proposed mode of cyclisation of (*E*)-enynones to enol ether–cyclic ketals

dative cleavage and hydrolysis of alkenylfuran-containing precursors, that is, **11** (Scheme 2).²

To examine the feasibility of the synthesis of *exo*-enol ether–cyclic ketals, viz. **1**, from electrophilic activation of acetylenic ketones of constitution **13**, we synthesised the substrates **17** and **20**. The substituted (*E*)-enynone **17** was smoothly prepared from the known methyl ketone **15**⁵ following: i) addition of the bisanion of propargyl alcohol and separation of the diastereoisomer **16a** of the resulting *tert*-alcohol by chromatography; ii) oxidation of **16a** to the corresponding aldehyde **16b**, using MnO₂ in CH₂Cl₂,⁶ and iii) a Knoevenagel condensation between **16b** and ethyl acetoacetate in the presence of piperidine–acetic ac-

Scheme 3 Synthesis of the substituted (*E*)-enynones 17 and 20. *Reagents and conditions*: i, HOCH₂CCH, BuLi, THF, -40 °C to r.t., 37% (16a) + 31% (18); ii, MnO₂, CH₂Cl₂, 25 °C, 69% (16b), 65% (19b); iii, MeCOCH₂CO₂Et, piperidine, AcOH, THF, 25 °C, chromatographic separation of *E*-isomers, 30% (17), 21% (20); iv, ArCH(OMe)₂, CSA, CH₂Cl₂, 0–25 °C, 78% (Ar = 4-MeOC₆H₄).

LETTER

id, followed by separation of **17** from its Z-isomer formed concurrently by chromatography (Scheme 3).^{6,7} The *p*methoxy-benzylidene acetal **20**, corresponding to **17**, was synthesised starting from the diastereoisomer **18** of **16a**, which, by straightforward treatment with *p*-methoxybenzaldehyde dimethylacetal in the presence of camphorsulfonic acid, first gave **19a**. Oxidation of **19a** with MnO₂ and a Knoevenagel condensation of the resulting aldehyde **19b** with ethyl acetoacetate, followed by chromatography, then gave the benzylidene acetal substituted (*E*)enynone **20**.⁸

A number of electrophilic reagents have been used to activate acetylene-containing compounds as a prelude to their capture and cyclisation with proximal oxy functionalities.9 We were attracted to examining the cyclisations of the (E)-envnone compounds 17 and 20 in the presence of Ag(I) in the form of silver nitrate. Thus, when a solution of the (E)-envnone 17 in dry methanol was stirred in the presence of anhydrous AgNO₃ for five minutes, workup and chromatography gave a single cyclic product, containing an incorporated OMe substituent, in almost quantitative yield. The spectroscopic data for the new compound, however, were not consistent for those of the expected *exo*-enol ether–cyclic ketal product 24. Instead, the spectroscopic data correlated with the furan structure 25 where the incorporated OMe substituent forms part of a different enol ether unit (Scheme 4).¹⁰ The structure **25**, which was produced as a 3:2 mixture of Z- and E-isomers, is most likely derived from the enynone 17 via initial formation of the oxonium ion intermediate 21. Addition of methanol to 21 would be expected to next lead to the equilibrating silver-bound intermediates 22 and 23. Protonation of the sp² carbon-to-silver bond in **22** would then lead to the enol ether-cyclic ketal 24, whereas protonation of the tertiary alcohol centre in 23 accompanied by elimination would give the substituted furan 25. Presumably the elimination reaction from 23 is much faster than the protonation of 22, which explains why the substituted furan 25 is produced exclusively and at the expense of 24. In support of the foregoing proposal, treatment of the enynone 20 containing a benzylidene acetal unit at C7 (cf. 17) with silver nitrate gave the anticipated exo-enol ethercyclic ketal structure 28 alongside the furan structure 29 related to 25 (Scheme 5).¹¹ We presume that in this conversion, elimination from the silver-bound intermediate 27 (cf. 23) producing 29 is retarded by the bulky benzylidene acetal substituent, thereby allowing the accumulation of the enol ether-cyclic ketal 28 from the equilibrating silver complex 26. This rationale is also in accord with the observation that the cyclisation of 17 to 25 is complete within minutes, whereas the cyclisation of **20** to 28/29 takes more than 12 hours.

In conclusion, we have shown that solutions of appropriately functionalised (*E*)-enynones in methanol undergo cyclisation in the presence of AgNO₃ leading to enol ether–cyclic ketal structures, for example **28**, similar to those present in cembranoids metabolites isolated from corals, cf. **2**, **3**, and **4**.⁴ This investigation therefore com-

Scheme 5 Formation of the *exo*-enol ether–cyclic ketal **28** from Ag(I)-assisted cyclisation of the (*E*)-enynone **20** (Ar = 4-MeOC₆H₄)

plements earlier work where the same *exo*-enol ethercyclic ketal structures were derived from acid-catalysed reactions with furanoepoxides (Scheme 1).¹ However, these studies, taken together, highlight the sensitivity of the same *exo*-enol ether-cyclic ketal structures in vitro and their propensity for rearrangement and isomerisation to their more stable furan positional isomers, cf. structures 1 and 10, 24 and 25, also 28 and 29.

Acknowledgment

We thank the EPSRC for funding to support Johan Winne.

References and Notes

- (a) Kamel, H. N.; Ferreira, D.; Garcia-Fernandez, L. F.; Slattery, M. J. Nat. Prod. 2007, 70, 1223.
 (b) Venkateswarlu, Y.; Sridevi, K. V.; Rama Rao, M. J. Nat. Prod. 1999, 62, 756. (c) Epifánio, R. de A.; Maria, L. F.; Fenical, W. J. Braz. Chem. Soc. 2000, 11, 584. (d) Sánchez, M. C.; Ortega, M. J.; Zubia, E.; Carballo, J. L. J. Nat. Prod. 2006, 69, 1749. (e) Grote, D.; Dahse, H.-M.; Seifert, K. Chem. Biodiversity 2008, 5, 2449.
- (2) For a recent summary, and speculations on these biosynthetic interrelationships, see: Yi, L.; Pattenden, G. *Nat. Prod. Rep.* 2011, 28, 1269.
- (3) Yi, L.; Pattenden, G.; Rogers, J. *Tetrahedron Lett.* **2010**, *51*, 1280.
- (4) Related *exo*-enol ether spiroketal metabolites have been isolated alongside polyacetylenic compounds, from compositae, and it is believed that the two families are related biosynthetically, see: Bohlmann, F.; Burkhardt, T.; Zdero, C. *Naturally Occurring Acetylenes*; Academic Press: London/New York, **1973**.
- (5) (a) Saito, S.; Hasegawa, T.; Inaba, N.; Nishida, R.; Fujii, T.; Nomizu, S.; Muriwake, T. *Chem. Lett.* **1984**, 1389.
 (b) Doroh, B.; Sulikowski, G. A. *Org. Lett.* **2006**, *8*, 903.
- (6) (a) Pattenden, G.; Winne, J. M. *Tetrahedron Lett.* 2009, 50, 7310. (b) Pattenden, G.; Winne, J. M. *Tetrahedron Lett.* 2010, *51*, 5044.
- (7) Aldehyde 16b

¹H NMR (270 MHz, CDCl₃): $\delta = 1.35$ [3 H, s, CH₃C(OR)₂CH₃], 1.41 [3H, s, CH₃C(OR)₂CH₃], 1.61 (3 H, s, CH₃COH), 1.96 [1 H, d(AB)d, J = 14.1, 5.5 Hz, CH(OR)CHHC], 2.15 [1 H, d(AB)d, J = 14.1, 7.2 Hz, CH(OR)CHHC], 3.47 [1 H,(br) s, OH], 3.64 (1 H, dd, J = 8.2, 7.0 Hz, CHHOR], 4.14 [1 H, dd, J = 8.2, 6.0 Hz, CHHOR], 4.38 [1 H, (app. t)(app. t), J = 7.2, 7.0, 6.0, 5.5 Hz, CH(OR)], 9.22 (1 H, s, CHO). ¹³C NMR (67 MHz, CDCl₃): $\delta = 25.8$ (CH₃), 26.8 (CH₃), 29.5 (CH₃), 45.3 (CH₂), 67.0 (C), 69.9 (CH₂), 72.9 (CH), 81.2 (C), 98.8 (C), 109.3 (C), 176.8 (CH).

(E)-Enynone 17

¹H NMR (400 MHz, CDCl₃): $\delta = 1.31$ (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 1.37 [3 H, s, CH₃C(OR)₂CH₃], 1.42 [3 H, s, CH₃C(OR)₂CH₃], 1.60 (3 H, s, CH₃COH), 1.96 [1 H, d(AB)d, J = 14.1, 5.5 Hz, CH(OR)CHH], 2.13 [1 H, d(AB)d, J = 14.1, 7.0 Hz, CH(OR)CHH], 2.44 (3 H, s, CH₃CO), 2.96 [1 H,(br) s, OH), 3.65 (1 H, dd, J = 8.2, 7.5 Hz, CHHOR], 4.14 (1 H, dd, J = 8.2, 6.0 Hz, CHHOR), 4.27 [2 H, q, J = 7.1Hz, CO₂CH₂CH₃], 4.40–4.32 [1 H, m, CH(OR)], 6.80 (1 H, s, C=CH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$ (CH₃), 25.8 (CH₃), 26.8 (CH₃), 29.9 (CH₃), 30.4 (CH₃), 45.4 (CH₂), 61.8 (CH₂), 67.5 (C), 69.9 (CH₂), 73.1 (CH), 79.0 (C), 108.2 (C), 109.1 (C), 122.5 (CH), 143.0 (C), 163.7 (C), 198.5 (C). ESI-MS: m/z calcd for C₁₇H₂₄O₆Na⁺: 347.1465; found: 347.1472 [MNa⁺]

- (8) (*E*)-Enynone 20
 - ¹H NMR (400 MHz, CDCl₃): $\delta = 1.32$ (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 1.62 (3 H, s, CH₃COR), 1.73 [1 H, d(AB)d, J = 13.1, 2.4 Hz, CH(OR)CH^{eq}H], 1.85 [1 H, d(AB)d, J =13.1, 11.8 Hz, CH(OR)CHH^{ex}], 2.03 [1 H,(br) s, OH], 2.45 (3 H, s, CH₃CO), 3.63 [1 H, d(AB)d(br), J = 11.9, 5.8 Hz, CHCHHOH], 3.74 [1 H, d(AB)(app. t)(br), J = 11.9, 5.8 Hz, CHCHHOH], 3.80 [3 H,(br) s, CH₃OAr), 4.17–4.24 [1 H, m, CH(OR)], 4.30 (2 H, q, J = 7.1 Hz, CO₂CH₂CH₃), 5.93 [1 H, s, ArCH(OR)₂], 6.84 (1 H, s, C=CH), 6.90 [2 H, d(AA'XX '), J = 8.7 Hz, ArH), 7.46 [2 H, d(AA'XX '), J =8.7 Hz, ArH]. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.2$ (CH₃), 29.3 (CH₃), 30.4 (CH₃), 38.2 (CH₂), 55.3 (CH₂), 61.9 (CH₃), 65.3 (CH₂), 70.8 (C), 74.6 (CH), 82.5 (C), 97.4 (CH), 106.0

- (C), 113.7 (2 CH), 122.3 (CH), 127.8 (2 CH), 130.5 (C), 143.0 (C), 160.2 (C), 165.3 (C), 193.6 (C). ESI-MS: m/z calcd for $C_{22}H_{26}O_7Na^+$: 425.1571; found: 425.1566 [MNa⁺].
- (9) For a recent study with 1-alkynyl-2-carbonyl quinoline substrates, see: Godet, T.; Vaxelaine, C.; Michel, C.; Milet, A.; Belmont, P. *Chem. Eur. J.* 2007, *13*, 5632; and references cited therein.

(10) Substituted Furan 25

Isolated as a ca. 3:2 mixture of E/Z-isomers. ¹H NMR (400 MHz, CDCl₃): δ [major isomer (integrating for 60%)] = 1.35 [3 H, s, $CH_3C(OR)_2CH_3$], 1.35 (3 H, t, J =7.1 Hz, CO₂CH₂CH₃], 1.44 [3 H, s, CH₃C(OR)₂CH₃], 1.87 (3 H, s, CH₃C=C), 2.58–2.43 [2 H, m, CH(OR)CH₂], 2.60 (3 H, s, FurCH₃), 3.46 (3 H, s, CH₃O), 3.65 (1 H, app. t, *J* = 8.1, ca. 7 Hz, CHHOR), 4.05 (1 H, dd, J = 8.1, 6.0 Hz, CHHOR), 4.20–4.26 [1 H, m, CH(OR)], 4.29 (2 H, q, J = 7.1 Hz, $CO_2CH_2CH_3$), 6.60 (1 H, s, FurH); δ [minor isomer (integrating for 40%)] = 1.34 (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 1.35 [3 H, s, CH₃C(OR)₂CH₃], 1.41 [3 H, s, CH₃C(OR)₂CH₃], 1.87 (3 H, s, CH₃C=C), 2.58–2.43 [2 H, m, CH(OR)CH₂], 2.59 (3 H, s, FurCH₃), 3.47 (3 H, s, CH₃O), 3.53 (1 H, app. t, J = 8.1, ca. 7 Hz, CHHOR), 4.01 (1 H, dd, J = 8.1, 6.0 Hz, CHHOR), 4.20–4.26 [1 H, m, CH(OR)], 4.29 $(2 \text{ H}, q, J = 7.1 \text{ Hz}, \text{CO}_2\text{CH}_2\text{CH}_3), 6.69 (1 \text{ H}, \text{s}, \text{FurH}).$ ¹³C NMR (HMQC-HMBC, 400 MHz, CDCl₃): δ (major isomer) = 13.9 (CH₃), 14.4 (CH₃), 18.0 (CH₃), 25.7 (CH₃), 26.9 (CH₃), 35.9 (CH₂), 58.5 (CH₃), 60.1 (CH₂), 69.5 (CH₂), 74.9 (CH), 108.7 (C), 111.4 (CH), 114.4 (C), 120.0 (C), 141.8 (C), 146.7 (C), 158.4 (C), 163.9 (C); δ (minor isomer) = 13.9 (CH₃), 14.4 (CH₃), 16.2 (CH₃), 25.7 (CH₃), 26.8 (CH₃), 36.6 (CH₂), 58.3 (CH₃), 60.1 (CH₂), 69.1 (CH₂), 74.9 (CH), 108.9 (C), 111.1 (CH), 114.4 (C), 120.5 (C), 142.3 (C), 146.6 (C), 158.7 (C), 163.9 (C). ESI-MS: *m/z* calcd for C₁₈H₂₆O₆Na⁺: 361.1622; found: 361.1618 [MNa+].

(11) Enol Ether Cyclic Ketal 28

Isolated as a 1:1 mixture of ketal epimers. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.33$ (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 1.48 [3 H, s, CH₃C(OR)], 1.671 and 1.674 [1 H, 2 × ddd, J = 13.1, 11.9, 1.3 Hz, CH(OR)CH^{ax}H], 1.73 and 1.74 [3 H, 2 × s, CH₃C(OCH₃)], 1.99 [1 H,(br) dd, J = 7.7, 5.3 Hz, OH], 2.33 and 2.39 [1 H, 2 × dd, J = 13.1, 2.1 Hz, CH(OR)CHH^{eq}], 3.13 and 3.16 (3 H, 2 × s, CH₃OCOR), 3.61–3.73 (2 H, m, CH₂OH), 3.80 (3 H, s, CH₃OAr), 3.96– 4.03 [1 H, m, CH(OR)CH₂OH], 4.29 (2 H, q, J = 7.1 Hz, CO₂CH₂CH₃), 4.89 and 4.91 [1 H, 2 × d, J = 1.3 Hz, CH=C(OR)], 5.72 and 5.73 [1 H, 2 × s, ArCH(OR)₂], 6.90 [2 H, d(AA'XX '), J = 8.6 Hz, ArH], 7.02 and 7.03 (1 H, 2 × s, CH=CCO₂R), 7.44 [2 H, d(AA'XX '), J = 8.6 Hz, ArH].

¹³C NMR + HMQC (400 MHz, CDCl₃): δ = 14.2 (CH₃, 1.33), 24.4 and 24.6 (CH₃, 1.73 and 1.74), 29.3 (CH₃, 1.48), 36.0 (CH₂, 1.67, 1.73, 1.74), 50.57 and 50.62 (CH₃, 3.13 and 3.16), 55.3 (CH₃, 3.80), 61.0 (CH₂, 4.29), 65.9 (CH₂, 3.61-3.73), 75.08 and 75.13 (CH, 3.96-4.03), 75.34 and 75.36 (C), 96.53 and 96.56 (CH, 5.72 and 5.73), 110.17 and 110.21 (CH, 4.89 and 4.91), 113.7 (2 CH, 6.90), 114.2 (C), 127.6 (2 CH, 7.44), 131.3 (C), 134.3 and 134.4 (C), 137.4 and 137.5 (CH, 7.02 and 7.03), 153.25 and 153.32 (C), 160.0 (C), 161.8 (C). ¹H NMR + HMBC (400 MHz, CDCl₃): δ = 1.33 (61.0), 1.48 (36.0, 75.4, 110.2), 1.67 (29.3, 65.9, 75.1, 75.3, 110.2), 1.73 and 1.74 (50.6, 114.2, 134.3 and 134.4), 1.99 (-), 2.33 and 2.39 (75.1, 75.3), 3.13 and 3.16 (114.2), 3.61-3.73 (75.1), 3.80 (160.0), 3.96-4.03 (-), 4.29 (14.2, 161.8), 4.89 and 4.91 (29.3, 36.0, 137.4 and 137.5, 153.3), 5.72 and 5.73 (75.1, 127.5), 6.90 (113.7, 131.3, 160.0), 7.02 and 7.03 (114.2, 153.3, 161.8), 7.44 (96.5, 113.7, 127.5, 160.0). ¹H NMR + COSY (400 MHz, CDCl₃): δ = 1.33 (4.29), 1.48 (-), 1.67 (2.33 and 2.39, 3.96-4.03, 4.89 and 4.91), 1.73 and 1.74 [7.02 and 7.03 (w)], 1.99 (3.61-3.73), 2.33 and 2.39 (1.67, 3.96-4.03), 3.13 and 3.16 (-), 3.61-3.73 (1.99, 3.96-4.03), 3.80 (6.90), 3.96-4.03 (1.67, 2.33 and 2.39, 3.61-3.73), 4.29 (1.33), 4.89 and 4.91 (1.67, 7.02 and 7.03), 5.72 and 5.73 (7.44), 6.90 (3.80, 7.44), 7.02 and 7.03 [4.89 and 4.91, 1.73 and 1.74 (w)], 7.44 (5.72 and 5.73, 7.44). ESI-MS: *m/z* calcd for C₂₃H₃₀O₈Na⁺: 457.1824; found: 457.1833

[MNa⁺]. Substituted Furan 29

Isolated as a ca. 3:2 mixture of E/Z-isomers. ¹H NMR (400 MHz, CDCl₃): δ [major isomer (integrating for 58%)] = 1.356 (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 1.88 (3 H, s, CH₃C=C), 2.05 [1 H,(br)s, CHOH), 2.29 (1 H, s, CH₂OH), 2.31 (1 H, dd, J = 13.8, 5.2 Hz, =CCHH), 2.49 (1 H, dd, J = 13.8, 8.6 Hz, =CCHH), 2.59 (3 H, s, FurCH₃), 3.46 (1 H,(br) dd, J = 11.5, 6.5 Hz, CHHOH), 3.478 (3 H, s, CH₃O), 3.62–3.68 (1 H, m, CHHOH), 3.84–3.93 (1 H, m, CHOH), 4.298 (2 H, q, J = 7.1 Hz, $CO_2CH_2CH_3$), 6.66 (1 H, s, FurH); δ [minor isomer (integrating for 42%)] = 1.359 $(3 \text{ H}, \text{t}, J = 7.1 \text{ Hz}, \text{CO}_2\text{CH}_2\text{CH}_3), 1.86 (3 \text{ H}, \text{s}, \text{CH}_3\text{C}=\text{C}),$ 2.29 (1 H, s, CH₂OH), 2.36 [1 H, d(AB)d, J = 13.1, 5.8 Hz, =CCHH], 2.51 [1 H, d(AB)d, J = 13.1, 8.1 Hz, =CCHH], 2.56 [1 H, d(br), J = 5.3 Hz, CHOH], 2.61 (3 H, s, FurCH₃), 3.55 [1 H,(br) d(app. t), J = 11.2, 4.6 Hz, CHHOH), 3.481 (3 H, s, CH₃O), 3.62-3.68 (1 H, m, CHHOH), 3.84-3.93 (1 H, m, CHOH), 4.303 (2 H, q, J = 7.1 Hz, CO₂CH₂CH₃), 6.63 (1 H, s, FurH). ESI-MS: *m/z* calcd for C₁₅H₂₂O₆Na⁺: 321.1309; found: 321.1297 [MNa+].

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.