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Abstract: A new route to the phosphodiesterase type IV inhibitor
(R)-(-)-rolipram (1) has been developed, wherein the key step relies
on enantioselective intramolecular C-H insertion of N-alkyl-N-4-ni-
trophenyl-a-methoxycarbonyl-a-diazoacetamide 7 catalyzed by
chiral dirhodium(II) complex. The dirhodium(II) carboxylate,
Rh2(S-BPTTL)4, incorporating N-benzene-fused-phthaloyl-(S)-
tert-leucinate as a bridging ligand has proven to be the catalyst of
choice for this process, providing the desired 2-pyrrolidinone 8 in
88% ee.
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oselective synthesis, chiral dirhodium(II) catalyst, C-H insertion

Rolipram, (±)-4-(3-cyclopentyloxy-4-methoxyphenyl)-2-
pyrrolidinone, originally developed as an antidepressant
by Schering AG has been shown to be a potent and selec-
tive inhibitor of phosphodiesterase type IV (PDE IV),1

one of the cyclic adenosine 3',5'-monophosphate (cAMP)-
specific phosphodiesterases.2 Inhibition of PDE IV is rap-
idly becoming recognized as a promising therapeutic tar-
get for the treatment of a number of disorders such as
asthma,3 atopy,4 and multiple sclerosis.5 While the thera-
peutic use of rolipram is hampered by nausea and emetic
side effects,6 rolipram has been not only used as a research
tool in determining PDE IV isozymes in disease state and
second messenger pathways but also chosen as a starting
point for subsequent structural modification.7 It has re-
cently been disclosed that the (R)-(-)-enantiomer (1) of ro-
lipram is primarily responsible for the pharmacological
effects.8 It is therefore not surprising that (R)-(-)-rolipram
(1) as the prototypical agent has elicited considerable at-
tention from synthetic chemists.9

Numerous strategies have been developed to achieve
asymmetric syntheses of 1, including conjugate addition
of the chiral enolate of Evans' N-acetyloxazolidinones to
b-nitrostyrene,10 conjugate addition of an arylcopper re-
agent to Meyers' chiral a,b-unsaturated bicyclic lactam11

or a modified pyroglutamate,12 conjugate addition of cya-
nide to the chiral a,b-unsaturated oxazoline,13 palladium-
catalyzed, diastereoselective substitution of allylic car-
bonate by dimethyl malonate,14 a Claisen rearrangement
process with the transfer of chirality,9 enantioselective
deprotonation of 3-substituted cyclobutanone using chiral
lithium amide.15 However, a catalytic enantioselective
synthesis of 1 has not yet been addressed. In this respect,
we have recently given a protocol for enantioselective
construction of 4-substituted 2-pyrrolidinones (up to 82%
ee) via a site-selective C-H insertion catalyzed by dirhod-
ium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate], Rh2(S-
PTTL)4.

16 In order to demonstrate a synthetic potential of
this catalytic methodology, we have now explored a new
route to 1.

Toward this end, we selected N-2-(3-cyclopentyloxy-4-
methoxyphenyl)ethyl-N-4-nitrophenyl-a-methoxycarbo-
nyl-a-diazoacetamide 7 as a carbene precursor on the ba-
sis of our recent finding that the N-4-nitrophenyl
substituent plays a dual role as a nitrogen protecting group
as well as a site-control element.16 The synthesis of 7 was
implemented as shown in Scheme 1. O-Alkylation of
commercially available isovanillin (2) with cyclopentyl
bromide and K2CO3 in DMF followed by a Knoevenagel
condensation of 313 with nitromethane in the presence of
ammonium acetate17 provided trans-b-nitrostyrene 418 in
72% yield. Reduction of 4 with LiAlH4 followed by con-
densation with the 4-fluoronitrobenzene19 afforded 4-ni-
troaniline 5 in 60% yield. N-Acylation of 5 with methyl 3-
chloro-3-oxopropionate in the presence of N,N-dimethyl-
aniline and subsequent diazo transfer using 4-acetamido-
benzenesulfonyl azide20 and DBU21 furnished a-diazoace-
tamide 7 in 88% yield.
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Reagents and conditions: (a) cyclopentyl bromide, K2CO3, DMF, 60
°C, 12 h, 91%; (b) MeNO2, NH4OAc, reflux, 3 h, 79%; (c) LiAlH4,
THF, reflux, 1.5 h; (d) 4-fluoronitrobenzene, Na2CO3, EtOH, sealed
tube, 150 °C, 12 h, 60% (2 steps); (e) MeO2CCH2COCl, Me2NC6H5,
CH2Cl2, 0 °C, 2 h, 97%; (f) 4-acetamidobenzenesulfonyl azide, DBU,
MeCN, 0 °C, 3 h, 91%.

Scheme 1

With the effectiveness of Rh2(S-PTTL)4 as a catalyst pre-
viously identified through a closely related C-H inser-
tion,16 we first examined cyclization of 7 with the aid of 2
mol % of Rh2(S-PTTL)4 (Table 1, entry 1). The reaction
in CH2Cl2 proceeded smoothly to give the 2-pyrrolidinone
derivative 8, [a]D

25 +5.72 (c 1.06, CHCl3), in 75% yield,
with no trace of the 2-azetidinone derivative. The enanti-
oselectivity in this reaction was determined to be 78% ee
by 1H NMR spectroscopy using Eu(hfc)3 as a chiral shift
reagent. As might be expected from the precedent, the
preferred absolute configuration at the insertion site was
established as R by transformation of 8 into 1 (vide infra).
In a comparative experiment with 7, we then reexamined
the other chiral dirhodium(II) carboxylates previously
screened, Rh2(S-PTPA)4, Rh2(S-PTA)4, and Rh2(S-PTV)4,
derived from N-phthaloyl-(S)-phenylalanine, alanine, and
valine, respectively (entries 2-4). While a consistent sense
of enantioselection was observed in all cases, poor enan-
tioselectivities observed with them simply provided con-
firmation that Rh2(S-PTTL)4 characterized by a bulky
tert-butyl group proved to be by far the best choice. At this
point, we were intrigued by the feasibility of enhancement
of the enantioselectivity by means of the recently devel-
oped catalysts,22 Rh2(S-BPTTL)4, Rh2(S-BPTPA)4,
Rh2(S-BPTA)4, and Rh2(S-BPTV)4, derived from N-ben-
zene-fused-phthaloyl-(S)-tert-leucine, phenylalanine, ala-
nine, and valine, respectively (entries 5-8).23 Indeed, we
found that this class of catalysts characterized by an ex-
tension of the phthalimido wall with one more benzene
ring improved the enantioselectivities while the same
sense of enantioselection as above was observed in every
case. In particular, 88% ee with Rh2(S-BPTTL)4 was the
highest achievement (entry 5). 

With highly optically active 2-pyrrolidinone 8 secured,
we then proceeded to the elaboration of the target mole-
cule, which also determined the preferred absolute config-
uration at the insertion site (Scheme 2).
Demethoxycarbonylation of 8 of 88% ee, [a]D

24 +9.75 (c
1.47, CHCl3), under Krapcho conditions24 furnished 4-
substituted 2-pyrrolidinone 9, mp 98-99 °C, [a]D

26 +29.1
(c 1.10, CHCl3), as pale yellow plates in 97% yield. Upon
one recrystallization from CH2Cl2-hexane, there was pro-
duced an optically pure sample, mp 99-102 °C, [a]D

25

+34.0 (c 1.00, CHCl3) in 71% yield, the homochirality of
which was confirmed by HPLC on Daicel Chiralpak
AD.25 One-pot conversion of the nitro group into the ace-
tamido group was effected under the influence of iron
powder in boiling acetic acid26 to give acetanilide 10, mp
120-121 °C, [a]D

25 +28.4 (c 1.30, CHCl3) as colorless nee-
dles in 86% yield. Prior to an oxidative removal of the 4-
acetamidophenyl group with ceric (IV) ammonium nitrate
(CAN),27 concern arose over the compatibility of 3-cyclo-
pentyloxy-4-methoxyphenyl group in 10 with the reaction
conditions, since CAN was reported to oxidize 1,2-
dimethoxybenzene to give a complex mixture of prod-
ucts.28 Thus, we were gratified to find that treatment of 10
with CAN in aqueous MeCN at 0 °C uneventfully afford-
ed 1, mp 130-133 °C, [a]D

25 -31.1 (c 1.08, MeOH) [lit.8

mp 131-133 °C, [a]D
24 -31.0 (c 0.5, MeOH)], in 71%

yield.
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Reagents and conditions: (a) NaCl, aq. DMSO, 160 °C, 2 h, 97%; (b)
recrystallization 71%; (c) Fe, AcOH, reflux, 2 h, 86%; (d)
Ce(NH4)2(NO2)6 (2.5 eq), aq. MeCN, 0 °C, 1 h, 71%.

Scheme 2

In summary, we have achieved the first catalytic enanti-
oselective synthesis of (R)-(-)-rolipram from isovanillin
with an overall yield of 12% for the ten-step sequence,
wherein the effectiveness of the catalytic methodology
has been increased with the advent of Rh2(S-BPTTL)4.
The present protocol does not require sophisticated condi-
tions such as exclusion of moisture and oxygen as well as
low reaction temperatures, thus providing great potential
for a facile access to its novel analogues for biological and
pharmacological investigations.
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