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Abstract: A new route to the phosphodiesterase type IV inhibitor
(R)-(-)-ralipram (1) has been devel oped, wherein the key step relies
on enantioselective intramolecular C-H insertion of N-alkyl-N-4-ni-
trophenyl-a-methoxycarbonyl-o-diazoacetamide 7 catayzed by
chiral dirhodium(ll) complex. The dirhodium(ll) carboxylate,
Rh,(SBPTTL),, incorporating N-benzene-fused-phthaloyl-(S)-
tert-leucinate as a bridging ligand has proven to be the catalyst of
choice for this process, providing the desired 2-pyrrolidinone 8 in
88% ee.
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Rolipram, (£)-4-(3-cyclopentyloxy-4-methoxyphenyl)-2-
pyrrolidinone, originally developed as an antidepressant
by Schering AG has been shown to be a potent and selec-
tive inhibitor of phosphodiesterase type IV (PDE 1V),!
one of the cyclic adenosine 3',5'-monophosphate (CAM P)-
specific phosphodiesterases.? Inhibition of PDE IV israp-
idly becoming recognized as a promising therapeutic tar-
get for the treatment of a number of disorders such as
asthma,® atopy,* and multiple sclerosis.® While the thera-
peutic use of rolipram is hampered by nausea and emetic
side effects,® rolipram has been not only used asaresearch
tool in determining PDE 1V isozymes in disease state and
second messenger pathways but also chosen as a starting
point for subsequent structural modification.” It has re-
cently been disclosed that the (R)-(-)-enantiomer (1) of ro-
lipram is primarily responsible for the pharmacological
effects It istherefore not surprising that (R)-(-)-rolipram
(1) asthe prototypical agent has elicited considerable at-
tention from synthetic chemists.®
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Numerous strategies have been developed to achieve
asymmetric syntheses of 1, including conjugate addition
of the chiral enolate of Evans N-acetyloxazolidinones to
B-nitrostyrene,’® conjugate addition of an arylcopper re-
agent to Meyers' chiral a,B-unsaturated bicyclic lactam?*

or amodified pyroglutamate,'? conjugate addition of cya-
nide to the chiral a,B-unsaturated oxazoline,*® palladium-
catalyzed, diastereoselective substitution of allylic car-
bonate by dimethyl malonate,** a Claisen rearrangement
process with the transfer of chirality,® enantioselective
deprotonation of 3-substituted cyclobutanone using chiral
lithium amide.'> However, a catalytic enantioselective
synthesis of 1 has not yet been addressed. In this respect,
we have recently given a protocol for enantioselective
construction of 4-substituted 2-pyrrolidinones (up to 82%
ee) via asite-selective C-H insertion catalyzed by dirhod-
ium(ll) tetrakigN-phthaloyl-(S)-tert-leucinate], Rh,(S
PTTL),.28 In order to demonstrate a synthetic potential of
this catalytic methodology, we have now explored a new
routeto 1.
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R = Bn: Rhy(S-PTPA),
R = Me: Rhy(S-PTA)4 Rh,(S-BPTA),
R = i-Pr: Rhy(S-PTV), Rh,(S-BPTV),
R =t-Bu: Rhy(S-PTTL);  Rhy(S-BPTTL),

Rh,(S-BPTPA),

Toward this end, we selected N-2-(3-cyclopentyloxy-4-
methoxyphenyl)ethyl-N-4-nitrophenyl -o-methoxycarbo-
nyl-a-diazoacetamide 7 as a carbene precursor on the ba-
sis of our recent finding that the N-4-nitrophenyl
substituent plays adua role as anitrogen protecting group
aswell asasite-control element.'® The synthesis of 7 was
implemented as shown in Scheme 1. O-Alkylation of
commercially available isovanillin (2) with cyclopentyl
bromide and K,CO; in DMF followed by a Knoevenagel
condensation of 32 with nitromethane in the presence of
ammonium acetate!’ provided trans-p-nitrostyrene 48 in
72% yield. Reduction of 4 with LiAlH, followed by con-
densation with the 4-fluoronitrobenzene!® afforded 4-ni-
troaniline 5in 60% yield. N-Acylation of 5 with methyl 3-
chloro-3-oxopropionate in the presence of N,N-dimethyl-
aniline and subsequent diazo transfer using 4-acetamido-
benzenesulfonyl azide?® and DBU?* furnished o-diazoace-
tamide 7 in 88% yield.
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Reagents and conditions: (a) cyclopentyl bromide, K,CO;, DMF, 60
°C, 12 h, 91%; (b) MeNO,, NH,OAc, reflux, 3 h, 79%; (c) LiAlH,,
THF, reflux, 1.5 h; (d) 4-fluoronitrobenzene, Na,CO,, EtOH, sedled
tube, 150 °C, 12 h, 60% (2 steps); () MeO,CCH,COCI, Me,NCgHs,
CH,Cl,, 0°C, 2 h, 97%; (f) 4-acetamidobenzenesulfonyl azide, DBU,
MeCN, 0 °C, 3 h, 91%.

Scheme 1

With the effectiveness of Rh,(S-PTTL), as acatalyst pre-
viously identified through a closely related C-H inser-
tion,'® we first examined cyclization of 7 with the aid of 2
mol % of Rh,(SPTTL), (Table 1, entry 1). The reaction
in CH,CI, proceeded smoothly to give the 2-pyrrolidinone
derivative 8, [a]p® +5.72 (c 1.06, CHClIy), in 75% yield,
with no trace of the 2-azetidinone derivative. The enanti-
oselectivity in this reaction was determined to be 78% ee
by *H NMR spectroscopy using Eu(hfc), as a chiral shift
reagent. As might be expected from the precedent, the
preferred absolute configuration at the insertion site was
established as R by transformation of 8 into 1 (vide infra).
In a comparative experiment with 7, we then reexamined
the other chiral dirhodium(ll) carboxylates previously
screened, Rh,(S-PTPA),, Rh,(SPTA),, and Rh,(SPTV),,
derived from N-phthal oyl-(S)-phenylalanine, alanine, and
valine, respectively (entries 2-4). While a consistent sense
of enantioselection was observed in al cases, poor enan-
tioselectivities observed with them simply provided con-
firmation that Rh,(S-PTTL), characterized by a bulky
tert-butyl group proved to be by far the best choice. At this
point, wewereintrigued by thefeasibility of enhancement
of the enantioselectivity by means of the recently devel-
oped cataysts? Rh,(SBPTTL),, Rh,(SBPTPA),,
Rh,(SBPTA),, and Rh,(SBPTV),, derived from N-ben-
zene-fused-phthal oyl-(S)-tert-leucine, phenylaanine, aa-
nine, and valine, respectively (entries 5-8).% Indeed, we
found that this class of catalysts characterized by an ex-
tension of the phthalimido wall with one more benzene
ring improved the enantioselectivities while the same
sense of enantioselection as above was observed in every
case. In particular, 88% ee with Rh,(SBPTTL), was the
highest achievement (entry 5).
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Table 1 Enantioselective C-H insertion reaction of «-
diazoacetamide 7 catalyzed by chiral dirhodium(II) complexes

2-pyrrolidinone 8

entry Rh(ID) complex time (h) yield? (%) eeb (%)
1 Rhy(S-PTTL)4 4 75 78
2 Rhp(S-PTPA)4 8 81 33
3 Rho(S-PTA)4 6 71 35
4 Rhy(S-PTV)4 4 71 35
5 Rhy(S-BPTTL)4 8 74 88
6 Rhy(S-BPTPA)4 6 80 47
7 Rh)(S-BPTA)4 8 78 48
8 Rhy(S-BPTV)4 8 76 41

4 Isolated yield. b Determined by IH NMR analysis using
Eu(hfc)3 as a chiral shift reagent.

With highly optically active 2-pyrrolidinone 8 secured,
we then proceeded to the elaboration of the target mole-
cule, which also determined the preferred absol ute config-
uration a the insertion site (Scheme 2).
Demethoxycarbonylation of 8 of 88% ee, [a]p2* +9.75 (C
1.47, CHCIl,), under Krapcho conditions®* furnished 4-
substituted 2-pyrrolidinone 9, mp 98-99 °C, [a]5% +29.1
(c1.10, CHCI,), as pale yellow platesin 97% yield. Upon
one recrystallization from CH,Cl,-hexane, there was pro-
duced an opticaly pure sample, mp 99-102 °C, [a]p®
+34.0 (c 1.00, CHCI5) in 71% yield, the homochirality of
which was confirmed by HPLC on Daicel Chiralpak
AD.? One-pot conversion of the nitro group into the ace-
tamido group was effected under the influence of iron
powder in boiling acetic acid? to give acetanilide 10, mp
120-121 °C, [0] ® +28.4 (c 1.30, CHCl,) ascolorless nee-
diesin 86% yield. Prior to an oxidative removal of the 4-
acetamidopheny! group with ceric (V) ammonium nitrate
(CAN),? concern arose over the compatibility of 3-cyclo-
pentyloxy-4-methoxyphenyl group in 10 with the reaction
conditions, since CAN was reported to oxidize 1,2-
dimethoxybenzene to give a complex mixture of prod-
ucts.?® Thus, we were gratified to find that treatment of 10
with CAN in agueous MeCN at 0 °C uneventfully afford-
ed 1, mp 130-133 °C, [a]p® -31.1 (c 1.08, MeOH) [lit.
mp 131-133 °C, [a]p?* -31.0 (c 0.5, MeOH)], in 71%
yield.
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Reagents and conditions: (a) NaCl, ag. DM SO, 160 °C, 2 h, 97%; (b)
recrystallization 71%; (c) Fe, AcOH, reflux, 2 h, 86%; (d)
Ce(NH,),(NO,)s (2.5 eqg), ag. MeCN, 0 °C, 1 h, 71%.

Scheme 2

In summary, we have achieved the first catalytic enanti-
oselective synthesis of (R)-(-)-rolipram from isovanillin
with an overall yield of 12% for the ten-step sequence,
wherein the effectiveness of the catalytic methodology
has been increased with the advent of Rh,(SBPTTL),.
The present protocol does not require sophisticated condi-
tions such as exclusion of moisture and oxygen aswell as
low reaction temperatures, thus providing great potential
for afacile accessto itsnovel analoguesfor biological and
pharmacological investigations.
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