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Abstract: A one-pot procedure for the synthesis of oxazolines was
developed. An amino alcohol was coupled with benzoyl chlorides
in the presence of triethylamine to produce a b-hydroxyamide. Di-
rect treatment with methanesulfonyl chloride forms oxazolines in
good yields.
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Oxazolines have been used to direct a broad range of
asymmetric reactions1 – for instance, as features of chiral
ligands for asymmetric catalysis2 or as chiral auxiliaries
for diastereoselective couplings, substitution3 or dearom-
atising additions.4 The oxazoline ring’s resistance to hy-
drolysis or attack by nucleophiles, bases or radicals
confers applicability to a wide variety of reaction condi-
tions – the oxazoline ring itself reacts only with strong
Brønsted acids or powerful electrophiles.1

2-Aryl oxazolines have been made1,5 principally (a) by
reaction of an amino alcohol with an activated benzoic
acid derivative,6 (b) by rearrangement of an N-acyl aziri-
dine,7 or (c) by formation of an amide by acylation of an
amino alcohol, followed by cyclisation with invertive dis-
placement of the hydroxyl group (for example,
Scheme 1).8–10 Epimerisation or racemisation by non-ste-
reospecific displacement is a danger in the synthesis of
oxazolines bearing a stereogenic centre at the 5-position
(adjacent to oxygen). 

Following our recent demonstration of the utility of 4,5-
anti-diphenyloxazolines 4 for the activation of benzenoid

rings towards dearomatising attack by organolithiums,4b

an extension of the work by Meyers et al. on naphthyl and
pyridyloxazolines,1,4a we sought a reliable, stereospecific
route to enantiomerically pure oxazolines 4 bearing a
range of substituents R. The ready availability of amino
alcohol 2 in enantiomerically pure form encouraged us to
employ strategy (c), since invertive displacement pro-
vides the required anti relative stereochemistry. Linclau9

used N,N¢-diisopropylcarbodiimide and Cu(OTf)2 to cyc-
lise N-(2-hydroxyethyl)amides to oxazolines, however,
this reaction required either reflux or microwave irradia-
tion, and the presence of substituents a- to the oxygen
gave reduced yields. Du10 showed that both syn- and anti-
4,5-diphenyloxazolines 4 can be formed by substitution of
the hydroxyl group of amides 3 by mesylation followed
by reflux with NaOH in methanol. Inversion adjacent to
oxygen was observed as expected for an SN2 displace-
ment. 

However, we found that isolation of the intermediate
hydroxyamides 3 is complicated by their insolubility in a
variety of solvents. It was envisaged that a one-pot synthe-
sis of oxazolines direct from the amino alcohol 2 and acyl
chloride 1 would avoid the need for isolation of amides 3
and could provide a general, simple and scalable proce-
dure for oxazoline synthesis.11

Four equivalents of triethylamine were used both to effect
amide formation and to facilitate the subsequent hydroxyl
substitution – by increasing the amount of base we avoid-
ed the need for a reflux step. The cyclisation itself was
promoted by methanesulfonyl chloride. The result is an
uncomplicated stereoselective one-pot synthesis of 2-aryl
oxazolines, which is applicable to a range of substituted
products as shown in Table 1. The presence of electron-
withdrawing and electron-donating groups was well toler-
ated, and yields were generally good to excellent. In some
cases, the carboxylic acids themselves were used, the acyl
chlorides being formed with thionyl chloride in situ prior
to addition of the amino alcohol and triethylamine. The
synthesis of 4b was successfully carried out on a 10 g
scale.

The method gave lower yields of 2-oxazolines when elec-
tron-withdrawing substituents were present in the ortho-
position, presumably due to the inductive decrease in the
nucleophilicity of the amide C=O bond, which reduces the
rate of cyclisation. However, alternative methods exist for
the efficient stereoselective synthesis of these com-
pounds, such as rearrangement of the corresponding N-
acyl aziridine.4b,7

Scheme 1 One-pot oxazoline synthesis
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The one-pot procedure forms, to the limit of detection,
only the anti-diphenyloxazoline product of inversion at
the oxazoline C-5 position.12

In summary, we have developed an operationally simple
one-pot synthesis of enantiomerically pure 2-aryl-4,5-
anti-diphenyl oxazolines from the corresponding com-
mercially available amino alcohol 2.13,14

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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a On a 10 g scale.
b Yield from carboxylic acid, forming acyl chloride in situ by reflux 
with thionyl chloride.

Table 1 Synthesis of Oxazolines by the One-Pot Method Shown in 
Scheme 1  (continued)

Entry Oxazoline 4 Yield from 1 (%)
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