Cite this: Chem. Commun., 2012, 48, 5358-5360

COMMUNICATION

A remarkably simple α-oximation of aldehydes *via* organo-SOMO catalysis[†]

Patrizia Gentili* and Silvia Pedetti

Received 1st March 2012, Accepted 5th April 2012 DOI: 10.1039/c2cc31566a

A novel α -oximation reaction of unactivated aldehydes has been achieved in excellent yields by reaction with NaNO₂-FeCl₃ couple and in the presence of pyrrolidine as organocatalyst.

As a result of major developments in the field of organocatalysis in recent years, a new activation methodology termed SOMO (singly occupied molecular orbital)-enamine activation was developed by MacMillan et al. in 2007.¹ In the same year, Sibi et al. reported that using a MacMillan organocatalyst and FeCl₃ as a single electrontransfer (SET) catalyst, aldehydes reacted with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) via an electron-deficient enamine radical intermediate, giving α -oxyamination products of aldehydes in satisfactory yields with high enantioselectivities.² In the last four years, MacMillan's research group has developed highly stereoselective α -allylation^{1a} and intramolecular allylation,^{3a} α -enolation,^{3b} α -alkylation, ^{3c} α -vinylation, ^{3d} α -trifluoromethylation, ^{3e} α -nitroalkylation, $3^{3f} \alpha$ -arylation 3^{3g} and α -chlorination 3^{3h} of aldehydes, and carbonoxidation of styrene³ⁱ via SOMO enamine of aldehydes. In 2009, Nicolaou et al. demonstrated that in the presence of a MacMillan-type catalyst and cerium ammonium nitrate, aldehydes bearing electron-donating groups on aromatic rings underwent an intramolecular Friedel-Crafts-type arylation with excellent enantioselectivities.⁴

Continuing our studies on aminoxyl radicals (R_2NO^{\bullet}),⁵ we decided to extend the α -oxyamination reaction of aldehydes to this class of reactive intermediates other than TEMPO.² Instead of the expected α -oxyaminated products, we surprisingly obtained α -oximinoaldehydes, which are important synthetic building blocks for many biologically significant compounds and pharmaceutically useful heterocyclic compounds.⁶

The direct α -oximation of ketones, esters and aldehydes by NOCl is well established.^{7a} Generally, it is carried out in aqueous acid solutions using as nitrosating agent organic nitrites (*iso*amyl, *iso*butyl or *tert*-butyl nitrite) or inorganic salts such as NaNO₂. In a very interesting article, Rüedi and colleagues presented a convenient α -oximation method that

allows for the selective preparation of 1,2-dione monoximes using simple acyclic or cyclic ketones as starting materials in the presence of an excess of concentrated HCl and an equimolar amount of sodium nitrite in tetrahydrofuran as solvent at 0 °C.7b Alternatively, treating chlorotrimethylsilane with isoamyl nitrite is an effective method for the in situ generation of NOCl in aprotic solvent media as well as under solvent-free conditions.^{7c} Rasmussen and Hassner showed that addition of an excess of NOCl to trimethylsilyl enol ethers of ketones and esters in dichloromethane at -10 °C to -15 °C gives good yields of 2-hydroxyimino carbonyl derivatives. Unfortunately, in the case of aldehydes, the initial 2-hydroxyimino carbonyl products are unstable, but might be trapped by hydroxylamine as glyoxime derivatives.^{7d} Finally, Sugamoto and colleagues attempted the reduction-nitrosation of conjugated olefins; α,β-unsaturated ketones, aldehydes and esters were directly converted to the corresponding *a*-oximino carbonyl compounds in good or moderate yields by reduction-nitrosation with tert-butyl nitrite and triethylsilane in the presence of 5,10,15,20tetraphenylporphinatocobalt(II) as catalyst in *i*-PrOH-CH₂Cl₂ at room temperature.7e

We present here a new and highly efficient α -oximation reaction with NaNO₂ and FeCl₃ in dimethylformamide (DMF) as solvent, using pyrrolidine as organocatalyst. First, the reaction conditions for the α-functionalisation of aldehydes were identified (Table 1). Treatment of 3-phenylpropanal 1a for 4.5 h at room temperature with a stoichiometric amount of NaNO₂ and FeCl₃ in the presence of 20 mol% of pyrrolidine and p-toluenesulfonic acid (p-TsOH) in DMF resulted in a good yield of 2-hydroxyimino-3-phenylpropanal 2a (Table 1, entry 1). An excess of NaNO₂ and FeCl₃ did not increase product vield (Table 1, entry 2). The reaction carried out in the presence of 30 mol% of iron(III) chloride gave product 2a (yield 68%) together with 15% of (E)-2-benzyl-5-phenyl-2-pentenal 3 (Table 1, entry 3). Accomplishing the reaction in the absence of FeCl₃ only 3 was obtained (yield 60%) and 1a was partially recovered (Table 1, entry 4). In the absence of pyrrolidine, the starting aldehyde was completely recovered (Table 1, entry 5). The reaction under anaerobic conditions gave 2a in quantitative yield (Table 1, entry 6).

Carrying out the reaction in the presence of NaNO₂– *p*-TsOH couple, known as a nitrosating system able to produce the ion NO⁺,⁸ the product **2a** was obtained in low to moderate yields even in the presence of an excess of protic acid (Table 1, entries 7 and 8). When DMSO was employed instead of DMF, the

Dipartimento di Chimica and IMC-CNR Sezione Meccanismi di Reazione, Università degli Studi La Sapienza, P. le A. Moro 5, I-00185 Roma, Italy. E-mail: patrizia.gentili@uniroma1.it; Fax: +39 06 490421; Tel: +39 06 49913082

[†] Electronic supplementary information (ESI) available: Experimental details and characterization data for the compounds 2a-g, 4 and 8. See DOI: 10.1039/c2cc31566a

Table 1 Screening of reaction conditions for α -oximation of 3-phenyl-propanal $1a^{\alpha}$

Ph 1a	H pyrrolid FeCl solver	line, <i>p</i> -TsOH ₃ , NaNO ₂ nt, rt, 4.5 h	H + CHO PhCH ₂ CH ₂ CH ₂ Ph 3	
		Yields	$s^{b}(\%)$	
Entry	Solvent	2a	3	Recovered, $1a^{b}$ (%)
1	DMF	89	3	4
2^c	DMF	77	_	
3^d	DMF	68	15	17
4^e	DMF		60	22
5 ^f	DMF		_	96
6^g	DMF	98	Traces	2
$7^{e,h}$	DMF	31	_	67
$8^{e,i}$	DMF	69		31
9	DMSO	58	12	7
10	CH ₃ CN	2	Traces	82
11	EtOAc	5	7	60
12	THF	8		84
13	CH ₂ Cl ₂	66 ^j		Traces

^{*a*} The reaction of **1a** (1.0 mmol), pyrrolidine (0.2 mmol), *p*-TsOH (0.2 mmol), H₂O (2.0 mmol), NaNO₂ (1.0 mmol) and FeCl₃ (1.0 mmol) in 1.5 mL of anhydrous solvent was performed for 4.5 h at room temperature. ^{*b*} Determined by GC with an internal standard method *versus* initial moles of **1a**. ^{*c*} 1.5 mmol NaNO₂ and 1.5 mmol FeCl₃ were employed. ^{*d*} 0.3 mmol FeCl₃ was used. ^{*e*} There is not FeCl₃. ^{*f*} There is not pyrrolidine. ^{*g*} Under an argon atmosphere. ^{*h*} 2.2 mmol *p*-TsOH was used. ^{*i*} 3.7 mmol *p*-TsOH was used. ^{*j*} As PhCH₂CH₂CO₂H and isolated yield.

product **2a** was obtained but in moderate yield (Table 1, entry 9). In other solvents (CH₃CN, EtOAc and THF), the reaction barely occurred (Table 1, entries 10-12).

In CH_2Cl_2 , the isolated product was 3-phenylpropionic acid instead of **2a** (Table 1, entry 13), probably formed by oxidation of aldehyde **1a** by nitrogen oxides (their formation was indicated

Table 2 α -Oximation of aldehydes by the NaNO₂-FeCl₃ system^{*a*}

Entry	Aldehyde, R		Yield ^b (%), 2-hydroxy- imino-aldehyde	Recovered, aldehyde ^b (%)
1	C ₆ H ₅ -	1b	2b 95	5
2	C ₈ H ₁₇ -	1c	2c 84	7
3	(CH ₃) ₃ CCH ₂ CH(CH ₃)-	1d	2d 96	4
4	C ₆ H ₁₁ -	1e	2e 93	7
5	(CH ₃) ₂ C=CHCH ₂ CH ₂ CH(CH ₃)-	1f	2f 77	_
			4 19	
6	(CH ₃) ₃ C-	1g	2g 98	Trace
7	>−́ ⊂ ⊢	1h		99

^{*a*} The reaction of aldehyde **1b–h** (1.0 mmol), pyrrolidine (0.2 mmol), *p*-TsOH (0.20 mmol), H₂O (2.0 mmol), NaNO₂ (1.0 mmol) and FeCl₃ (1.0 mmol) in 1.5 mL of anhydrous DMF was performed for 3–4.5 h at room temperature. ^{*b*} Determined by GC with an internal standard method *versus* initial moles of aldehyde.

Scheme 1 α -Oximation reaction of citronellal 1f.

by the development of red-brown vapours after the introduction of FeCl₃ in the reaction vessel).⁹

Having identified an appropriate set of conditions, we then performed reactions with a variety of aldehydes (Table 2). The experimental results showed that a variety of aliphatic aldehydes underwent the reaction smoothly, to give the desired α -oximino product **2b–2g** with high yields, regardless of the steric hindrance of the substituent on C α (Table 2). When the reaction was carried out with neral **1h**, unfortunately the starting α , β -unsaturated aldehyde was totally recovered and no trace of γ - or α -oximino aldehyde was present (Table 2, entry 7). Moreover, the reaction of citronellal **1f** with NaNO₂–FeCl₃ couple gave α -oximino aldehyde **2f** (yield 77%) and 19% of 2-methyl-5-(1-hydroxy-1methylethyl)cyclopentanecarbaldehyde **4** as a mixture of the two diastereomers **4a** and **4b** in the ratio 2:1 (Table 2, entry 5 and Scheme 1).

This latter result provides circumstantial evidence for the generation and participation of a radical-cation species given the propensity of these radicals to undergo cyclization with unactivated olefins, 1a,3a,10 thus suggesting the plausible mechanism depicted in Scheme 2 for the direct α -oximation of aldehydes.

In the presence of *p*-TsOH, pyrrolidine as an organocatalyst initially reacts with aldehyde **1a–1g** to form the corresponding enamine **5**, followed by oxidation with SET reagent Fe³⁺ to generate the three- π -electron SOMO-activated intermediate **6** and Fe^{2+,2}. This transient aminyl radical-cation **6** according to the persistent radical effect (PRE)¹¹ undergoes highly selective cross-coupling with the persistent NO[•] radical (probably formed by reaction of Fe²⁺ with nitrite in the presence of H⁺)¹² to give the cationic imine **7**. The nitroso-imine cation **7** tautomerises and hydrolyses to ultimately form 2-hydroxyimino-aldehyde **2a–2g**.

We undertook studies to investigate more precisely the participation of the putative radical-cation intermediate **6** in

Scheme 2 Plausible mechanism for the direct α -oximation of aldehydes.

 Table 3 Oxidation of citronellal 1f with metallic oxidants^a

^{*a*} The reaction of **1f** (0.33 mmol), pyrrolidine (0.065 mmol), *p*-TsOH (0065 mmol) and oxidant (0.65 mmol) in 0.5 mL of anhydrous DMF was performed for 24 h. ^{*b*} Determined by GC with an internal standard method *versus* initial moles of **1f**. ^{*c*} Diastereomeric ratio (dr) was determined by ¹H NMR analysis. ^{*d*} Diastereomeric ratio **8a** : **8c** (only **8a** and **8c** were formed). ^{*e*} Diastereomeric ratio **8a** : **8b** : **8c** : **8d** = 29 : 5 : 1 : 1. ^{*f*} NaNO₂ 0.065 mmol and FeCl₃ 0.065 mmol; reaction time 4.5 h. ^{*g*} Product **2f** was present (yield 3%).

this catalytic process. Specifically, aldehyde activation–addition experiments were performed with Cu(OAc)₂ and Mn(OAc)₃, established metallic oxidants used in oxidative free-radical cyclizations.¹⁰

For instance, oxidation of citronellal 1f with 2 equivalents of Cu(OAc)₂ in the presence of 20 mol% of pyrrolidine and p-TsOH in DMF at 80 °C for 24 h (Table 3, entry 1) afforded a yield of 38% containing a 29:5:1:1 mixture of the 2-methyl-5-(prop-1-en-2-yl)cyclopentanecarbaldehydes 8a, photocitral A (8b), 8c and epiphotocitral A (8d).^{3a,13} The same reaction carried out at room temperature gave 8% of 4 and 3% of 8 (Table 3, entry 2). Similar results were obtained when the oxidation was performed with Mn(OAc)₃ (Table 3, entry 3). Finally, the reaction of citronellal 1f under the experimental conditions for α -oximation, but in the presence of only 20 mol% of both NaNO₂ and FeCl₃ (Table 3, entry 4), gave principally products 4 and 8 (13% and 3%, respectively), and only 3% of 2-hydroxyimino-aldehyde 2f. These experimental results showed that cyclization of 1f could be accomplished using Cu(OAc)₂ and Mn(OAc)₃ as oxidants for bona fide free-radical cyclizations (Table 3, entries 1-3). Moreover, in the presence of a low concentration of NaNO₂-FeCl₃ couple, unsaturated aldehyde 1f gave principally the cyclization products 4 and 8 (Table 3, entry 4), thus confirming that the radical-cation 6 is the key intermediate of the α -oximation mechanism (Scheme 2).

In conclusion, we have developed an efficient radical α -oximation reaction of aldehydes using NaNO₂–FeCl₃ couple and pyrrolidine as organocatalyst. The reactions proceed with good to excellent yields. The introduction of a nitrogen atom at the α -position of a carbonyl compound provides a valuable

route for the synthesis of a large variety of natural products and drugs. In particular, the nitroso function is recognised as a unique source to prepare nitrogen- and oxygen-containing molecules. Hence, the methodology reported here adds to the repertoire of organocatalytic direct α -heteroatom functionalisation of aldehydes and ketones.¹⁴

Notes and references

- (a) T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton and D. W. C. MacMillan, *Science*, 2007, **316**, 582; (b) S. Bertelsen, M. Nielsen and K. A. Jørgesen, *Angew. Chem., Int. Ed.*, 2007, **46**, 7356.
- 2 (a) M. P. Sibi and M. Hasegawa, J. Am. Chem. Soc., 2007, 129, 4124; (b) J. F. Van Humbeck, S. P. Simonovich, R. R. Knowles and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 10012.
- 3 (a) P. V. Pham, K. Ashton and D. W. C. MacMillan, Chem. Sci., 2011, 2, 1470; (b) H.-Y. Yang, J.-B. Hong and D. W. С. MacMillan, J. Am. Chem. Soc., 2007, 129, 7004; (c) D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322, 77; (d) H. Kim and D. W. C. MacMillan, J. Am. Chem. Soc., 2008, 130, 398; (e) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 10875; (f) J. E. Wilson, A. D. Casarez and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 11332; (g) J. C. Conrad, J. Kong, B. N. Laforteza and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, **131**, 11640; (h) M. Amatore, T. D. Beeson, S. P. Brown and D. W. C. MacMillan, Angew. Chem., Int. Ed., 2009, 48, 5121; (i) T. H. Graham, C. M. Jones, N. T. Jui and D. W. C. MacMillan, J. Am. Chem. Soc., 2008, 130, 16494.
- 4 K. C. Nicolaou, R. Reingruber, D. Sarlah and B. Stefan, J. Am. Chem. Soc., 2009, 131, 2086.
- 5 C. Galli, P. Gentili and O. Lanzalunga, *Angew. Chem., Int. Ed.*, 2008, **47**, 4790.
- 6 (a) E. Abele and E. Lukevics, in *The Chemistry of Hydroxylamines*, *Oximes and Hydroxamic Acids*, ed. Z. Rappoport and J. F. Liebman, John Wiley & Sons Ltd, England, 2009, part 1, ch. 7, pp. 233–302; (b) Y. Ashani and I. Silman, in *The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids*, ed. Z. Rappoport and J. F. Liebman, John Wiley & Sons Ltd, England, 2009, part 2, ch. 13, pp. 609–651.
- 7 (a) O. Touster, Org. React., 1953, 7, 327; (b) G. Rüedi, M. A. Oberli, M. Nagel, C. Weymuth and H.-J. Hansen, Synlett, 2004, 2315; (c) H. A. M. Abdulkarim and N. Gopalpur, Tetrahedron Lett., 2003, 44, 2753; (d) J. K. Rasmussen and A. Hassner, J. Org. Chem., 1974, 39, 2558; (e) K. Sugamoto, Y. Hamasuna, Y. Matsushita and T. Matsui, Synlett, 1998, 1270.
- 8 P. B. Sanjay and P. Vincent, Synth. Commun., 2010, 40, 654.
- 9 (a) Y. Matsumura, Y. Yamamoto, M. Moriyama, S. Furukubo, F. Iwasaki and O. Onomura, *Tetrahedron Lett.*, 2004, **45**, 8221; (b) Y. Peng, D. Fu, R. Liu, F. Zhang and X. Liang, *Chemosphere*, 2008, **71**, 990.
- (a) J. Cossy, A. Bouzide and C. Leblanc, *Synlett*, 1993, 202;
 (b) J. Cossy and A. Bouzide, *J. Chem. Soc., Chem. Commun.*, 1993, 1218;
 (c) K. Narasaka, T. Okauchi, K. Tanaka and M. Murakami, *Chem. Lett.*, 1992, 2099.
- (a) D. H. R. Barton, R. P. Budhiraja and J. F. McGhie, J. Chem. Soc. C, 1969, 336; (b) A. Studer, Angew. Chem., Int. Ed., 2000, 39, 1108; (c) A. Studer, Chem.-Eur. J., 2001, 7, 1159; (d) A. Studer, Chem. Soc. Rev., 2004, 33, 267; (e) A. Studer and T. Schulte, Chem. Rec., 2005, 5, 27.
- 12 I. R. Epstein, K. Kustin and L. Joyce Warshaw, J. Am. Chem. Soc., 1980, 102, 3751.
- 13 B. B. Snider and E. Y. Kiselgof, Tetrahedron, 1996, 52, 6073.
- 14 (a) T. Vilaivan and W. Bhanthumnavin, *Molecules*, 2010, **15**, 917; (b) M. Marigo and K. A. Jørgesen, in *Enantioselective Organocatalysis*, ed. P. I. Dalko, Wiley-VCH Verlag GmBH & CoKGaA, 2007, ch. 2, pp. 56–76; (c) M. Marigo and K. A. Jørgesen, *Chem. Commun.*, 2006, 2001.