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1,3-Dipolar cycloadditions are fundamental processes
in organic chemistry.1 In particular, the reaction of
azomethine ylides with alkenes is a powerful method for
the synthesis of pyrrolidines since up to four stereo-
centers are set in a single operation.2 This has fueled
intensive efforts toward the development of efficient
chiral auxiliaries to render the process enantioselective.3
In contrast, reports on cycloadditions between azo-
methine ylides and imines are scarce,4 despite the well-
established synthetic potential of the resulting imidazo-
lidines.5 Furthermore, it should be noted that the
asymmetric version of this process remains elusive. In
this paper, we report the first examples of a highly
diastereoselective 1,3-dipolar cycloaddition of azomethine
ylides with chiral sulfinimines to produce enantiopure
N-sulfinyl imidazolidines and the straightforward trans-
formation of one of these cycloadducts into an example
of a novel class of nonsymmetrical vicinal diamines.
Enantiopure sulfinimines, readily available in both

enantiomeric forms,6 are versatile intermediates for
enantioselective syntheses of a variety of targets.7 These
substrates display excellent facial selectivity upon reac-
tion with a number of nucleophiles, and furthermore,

removal or even recycling of the sulfinyl auxiliary is
readily carried out under mild reaction conditions.8
These desirable features, along with our interest in the
development of sulfur-directed methodology,9 attracted
our attention to these intermediates as potential precur-
sors to chiral imidazolidines by 1,3-dipolar cycloadditions
with azomethine ylides.
We selected sulfinimine 16a andN-benzylidene R-amino

acid ester-derived ylide 310 for our initial studies. Stan-
dard conditions (LiBr, Et3N, MeCN; AgOAc, DBU, Tol)
failed to promote the desired cycloaddition. Dipole
generation with LDA10 was then examined, and to our
delight, the reaction between sulfinimine 1 and phenyl-
alanine-derived dipole 3 led to a fair yield of a 95:5
mixture of cycloadducts 6 and 711 (Scheme 1), along with
15-20% of unreacted starting material. From this
mixture of 6 and 7, pure 6 (45-50%) was obtained by
recrystallization (hexane:ether). The reaction between
1 and dipole 4 produced imidazolidines 8 and 9 in almost
identical yield and selectivity to the case above. Simi-
larly, the more reactive substrate 212 afforded excellent
yields of adducts 10 and 12 as practically single isomers
upon reaction with dipoles 3 and 5, respectively.
The general structure of these adducts was readily

derived from their spectral features, and the relative
stereochemistry of the three ring chiral centers was
deduced from differential NOE experiments. However,
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a definitive proof of the relative configuration of the ring
centers and the chiral sulfur was required to establish
unequivocally the predominant facial sense of the pro-
cess. This was solved by an X-ray analysis of 6, and the
results obtained are shown in Figure 1.13

To secure that 6 and 7 were facial isomers, a sample
of pure 6 was oxidized to tosyl imidazolidine 14 (Scheme
2). Under identical conditions, an enriched sample of 7
led to enantiomerically enriched ent-14 of identical
spectral features to those of 14 and optical rotation of
opposite sign.
These cycloadducts are nicely functionalized for sub-

sequent manipulations. Indeed, both nitrogen atoms are
already differentiated, and in principle, both aryl rings
could be varied readily. Furthermore, the ester group
should be an additional handle for synthetic applications.

Scheme 3 depicts our initial studies on the reactivity of
these sulfinyl imidazolidines. Treatment of 6 with TFA/
MeOH14 resulted in desulfinylation and fragmentation
to produce phenylalanine methyl ester. To avoid this
undesired process, reduction of the ester to the primary
alcohol was attempted. Treatment of 6 with an excess
of LAH resulted in concurrent deoxygenation and ester
reduction, affording sulfenamide 15 in fair yield.15 Cleav-
age of the sulfur-nitrogen bond and aminal methanolysis
took place smoothly to produce diamine 16 in good yield.16
The stereochemical outcome of this cyclization may be

understood in terms of predominant endo approach of the
ylide (relative to the Ar group) to the less hindered â face
of sulfinimines 1 and 2 (Figure 2) to provide adducts 6,
8, 10, and 12, respectively. Our process displays a
remarkable facial selectivity of opposite sense to that
found for most other additions to sulfinimines;6,7 this and
the high stereoselectivity found strongly support a 1,3-
dipolar cycloaddition pathway.
To summarize, readily available sulfinimines react

with lithiated R-imino esters with remarkable selectivity
to generate enantiopure N-sulfinyl imidazolidines. In
this cycloaddition, the chirality of sulfur is transferred
to three asymmetric centers in a single synthetic opera-
tion with almost complete stereocontrol. We are cur-
rently examining the scope and limitations of this
methodology as well as further applications of these
cycloadducts in synthesis.
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Figure 1. Final X-ray model for 6 showing its absolute
chirality. Numbers only refer to C atoms.
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