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ABSTRACT: Potassium fluoride (KF) is an ideal reagent for 
fluorination because it is safe, easy to handle and low-cost. 
However, poor solubility in organic solvents coupled with limited 
strategies to control its reactivity has discouraged its use for 
asymmetric C–F bond formation. Here, we demonstrate that 
hydrogen bonding phase transfer catalysis with KF provides 
access to valuable β-fluoroamines in high yields and 
enantioselectivities. This methodology employs a chiral N-ethyl 
bis-urea catalyst that brings solid KF into solution as a 
tricoordinated urea-fluoride complex. This operationally simple 
reaction affords enantioenriched fluoro-diphenidine (up to 50-g-
scale) using 0.5 mol% of recoverable bis-urea catalyst. 

     The benefits of fluorine incorporation in organic 
molecules have been extensively studied and exploited in 
the agrochemical and pharmaceutical industry.1 Fluorine 
substituents can alter the pKa of neighboring groups, dipole 
moment, and properties such as metabolic stability, 
lipophilicity and bioavailability.2 In this context, the 
demand for molecules featuring the fluorine substituent on 
a stereogenic carbon has accelerated the development of 
catalytic enantioselective fluorination methodologies.3 
Electrophilic fluorine sources of tailored reactivity have 
proved valuable for rapid advance of this field of research.4 
Asymmetric catalysis towards C–F bond formation using 
nucleophilic fluorine sources has progressed at a slower 
pace in part due to the difficulties in controlling fluoride 
reactivity.5 Fluoride is solvated and poorly reactive in 
protic media, while unsolvated fluoride can react as a 
BrØnsted base.6 These issues have led to the development 
of reagents designed for in situ release of fluoride into 
solution.5f, 7  Additional challenges for metal alkali fluorides 
are their hygroscopicity and poor solubility in organic 
solvents.6 These characteristics have discouraged the use of 
potassium fluoride (KF) for asymmetric catalytic 
fluorination, despite the fact that this reagent is low cost, 
safe and easy to handle.8
     Nature has evolved a fluorinase enzyme that makes use 
of a hydrogen bonded fluoride complex to enable C–F bond 
formation.9 Inspired by this transformation, we prepared 
fluoride complexes derived from alcohols and ureas to 
study the effect of hydrogen bonding on fluoride 
reactivity.10 These studies culminated with the discovery of 
hydrogen bonding phase-transfer catalysis (HB-PTC),11 a 
new activation mode for PTC12 whereby a neutral hydrogen 
bond donor urea catalyst acts as a transport agent to bring 

solid cesium fluoride, CsF(s) (lattice energy, 759 kJ/mol),13 

into solution in the form of a hydrogen bonded fluoride 
complex. This strategy afforded enantioenriched β-
fluorosulfides with a chiral N-alkyl bis-urea catalyst U* 
(Fig. 1A), that adopts an anti-syn conformation and binds 
fluoride as a tricoordinated hydrogen bonded complex. At 
this stage, the prospect of using KF(s) under HB-PTC was 
tantalizing considering the advantages of this reagent 
compared to other fluorine sources (Fig. 1B).
     Encouraged by initial calculations indicating that the 
energy required to solubilize KF(s) in dichloromethane is 
significantly reduced in the presence of bis-urea U* (see 
SI), we envisioned that asymmetric HB-PTC may be 
suitable for enantioselective fluorination with this more 
demanding fluoride source (lattice energy, 829 kJ/mol).13 
Precursors of meso aziridinium ions14 were selected as 
substrates for this study because desymmetrization with KF 
affords high value enantioenriched β-fluoroamines that are 
of considerable interest for applications in medicinal 
chemistry, especially for central nervous system drug 
discovery,15, 16 and catalyst design.17 Specifically, we 
propose that a chiral bis-urea of type U* brings KF(s) into 
solution as a tricoordinated hydrogen bonded complex; ion 
pairing of this complex with in situ formed meso 
aziridinium ion  followed by fluorination delivers the 
enantioenriched β-fluoroamine with release of the bis-urea 
catalyst (Fig. 1C).
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Figure 1 A. Tridentate bis-urea for HB-PTC. B. 
Advantages of KF. C. Synthesis of enantioenriched β-
fluoroamines with KF(s), and proposed HB-PTC 
mechanism. 
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    Most catalytic asymmetric methodologies towards β-
fluoroamines require fluorinated building blocks,18 but 
strategies featuring late stage enantioselective fluorination 
have been disclosed. Enamine catalysis and anionic phase 
transfer catalysis have been successfully applied using 
electrophilic fluorination reagents.19 Catalytic 
enantioselective nucleophilic fluorinations towards β-
fluoroamines have also appeared, but these reactions 
typically require hazardous HF reagents, or rely on in situ 
fluoride release from reagents of reduced atom economy.20 
These examples highlight the progress made toward 
accessing enantioenriched β-fluoroamines, and underline 
the demand for asymmetric catalytic methods for their 
synthesis using safe and readily available fluoride sources 
such as KF(s).
    Preliminary studies identified the stilbene-derived β-
chloro-N-diallylamine 1a as a suitable aziridinium ion 
precursor for the proposed enantioselective fluorination 
towards β-fluoroamine (Table 1) (see SI for details). This 
substrate features a tertiary amine rarely encountered in the 
context of late stage asymmetric fluorination,3 and the 
product of fluorination belongs to the 1,2-
diphenylethylamine family of NMDA receptor 
antagonists.21 We opted for N-allyl substitution to allow 
release of the primary amine via Pd-catalyzed deallylation 
post-fluorination.22

Table 1. Optimization of Reaction Conditions.

The reaction of rac-1a and KF (3 equiv) in 
dichloromethane at rt with 5 mol% of urea (S)-3a afforded 
β-fluoroamine 2a in >99% yield, but no control over 
enantioselectivity was observed (e.r. = 55:45) (Table 1, 
entry 1). This result however demonstrated that HB-PTC 
enables fluorination with KF. The N-alkylated catalysts 
3b–d capable of forming tricoordinated hydrogen bonded 
complex with fluoride did improve enantiocontrol (Table 1, 
entries 2–4, up to >99% yield and 86:14 e.r.). The e.r. (up 
to 90.5:9.5) was increased with N-alkylated catalysts 3f and 
3g featuring an extended poly-trifluoromethylated 
terphenyl π-system (Table 1, entries 6–7). Further reaction 
condition optimization (see SI for details) afforded 2a in 
good yields and high enantioselectivity (71% yield of 
isolated product, 95:5 e.r.). The optimized conditions 
consist of treating rac-1a with KF (5 equiv.) and 3g (10 
mol%) in CHCl3 at –15 °C for 72 h (Table 1, entry 11). 
     With the optimal reaction conditions in hand, we studied 
the scope of the reaction (Scheme 2). Substrates with a 
range of different amines were subjected to 
enantioselective fluorination. The fluorinated analogue of 
the analgesic lefetamine22 2b possessing two methyl groups 
on nitrogen was obtained in 65% yield and 95:5 e.r.. 
Various N-heterocycles were tolerated including motifs 
frequently encountered in FDA approved drugs (e.g. 
piperidine, piperazine, pyrrolidine, morpholine);23 this is 
demonstrated with the synthesis of β-fluoroamines 2c–i that 
were obtained in good yields and high enantioselectivities 
(up to 94% yield and 96:4 e.r.). Within this series, 
asymmetric HB-PTC gave access to fluorinated analogues 
of NMDA receptor antagonists 2e (MT-45)24a and 2g 
(diphenedine) in high enantioselectivity.24b-d The reaction is 
highly effective for substrates possessing two different N-
substituents that may lead to two diastereomeric meso 
aziridinium ions as exemplified with the synthesis of 2i, 2j 
and 2k that were obtained with e.r. reaching 96:4. Various 
substituents on the phenyl ring of the substrates are 
compatible including electron-donating and electron-
withdrawing groups. β-Fluoroamines 2l–2s were 
synthesized in good yields and e.r. (up to 87% yield and 
96:4 e.r.). A study comparing KF and CsF indicates that 
comparable yields could be obtained by simply increasing 
the excess of KF (5 vs. 3 equiv.), and the reaction 
concentration (0.5 vs. 0.25 M). The enantiomeric ratios 
were unaffected by the nature of the alkali fluoride. 
Departing from diaryl-based substrates, six- and five-
membered cyclic meso aziridinium precursors were also 
evaluated. Asymmetric catalytic fluorination occurred 
smoothly at room temperature in -trifluorotoluene, 
and afforded the cyclic β-fluoroamines 2t-v in good yields 
and with moderate enantioselectivity.
    The catalyst loading was reduced to 3 mol% for the 
reaction on a 1.1 g scale of 1a. This fluorination was 
performed at 5 °C, and afforded 2a in 76% yield and 93:7 
e.r. (Scheme 3A). N-Deprotection of β-fluoroamine 2a 
under Pd(0) catalysis21 afforded β-fluoroamine 4 in 72% 
yield with no erosion of e.r.. A single recrystallization gave 
4 in high enantiopurity (99.8:0.2 e.r.). Reductive amination 
of 4 with acetaldehyde yielded fluorinated ephenidine 5 as 
a single enantiomer,24e an additional NMDA receptor 
antagonist of the 1,2-diphenylethylamine family. 
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Entry Cat. Solvent  T (°C) Yielda e.r.b
1 3a DCM rt >99% 55:45
2 3b DCM rt 98% 85:15
3 3c DCM rt >99% 86:14
4 3d DCM rt 83% 86:14
5 3e DCM rt 77% 55:45
6 3f DCM rt 72% 88:12
7 3g DCM rt 80% 90.5:9.5
8c 3g DCM 0 80% 93:7
9c 3g CHCl3

d 0 90% 93.5:6.5
10c 3g 1,2-DFB 0 58% 94:6
11c 3g CHCl3

d –15 71%e 95:5

Reaction conditions: 0.05 mmol of 1a, 0.25 M, (S)-3a–g 

(5 mol%), stirring at 1200 rpm for 24 h. a Determined by 
19F-NMR using 4-fluoroanisole as internal standard; b 
e.r. = enantiomeric ratio determined by HPLC; c 0.5 M, 5 
equiv. of KF, 10 mol% of 3g; d CHCl3 was filtered on 
basic alumina to remove residual HCl; e Yield of isolated 
product after 72 h.
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Scheme 2. Substrate scope with KF(s) and CsF(s). 
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Conditions A: 1 (0.2 mmol), KF (5 equiv.), (S)-3g (5–10 mol%), CHCl3 
(0.5 M). Conditions B: 1 (0.2 mmol), CsF (3 equiv.), (S)-3g (5-10 mol%), 
CHCl3 (0.25 M). a15 mol% of catalyst used. bReaction performed in 
-trifluorotoluene. Structure of (S,S)-2g determined by single-crystal 
x-ray diffraction. Absolute configuration of all products assigned by 
analogy with (S,S)-2g. 

    In order to demonstrate the applicability of the 
methodology to multidecagram synthesis, we further 

optimized the process (Scheme 3B, see SI for details). 
Multigram quantities of substrate rac-1g were prepared via 
a chromatography-free epoxidation/ring-
opening/chlorination sequence from commercially 
available cis-stilbene (48% yield over three steps). The 
fluorination of rac-1g was performed at room temperature 
on a 50-g-scale using a smaller excess of KF (3 equiv.), and 
0.5 mol% of catalyst (S)-3g for 72h; this was made possible 
by increasing the concentration to 2 M and replacing 
chloroform with dichloromethane. The catalyst (S)-3g was 
separated from the product 2g via acid/base work-up, and 
the crude product was purified with a single 
recrystallization in MeOH to afford 2g in 66% yield and 
97:3 e.r.. The catalyst was quantitatively recovered and 
recycled without loss of efficiency with respect to both 
yield and enantioselectivity. Noteworthy, the reaction set-
up is operationally simple, does not require dry solvents, is 
carried out under air, and KF is used without any pre-
treatment.
 
Scheme 3. A. Gram scale fluorination of 1a enabling 
access to enantiopure fluorinated ephenidine. B. 50-g-scale 
reaction for the synthesis of fluorinated diphenidine.

Reaction conditions: i) Thiosalicyclic acid (2.5 equiv.), Pd(dba)2 (10 
mol%), dppb (10 mol%), THF, 60 °C, 12 h; ii) CH3CHO (5 equiv), 
NaBH(OAc)3 (3 equiv.), MeOH (0.2 M), rt, 3 h (1 mmol scale). 
Derivatization of 4 confirmed its (S,S) absolute configuration (see SI).5g

    The reaction was investigated computationally by 
molecular dynamics (MD) simulations, and density 
functional theory (DFT) calculations (see SI for full 
details).25 MD simulations in chloroform confirmed that N-
alkylated catalyst 3g forms a stable and persistent tridentate 
fluoride complex, with the alkylated urea in an anti-syn 
conformation.26 MD was further used for conformational 
sampling for DFT calculations,11,27 resulting in 15 DFT 
optimized transition structures (TSs) for ring-opening. 
    A Boltzmann ensemble of competing TSs predicted 
preferential (S,S) product formation from catalyst (S)-3g 
(supported by single-crystal x-ray diffraction of (S,S)-2g). 
Further, the computed selectivity of 95:5 e.r. at 278.15 K 
compares favorably with experimental values. The most 
stable competing TSs contributing towards major and 
minor product formation are shown in Figure 2A. The N-
substituents of the aziridinium ion are pointing away from 
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the catalytic pocket, into solvent, explaining wide 
substituent tolerance in these positions (Fig. 2Bi). In both 
TSs, the aziridinium ion docks with the catalyst backbone - 
favorable cation– interactions between naphthyl ring and 
aziridinium C-H protons are present (Fig. 2Bii).28

    We used various energy decomposition analyses to 
rationalize the origins of enantioselectivity.29-31 The cation–
 interaction is stronger in the major TS based on truncated 
models - in the absence of this interaction the selectivity is 

reduced by 1.5 kJ/mol. Steric crowding in the minor TS 
also leads to unfavorable geometric distortion (Fig. 2Biii). 
These combined effects contribute approximately half of 
ΔΔG‡. The remainder is due to substrate conformation (Fig. 
2Biv), favoring conjugation of the phenyl ring with the 
forming and breaking bonds (benzylic SN2). On the basis of 
dihedral angles, the minor TS is 20° further from 
conjugation than the major (see SI for more details of this 
analysis).32

Figure 2 Computed lowest energy TSs to major and minor product at the ωB97X-D3/(ma)-def2-TZVPP/COSMO(CHCl3)// 
M06-2X/def2-SVP(TZVPPD)/CPCM(CHCl3) level of theory, with highlights rationalizing substituent tolerance and origins 
of enantioselectivity.
In summary, we have shown that asymmetric HB-PTC 
enables enantioselective fluorination of racemic β-
chloroamines with KF, an ideal fluoride source based on 
safety, availability and cost. The resulting β-fluoroamines 
are obtained in high yields and enantiomeric ratios. This 
reaction uses a novel N-ethylated bis-urea catalyst that 
transports KF in solution as a chiral tricoordinated bis-
urea/fluoride complex. Subsequent ion-pairing with in situ 
formed meso aziridinium ion enables enantioselective C–F 
bond formation. The method stands out as it is 
operationally simple, can be performed in an open vessel, 
and does not require dry solvents or pre-treatment of KF. A 
50-g-scale reaction was performed for the synthesis of an 
enantioenriched fluorinated analogue of diphenidine, an 
NMDA receptor antagonist. We anticipate that the 
advantages of this novel HB-PTC process will offer new 
prospects in fluorination chemistry both in academia and 
industry.
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ring and the C–C bond of the aziridinium ring (Fig. S2). The 

optimum dihedral angle was estimated by performing a dihedral 

scan of the fluoride delivery TS with a small, achiral urea. The 

dihedral in the major TS, is approximately 7° from optimum, and in 

the minor, 27° (Fig. S13).
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