THE USE OF 2,6-ANHYDRO-2-THIO GLYCOPYRANOSYL FLUORIDE FOR A HIGHLY α-STEREOSELECTIVE GLYCOSYLATION

Kazunobu Toshima, Satsuki Mukaiyama, Takashi Ishiyama, and Kuniaki Tatsuta*

Department of Applied Chemistry, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN

Summary: The glycosylation of 2, 6-anhydro-1-fluoro-2-thioglycoside 1 with alcohols under various conditions proceeded smoothly at low temperature to give the corresponding α -glycosides in high yields, and the selectivity was highly independent on the conditions examined.

The selective creation of O-glycosidic linkage of 2,6-dideoxy sugar in glycosylation has been a long standing ploblem in organic chemistry and still one of the most challenging task for organic chemists. ¹⁾ In previous paper, we demonstrated a novel and efficient synthesis of 2,6-dideoxy- α -glycosides by use of phenyl 2,6-anhydro-1,2-dithio-D-altropyranosides as glycosyl donors to illustrate a highly stereocontrolled glycosylation. ²⁾ Recently, glycopyranosyl fluoride ³⁾ has been paid considerable attention as an efficient glycosyl donor as well as phenylthio glycoside. In this communication, we wish to report that 3,4-di-O-acetyl-2,6-anhydro-1-fluoro-2-thio-D-altropyranoside (1) was smoothly glycosylated with alcohols at low temperature by a variety of methods to give the corresponding α -glycosides which were easily converted into the 2,6-dideoxy- α -glycosides²⁾ in high yields.

The key glycosyl donor 1^4) was readily prepared from 2^2) (1.3 equiv NBS, 1.5 equiv DAST,⁵) -25°C, 10min) in 84% yield. We first examined the glycosylation of the anomeric mixture of 1 by using cyclohexylmethanol (3) as the glycosyl acceptor with many kinds of reagents such as $SnCl_2$ - $AgClO_4^{3a}$), $SnCl_2$ - $ZnCl_2$, $SnCl_2^{3b}$), $TMSOTf^{3c}$), Cp_2MCl_2 - $AgClO_4$ or $AgBF_4$ (M=Zr, Hf)^{3d, 3e}). The results summarized as entries 1~6 in Table 1 showed that these reactions proceeded at low temperature to give the α -glycoside with high stereocontrol in high to excellent yields even by the method which was not originally developed for α -glycosides (entry 5). Remarkably, stereoselectivity of the glycosylations was highly independent on the conditions examined. Further 1 was found to glycosylate with even hindered alcohols 5 and 6 by using only $SnCl_2$ as an activator to afford the corresponding α -glycosides in high yields (entries 8 and 9).

These results indicated that 2,6-anhydro-1-fluoro-2-thio sugar should find wide application in the synthesis of 2,6-dideoxy- α -glycosides.

<u>Acknowledgement:</u> We are grateful to the Institute of Microbial Chemistry for the generous support of our program. Financial support by the Ministry of Education, Science and Culture (Grant-in-Aid Scientific Research) is gratefully acknowledged.

References and Notes:

-) See references and notes cited in ref. 2.
- 2) K. Toshima, S. Mukaiyama, T. Ishiyama, and K. Tatsuta, Tetrahedron Lett., 31, 3339 (1990).

Table 1. Glycosylations of 1 with alcohols by several conditions

Entry	Alcohol ^{a)} (R-OH)	Activators (equiv)	Solvent	Temp.	Time	Product ²⁾ (α/β ^{c)})	Yield (%) ^{b)}	
1	О	SnCl ₂ (1.1)-AgClO ₄ (1.1)	Et ₂ O	-10°C	90min	97/3	98	
2	3	SnCl ₂ (1.1)-ZnCl ₂ (1.1)	Et ₂ O	-10°C	90min	98/2	89	
3		SnCl ₂ (1.1)	Et ₂ O	-10°C	90min	100/0	91	
4 ⁶⁾		TMSOTf(1.0)	Et ₂ O	-10°C	90min	92/8	90	
5		Cp ₂ HfCl ₂ (5.0)-AgClO ₄ (5.0)	CH ₂ Cl ₂	-10→25°C	90min	93/7	95	
6		Cp ₂ ZnCl ₂ (0.6)-AgBF ₄ (1.2)	CH ₂ Cl ₂	-20→10°C	120min	98/2	92	
7	OH OH	SnCl ₂ (1.1)	Et ₂ O	-10°C	90min	98/2	94	
8	○H 5	SnCl ₂ (1.1)	Et ₂ O	-10°C	140min	98/2	76	
9	- ОН	SnCl ₂ (1.1)	Et ₂ O	-10°C	90min	96/4	81	

- a) All reactions were carried out by use of 2.0 equiv. of alcohol to the glycosyl donor.
- b) Isolated yields after purification by column chromatography.
- c) α : β Ratios were determined by ¹H-NMR spectroscopy and /or isolation of pure isomers.
- (a) T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., 1981, 431; (b) K. C. Nicolaou, T. Ladduwahetty, J. L. Randall, and A. Chucholowski, J. Am. Chem. Soc., 108, 2466 (1986); (c) S. Hashimoto, M. Hayashi, and R. Noyori, Tetrahedron Lett., 25, 1379 (1984); (d) T. Matsumoto, H. Maeta, K. Suzuki, and late G. Tsuchihashi, Tetrahedron Lett., 29, 3567, 3571, 3575 (1988); (e) K. Suzuki, H. Maeta, T. Suzuki, and T. Matsumoto, Tetrahedron Lett., 30, 6879 (1989).
- ¹H-NMR(CDCl₃, 270MHz) spectra [δ (TMS), J(Hz)] are shown only for anomeric proton for 1: 5.92 (23/25H, ddd, J=69.0, 2.1 and 1.6 Hz, H-1(α)), 5.94 (2/25H, dd, J=68.6 and 3.8Hz, H-1(β)).
- K. C. Nicolaou, R. E. Dolle, D. P. Papahatjis, and J. L. Randall, J. Am. Chem. Soc., 106, 4189 (1984).
- Only when CH₃CN was used as a solvent in the glycosylation, β -anomer was predominantly obtained in high yield (88%, α/β =5/95).