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A method for the synthesis of triazole-linked DNA oligomers has been revisited to incorporate a reliable
protective group and linker for solid-phase synthesis. The new solid-phase synthesis allowed the prepa-
ration of oligomers with the efficiency of elongation reaching over 90%.
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Solid-phase synthesis has seen great success especially in the
preparation of oligomeric compounds such as peptides or oligonu-
cleotides.1 The success played a key role to ensure their availability
and, eventually, to lead the following development of these biopoly-
mers in the field of life science. The applicability of the solid-phase
methods considerably affects the development of artificial variants
of the biopolymers, as exemplified also by the success of peptide nu-
cleic acid (PNA).2 Recently, as a new variant of oligonucleotides, we
introduced a triazole-linked DNA (TLDNA)3 and demonstrated its
unique function as a lure substrate for an enzyme.4 For the original
synthesis, both solid-phase and convergent solution-phase meth-
ods were developed,3,5 and we found the superiority of solid-phase
synthesis particularly in the preparation of long oligonucleotides for
bioorganic applications.4 However, the elongation of TLDNA oligo-
mers by the solid-phase method has achieved only moderate effi-
ciency (ca. 70–80% per step), which may seriously hamper the
future development. In this Letter, we have revised the synthesis
method and improved the efficiency of the elongation over 90%.

Two important structural factors, protective groups and linkers,
should be examined for successful solid-phase synthesis. In our
previous synthesis of TLDNA oligomers, we adopted trimethylsilyl
(TMS) group for the protection of 50-acetylene moiety in elongating
units (1) and succinate ester for the linker in 30-terminus units
(2; Fig. 1)6,7 and achieved moderate efficiency for the synthesis
of 10-mer oligonucleotide (0.61% yield for 19 steps; 76% yield
per step).3 The analysis of byproducts indicated that the synthesis
suffered mainly from the undesired desilylation during copper-cat-
alyzed Huisgen cycloaddition reaction for the elongation. We
ll rights reserved.
therefore decided to change the protective group to a more reliable
triisopropylsilyl (TIPS) group,7,8 which consequently required the
replacement of the linker unit with adipinate (Fig. 1).9,10

We first describe the synthesis of TIPS-protected elongating
units. The synthesis route was the same as for the previous TMS-
protected elongating unit except that TIPS-protected acetylene
was used, and the deoxythymidine-analogue (3-T) was prepared
from oxetane 5 in two steps in moderate yield (Scheme 1).11 The
synthesis was scalable and allowed the preparation of 3-T in 40 g
Figure 1. Solid-phase synthesis of TLDNA showing 30-termini and elongating units.
Colored moieties show the protective group (red) and the linker (blue) that were
revised in the present synthesis. (a) Previous synthesis via a TMS/succinate route.
(b) Improved synthesis via a TIPS/adipinate route.
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Scheme 2. Synthesis of 30-terminus on a solid support.

Scheme 3. Synthesis of TLDNA 12-mer via TIPS/adipinate route.

Scheme 1. Synthesis of elongating deoxythymidine-analogue.
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through a single sequence of operations. Using 3-T as a starting
material, we also prepared the other three analogues, that is, deox-
ycytidine-, deoxyadenosine-, and deoxyguanosine-analogues (3-C,
3-A, and 3-G), through a transglycosylation, similarly, as reported
for TMS-protected unit (Fig. 2).12–14

The replacement of TMS with TIPS in the protective group re-
quires stronger desilylation reagents such as tetrabutyl ammonium
fluoride (TBAF) for the deprotection step,6 which, consequently,
forces us to change the succinate linker.3,7 After screening a few
candidates, we found adipinate as a favorable linker. Thus, we syn-
thesized adipinate with activated ester terminus 8 and loaded it on a
solid support (NovaSyn TG amino resin). The loading efficiency was
88% yield and was comparable to that of the succinate linker
(Scheme 2).3 When we desilylated the loaded monomer with TBAF,
the deprotected monomer was recovered in 98% yield from 9 after
the cleavage from resins (see Supplementary data). The result con-
firmed that the monomer on the adipinate linker survived the harsh
desilylation conditions. Note that the succinate linker could not
maintain the 30-terminus unit during the desilylation with TBAF.3,7

Finally, we examined the viability of the new TIPS/adipinate
route for the synthesis of a TLDNA oligomer. As a target for the
demonstration, we adopted 12-mer 10 which was active as a pri-
mer substrate for the reverse-transcriptase.4 Thus, repeating the
elongation/deprotection steps 11 times (23 steps of synthesis oper-
ations), we obtained 10 in 17% yield after hydrolytic cleavage from
the resin (Scheme 3). The average yield per step thus was 93%,
which was much improved from the previous TMS/succinate route
(76% per step).

In summary, we have developed an efficient and improved
method for the synthesis of TLDNA oligomers. Recruitment of reli-
able moieties for the protection and linkage was successful and en-
abled us to prepare a primer substrate with the efficiency
comparable to that achieved for natural oligonucleotides or
Figure 2. Elongating units with cytosine, adenine, and guanine nucleobases. The
numbers in parentheses show the isolated yield of b-analogues through
transglycosylation of 3-T.
PNA.2,15 Along with the recent discovery of unique biochemical
functions of TLDNA,4 the robust synthesis method will help in
accelerating the development of new artificial oligonucleotides.
The optimized conditions may also be informative for the applica-
tion of click chemistry to the solid-phase synthesis.16 We are cur-
rently synthesizing functional oligonucleotides with various mixed
sequences, which will be reported in near future.
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