

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 1229-1234

1-(2-Naphthyl)-1*H*-pyrazole-5-carboxylamides as potent factor Xa inhibitors. Part 3: Design, synthesis and SAR of orally bioavailable benzamidine-P4 inhibitors

Zhaozhong J. Jia,^{*,†} Yanhong Wu, Wenrong Huang, Penglie Zhang, Yonghong Song, John Woolfrey, Uma Sinha, Ann E. Arfsten, Susan T. Edwards, Athiwat Hutchaleelaha, Stanley J. Hollennbach, Joseph L. Lambing, Robert M. Scarborough and Bing-Yan Zhu^{*,‡}

Millennium Pharmaceuticals, Inc., 256 East Grand Ave., South San Francisco, CA 94080, USA

Received 19 June 2003; revised 5 December 2003; accepted 12 December 2003

Abstract—Using *N*,*N*-dialkylated benzamidines as the novel P4 motifs, we have designed and synthesized a class of 1-(2-naphthyl)-1*H*-pyrazole-5-carboxylamides as highly potent and selective fXa inhibitors with significantly improved hydrophilicity and in vitro anticoagulant activity. These benzamidine-P4 fXa inhibitors have displayed excellent oral bioavailability and long half-life. \bigcirc 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The design and discovery of orally active small molecule competitive human factor Xa (fXa) inhibitors as novel therapies for thromboembolic disorders have been a major focus in the pharmaceutical industry.¹ We have recently reported a series of 1-(2-naphthyl)-1H-pyrazole-5-carboxylamides as highly potent and selective fXa inhibitors with respectable oral bioavailability and halflife.^{2,3} However, compared to our benzamidine-P1 fXa inhibitors with similar binding affinity, many of the 2naphthyl-P1 fXa inhibitors are much weaker in vitro anticoagulants judged by the thrombin generation (TG) assay in human plasma.^{2b,4,5} The poor in vitro anticoagulant activity has been believed due to their low hydrophilicity which could lead to extensive protein binding in plasma. We have explored a variety of P4 strategies to increase hydrophilicity and in vitro anticoagulant activity.2b In this communication, we describe our discovery and SAR study of a class of highly potent 1-(2-naphthyl)-1H-pyrazole-5-carboxylamide fXa

0960-894X/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2003.12.054

inhibitors with N,N-dialkylated benzamidines as the P4 motifs.

2. Results and discussion

Unsubstituted benzamidines have long been employed in fXa inhibitors as binding ligands in both the S1 and S4 pockets.¹ However, most of these benzamidine compounds suffer poor oral bioavailability and short halflife, and are not good development candidates for oral fXa inhibitors. The N,N-dialkylated benzamidine moieties have been known to improve oral absorptions from the unsubstituted benzamidine in the platelet glycoprotein IIb-IIIa antagonist literature.^{6,7} Moreover, Berlex compound ZK-8078348 has demonstrated Nmethylimidazoline, a special form of N,N-dialkylamidine, to be a highly potent fXa P4 ligand. Thus, we hypothesized that the N,N-dialkylated benzamidine-P4 1-(2-naphthyl)-1H-pyrazole-5-carboxylamides (1, 2 and 3) could be highly potent fXa inhibitors with desired hydrophilicity and good oral PK properties. Our com-

Keywords: Factor Xa inhibitors.

^{*} Corresponding authors. Tel.: +1-650-246-7073; fax: +1-650-246-7776 (Z.J.J.); tel.: +1-510-402-4032 (B.-Y.Z.); e-mail: zjia@portola. com; bzhu@qbius.com

[†] Present address: Portola Pharmaceuticals, Inc., 270 East Grand Ave., Suite 22, South San Fransisco, CA 94080, USA.

[‡] Present address: Quark Biotech, Inc., 6536 Kaiser Dr., Fremont, CA 94555, USA.

Table 1. Effects of the aromatic moiety on fXa potency

Compd	Ar	fXa IC ₅₀ (nM)
4	s	511
5	$-\sum_{s}$	377
6		479
7	— <u> </u>	18
8	-	22

puter-based modeling suggested that the fXa S4 pocket could accommodate a variety of substituted amidines. At physiological pH, the *N*,*N*-dialkylated amidine would be positively charged. This charged P4 ligand not only would increase the inhibitors hydrophilicity, but also would increase its binding affinity through π -cation interactions in fXa S4 pocket.

To examine our hypothesis, we prepared the 3-fluoro-2naphthyl analogues 4-8 using the simplest *N*,*N*-dimethylamidine as the P4 element. As shown in Table 1, the low nanomolar fXa inhibitory activity of compounds 7 (18 nM) and 8 (22 nM) has proved our hypothesis. It has also been clear that the 1,4-phenyl linkage is optimal for fXa binding affinity.

To explore the effects of P4 amidine substitution on fXa activity, we then synthesized compounds 9–21. As listed in Table 2, unsubstituted amidine 9 (777 nM) and *N*-monosubstituted amidine 10 (114 nM) are not very active. The *N*-ethyl-*N*-methyl substituted analogue 11 (22 nM), pyrrolidine containing analogue 18 (8 nM) and *N*-methylimidazoline analogue 21 (18 nM) display equal or slightly better fXa activity than lead 8 (22 nM). All other amidine substitutions have resulted in a loss in fXa binding potency.

To improve fXa activity, we prepared compounds 22-25 to incorporate a trifluoromethyl group into the pyrazole.⁹ We also synthesized the corresponding tetrazole analogues 26-29 to probe the modification of the central nucleus.¹⁰ As summarized in Table 3, the trifluoromethyl group improves fXa potency only for *N*,*N*-dimethyl-amidine analogue 22 (4 nM). For the other analogues (23-25), there is no gain by the trifluoromethyl substituent. The tetrazole analogues (26-29) are not as potent as the corresponding 3-methylpyrazole fXa inhibitors (8, 17, 18 and 21).

To survey the effects of the 2-naphthyl substitution along with nucleus modification on fXa potency, we prepared compounds **30–45**. As shown in Table 4, in terms of fXa inhibitory activity, the 6-chloro-2-naphthyl

Table 2.	Effects of	amidine	substitution	on fXa	potency
----------	------------	---------	--------------	--------	---------

Compd	RN	fXa IC ₅₀ (nM)
	R ₂ -N R ₁	
8	HN	22
	-N,	
9	HN) H ₂ N	777
10	HN S NH	114
11		22
12		34
13		110
14		48
15		80
16		50
17		6
18		8
19		134
20		50
21		18

analogues (30–41) are more potent than the 3-fluoro-2naphthyl (8–29) and the 3-methylsulfonyl-2-naphthyl (42–45) analogues. This trend matches what we observed before in the 1-(2-naphthyl)-1*H*-pyrazole-5carboxylamide-based fXa inhibitors with a variety of other P4 motifs.^{2b} For the 6-chloro-2-naphthyl analogues with *N*,*N*-dialkylated amidines in P4 (34–37), the trifluoromethyl substituent in the pyrazole scaffold has enhanced the fXa inhibitory activity.⁹ Meanwhile, the displacement of the 3-methylpyrazole nucleus by tetrazole has little effect on fXa activity for the 6-chloro-2naphthyl analogues (38–41).

The K_i value and in vitro anticoagulant activity of the leading fXa inhibitors disclosed above are summarized in Table 5. Interestingly, by fXa inhibitory activity, tri-

110

Table 3. Effects of central nucleus modification on fXa potency

fluoromethyl substituted compounds 34 (IC₅₀ 1 nM; K_i 0.9 nM) and 37 (IC₅₀ 2 nM; K_i 1.2 nM) are more potent than analogues 30 (IC₅₀ 5 nM; K_i 0.7 nM) and 33 (IC₅₀ 8 nM; K_i 1.0 nM). However, in terms of fXa K_i , there is no difference at all in regard to their potency. Overall, this class of fXa inhibitors has displayed good to excellent in vitro anticoagulant activity in our human plasma TG assays. As expected, the 6-chloro-2-naphthyl analogues are the most active, judged by both fXa IC₅₀ and K_i values. But, due to relatively lower hydrophilicity, their strong fXa potency has not been translated into the desired in vitro anticoagulant activity. Despite of relatively weaker activity (fXa IC₅₀ and K_i), the more hydrophilic 3-methylsulfonyl-2-naphthyl analogues 42 $(2 \times TG \ 0.53 \ \mu M)$ and 45 $(2 \times TG \ 0.78 \ \mu M)$ are however the most potent in vitro anticoagulants. Moreover, it seems that the trifluoromethyl substituent on the pyrazole plays a detrimental effect on the in vitro anticoagulant activity. For example, judged by the TG assay outcome, inhibitors 34 ($2 \times TG \ 1.8 \ \mu M$) and 37 $(2 \times TG 4.5 \mu M)$ are less active in vitro anticoagulants than 30 ($2 \times TG 0.83 \mu M$) and 33 ($2 \times TG 0.91 \mu M$), even though their K_i values are about equal. Furthermore, the tetrazole nucleus is also disadvantageous to in vitro anticoagulant activity, as demonstrated by inhibitor 38 $(K_i 0.7 \text{ nM}; 2 \times \text{TG } 2.5 \mu\text{M}).$

29

The enzyme selectivity and rat PK profiles¹¹ of four representative fXa inhibitors (8, 21, 22 and 30) are

 Table 4. Effects of 2-naphthyl substitution and nucleus modification on fXa potency

Compd	Z ₃	Z ₆		RN R₂⁻N R₁	fXa IC ₅₀ (nM)
30	Н	Cl	N^_N	HN —N	5
31	Н	Cl	-L _N N		7
32	Н	Cl	NN		7
33	Н	Cl	NN	CNN∕N∕	8
34	Н	Cl	NN	HN -N	1
35	Н	Cl	N ^N		2
36	Н	Cl	NNN		4
37	Н	Cl		CNN∕	2
38	Н	Cl	N-N N N	HN —N	2
39	Н	Cl	N-Ŋ ──₹ N I	HN N	7
40	Н	Cl	N-N ──₹ N I		8
41	Н	Cl	N-N ──₹ N I	⊂N N,	15
42	SO ₂ Me	Н	NN	HN -N	12
43	SO ₂ Me	Н	NN		15
44	SO ₂ Me	Н			28
45	SO ₂ Me	Н	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N		14

 Table 5.
 The in vitro anticoagulant activity results of the leading

 N,N-dialkylated benzamidine-P4 fXa inhibitors

Compd	Z ₃	Z ₆	Ar	RN R ₂ -N R ₁	fXa IC ₅₀ (nM)	fXa <i>K</i> _i (nM)	2×TG (µM)
8	F	Η		HN -N	22	3.9	1.0
17	F	Н			6	4.1	1.4
18	F	Н			8	5.2	1.5
21	F	Н		⊂ <mark>N</mark> →	18	8.0	1.7
22	F	Н			3	0.7	1.4
30	Н	Cl			5	0.7	0.83
33	Н	Cl		${ \subset }^{N}_{{N}_{V}}$	8	1.0	0.91
34	Н	Cl		HN —N	1	0.9	1.8
37	Н	Cl		$[\bigvee_{N_{i}}^{N} -$	2	1.2	4.5
38	Н	Cl	N-N N		2	0.7	2.5
42	SO ₂ Me	Н		HN -N	12	2.8	0.53
45	SO ₂ Me	Н		⊂N∕N∕	14	3.9	0.78

displayed in Table 6. Like our other 2-naphthyl-P1 fXa inhibitors,² the above N,N-dialkylated benzamidine 1-(2-naphthyl)-1*H*-pyrazole-5-carboxylamides have excellent fXa selectivity (>1000-fold by IC₅₀) against thrombin, trypsin, *t*-PA, aPC, plasmin and kallikrein. All of these four compounds have excellent oral bioavailability and long half-life. In regard to the P4 modification, the *N*methylimidazoline group (8) gives higher bioavailability and lower volume distribution than the *N*,*N*-dimethylamidine group (21). In regard to the pyrazole nucleus modification, the trifluoromethyl substituent (22) provides considerable improvement for all PK parameters as we expected. As for the 6-chloro-2-naphthyl-P1 analogue (30), it displays a very long half-life, a relatively large volume distribution and fairly good bioavailability.

To evaluate our fXa inhibitors in vivo, we examined compounds 22 ($2 \times TG 1.4 \mu M$) and 30 ($2 \times TG 0.83 \mu M$)

Table 6. The selectivity and PK profiles of four fXa inhibitors

Compd	8	21	22	30
Z ₃	F	F	F	Н
Z	Н	Н	Н	Cl
Y	CH_3	CH_3	CF_3	CH_3
RN	HN		HN	HN
R₂ [−] N R₁	-N	Ĺ _Ν	-N	-N
fXa IC ₅₀ (nM)	22	18	3	5
Thrombin IC_{50} (μM)	>10	>10	>10	>10
Trypsin IC ₅₀ (μ M)	>10	>10	>10	>10
t-PA IC ₅₀ (μ M)	>10	>10	>10	>10
aPC IC ₅₀ (μ M)	>10	>10	>10	>10
Plasmin IC_{50} (μM)	>10	>10	>10	>10
Kallikrein IC ₅₀ (µM)	>10	>10	>10	>10
F(%)	24.3	43.9	46.9	13.8
$T_{1/2}$ (IV) (h)	3.1	1.8	8.8	18.0
Vd (L/kg)	49.4	7.6	11.0	82.5
CL (mL/min/kg)	54.3	49.3	14.7	55.9

in the rabbit deep vein thrombosis (DVT) model.¹² Infusion of fXa inhibitor **22** produced a 51% inhibition of thrombus accretion at a plasma level of 4.6 μ M and an ex vivo prothrombin time (PT) change of 1.53-fold. At a plasma concentration of 3.9 μ M, 20% inhibition and 1.43-fold ex vivo PT change were found. Infusion of fXa inhibitor **30** generated a 56% inhibition of thrombus accretion at a plasma level of 4.5 μ M and an ex vivo PT change of 1.66-fold. At a plasma concentration of 3.7 μ M, 20% inhibition and 1.56-fold ex vivo PT change were produced.

Computer-based docking studies using GOLD¹³ as well as both published and in-house fXa crystal data suggested a reasonable binding mode hypothesis for this class of *N*,*N*-dialkylated benzamidine-P4 fXa inhibitors. As shown in Figure 1 for compound **30** (fXa K_i 0.7 nM), the 6-chloro-2-naphthyl P1 moiety fits in the fXa S1 pocket and points into the aromatic ring of Tyr228 at the bottom of the pocket. The *N*,*N*-dimethylamidine is positively charged at physiological pH. This positive charge facilitates the π -cation stacking interaction of the benzamidine with the aromatic functionalities in the S4 pocket.

In conclusion, by using *N*,*N*-dialkylated benzamidines as the P4 motifs, we have discovered a class of 1-(2-naphthyl)-1*H*-pyrazole-5-carboxylamides as highly potent and selective fXa inhibitors with excellent oral bioavailablity, long half-life, and excellent in vitro anticoagulant potency. Our further optimization on the 2-naphthyl P1 moiety using two substitution groups will be reported in due course.

3. Chemistry

The preparation of the *N*,*N*-dialkylated benzamidine-P4 fXa inhibitors is illustrated by the synthesis of

Figure 1. Computer modeling of compound 30 docked in fXa active enzyme pocket.

compounds 8 and 21. Ethyl 1-(3-fluoro-2-naphthyl)-3methyl-1*H*-pyrazole-5-carboxylate (47) was prepared from 3-fluoro-2-naphthylamine (46) as described in our previous communication.^{2a} Compound 48, assembled via a Weinreb reaction, was employed to produce 8 and 21 in two routes through methyl imidate 49 and methyl thioimidate 50.

As shown in Scheme 2, the synthesis of 1-(3-fluoro-2-naphthyl)-3-trifluoromethyl-1*H*-pyrazole-5-carboxylic acid (**52**) was accomplished through oxidative cleavage of the furyl group in compound **51**. To prepare ethyl 1-(3-fluoro-2-naphthyl)-1*H*-tetrazole-5-carboxylate (**55**), 3-fluoro-2-naphthylamine (**46**)^{2a} was treated with ethyl

Scheme 1. (a) (1) NaNO₂ (1.1 equiv), concd HCl, 0 °C, 30 m; (2) SnCl₂·2H₂O (3 equiv), concd HCl, 0 °C, 1 h; filtration; (b) THF/HOAc (1:2), reflux, 2 h; (c) Me₃Al (2M in hexane, 5 equiv), DCM, overnight; (d) dry MeOH, saturated with HCl (g), 0 °C to rt, overnight; (e) Et₃N/ dioxane (1:10), saturated with H₂S (g), rt, overnight; (f) MeI (10 equiv), acetone, reflux, 1–2 h; (g) Me₂NH (2M in MeOH, 5 equiv), dry MeOH, reflux, 1 h; (h) MeNHCH₂CH₂NH₂ (3 equiv), dry MeOH, reflux, 1 h; (j) MeNHCH₂CH₂NH₂ (3 equiv), HOAc (8 equiv), dry MeOH, reflux, 1 h.

Scheme 2. (a) (1) NaNO₂ (1.1 equiv), concd HCl, 0 °C, 30 m; (2) SnCl₂·2H₂O (3 equiv), concd HCl, 0 °C, 1 h; filtration; (b) THF/HOAc (1:2), reflux, 2 h; (c) KMnO₄ (5 equiv), acetone/water (2:1), 60 °C, 3 h; (d) EtO₂CCOCl (1.2 equiv), Et₃N (5 equiv), DCM, rt; (e) Ph₃P (2 equiv), CCl₄, reflux, overnight; (f) NaN₃ (1.2 equiv), MeCN, rt, overnight; (g) CuCl (10 equiv), CuI (1 equiv), DMF, reflux; (h) (1) DPPA (1.5 equiv), Et₃N (1.5 equiv), DMF, rt, 3 h; (2) water, rflx, 1 h.

oxalate to give **53**, which was converted to **54** by reacting with triphenylphosphine in carbon tetrachloride. Compound **54** then reacted with sodium azide to smoothly produce building block **55** in high yield. Ethyl 1-(6-chloro-2-naphthyl)-1*H*-tetrazole-5-carboxylate (**59**) was synthesized similarly from 6-chloro-2-naphthylamine (**58**), which had been prepared from commercial 6-bromo-2-naphthoic acid (**56**) in two steps. The synthesis of ethyl 1-(6-chloro-2-naphthyl)-3-methyl-1*H*-pyrazole-5-carboxylate and ethyl 1-(3-methylsulfonyl-2-naphthyl)-3-methyl-1*H*-pyrazole-5-carboxylate have been reported.² All the corresponding *N*,*N*-dialkylated benzamidine-P4 fXa inhibitors were made using the chemistry exemplified in Scheme 1.

Acknowledgements

We would like to thank Jaya Kothule, Paul Wong, Brian Huang, Bridget May and Shannon Poole for performing the biological assays. We would like to thank Keith Abe and Gail Siu for performing the rabbit DVT experiment.

References and notes

- (a) Zhu, B.-Y.; Scarborough, R. M. Annu. Rep. Med. Chem. 2000, 35, 83. (b) Zhu, B.-Y.; Scarborough, R. M. Curr. Opin. Car. Pulmon. Renal Invest. Drugs 1999, 1, 63.
 (c) Rai, R.; Spengeler, P. A.; Elrod, K. C.; Young, W. B. Curr. Med. Chem. 2001, 8, 101. (d) Sanderson, P. E. J. Annu. Rep. Med. Chem. 2001, 36, 79. (e) Walenga, J. M.; Jeske, W. P.; Hoppensteadt, D.; Fareed, J. Curr. Opin. Invest. Drugs 2003, 4, 272.
- (a) For precedent work, see: Jia, Z. J.; Wu, Y.; Huang, W.; Goldman, E.; Zhang, P.; Woolfrey, J.; Wong, P.;

Huang, B.; Sinha, U.; Park, G.; Reed, A.; Scarborough, R. M.; Zhu, B.-Y. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1651. (b) Jia, Z. J.; Wu, Y.; Huang, W.; Zhang, P.; Clizbe, L. A.; Goldman, E. A.; Sinha, U.; Arfsten, A. E.; Edwards, S. T.; Alphonso, M.; Hutchaleelaha, A.; Scarborough, R. M.; Zhu, B.-Y. *Bioog. Med. Chem. Lett.* **2004**, *14*, the preceding communication. doi:10.1016/ j.bmcl.2003.12.053.

- 3. Part of the work described in this communication has been previously presented at the 226th ACS National Meeting in September 2003 in New York, New York (MEDI-32).
- 4. Thrombin generation in human plasma (TG) assay: Potential fXa inhibitors are dissolved in DMSO, and serial dilutions are made in wells of 96 well plates. Reptilasetreated human plasma is added to the inhibitors, followed by substrate (H- β -Ala-Gly-Arg-*p*-nitroanilide) and CaCl₂. The thrombin generation reaction is started by addition of 640 pmol/L of recombinant tissue factor. The absorbance is monitored at 405 nm at 37 °C for 22 min. The results are expressed as 2×TG, the concentration of an inhibitor required to double the time of maximum thrombin generation. A ≤ 1 µM 2×TG value is usually required for positively efficacious response in our rabbit DVT model.
- Sinha, U.; Lin, P. H.; Edwards, S. T.; Wong, P. W.; Zhu, B.-Y.; Scarborough, R. M.; Su, T.; Jia, Z. J.; Song, Y.; Zhang, P.; Clizbe, L. A.; Park, G.; Reed, A.; Hollenbach, S. J.; Malinowski, J.; Arfsten, A. E. Arterios. Thromb. Vasc. Biol. 2003, 23, 1098.
- 6. Scarborough, R. M.; Gretler, D. D. J. Med. Chem. 2000, 43, 3453.
- (a) Okumura, K.; Shimazaki, T.; Aoki, Y.; Yamashita, H.; Tanaka, E.; Banba, S.; Yazawa, K.; Kibayashi, K.; Banno, H. J. Med. Chem. 1998, 41, 4036. (b) Hayashi, Y.; Katada, J.; Harada, T.; Tachiki, A.; Iijima, K.; Takiguchi, Y.; Muramatsu, M.; Miyazaki, H.; Asari, T.; Okazaki, T.; Sato, Y.; Yasuda, E.; Yano, M.; Uno, I.; Ojima, I. J. Med. Chem. 1998, 41, 2345.

- Phillips, G. B.; Buckman, B. O.; Davey, D. D.; Eagen, K. A.; Guilford, W. J.; Hinchman, J.; Ho, E.; Koovakkat, S.; Liang, A.; Light, D. R.; Kohan, R.; Ng, H. P.; Post, J. M.; Shaw, K. J.; Smith, D.; Subramanyam, B.; Sullivan, M. E.; Trinh, L.; Vergona, R.; Walters, J.; White, K.; Whitlow, M.; Wu, S.; Xu, W.; Morrissey, M. M. J. Med. Chem. 1998, 41, 3557.
- The fXa potency enhancing effect of the trifluoromethyl group was first demonstrated by the DuPont team. For reference, see: Pinto, D. J.; Orwat, M. J.; Wang, S.; Fevig, J. M.; Quan, M. L.; Amparo, E. C.; Cacciola, J.; Rossi, K. A.; Alexander, R. S.; Smallwood, A. S.; Luettgen, J. M.; Liang, L.; Aungst, B. J.; Wright, M. R.; Knabb, R. M.; Wong, P. C.; Wexler, R. R.; Lam, P. Y. S. J. Med. Chem. 2001, 44, 566.
- A series of tetrazole nucleus-based fXa inhibitors was recently published by the BMS team: Quan, M. L.; Ellis, C. D.; He, M. Y.; Liauw, A. Y.; Woerner, F. J.; Alexander, R. S.; Knabb, R. M.; Lam, P. Y. S.; Luettgen, J. M.; Wong, P. C.; Wright, M. R.; Wexler, R. R. *Bioorg. Med. Chem. Lett.* 2003, 13, 369.
- 11. These compounds were administered by IV bolus injection to conscious Sprague–Dawley rats at a dose of 0.2 or 0.4 mg/kg in a solution of 50% PEG-300. They were administered orally at a dose of 4 or 6 mg/kg in a suspension of 25% PEG-300. The plasma samples were analyzed using LC/MS/MS.
- (a) Sinha, U.; Ku, P.; Malinowski, J.; Zhu, B.-Y.; Scarborough, R. M.; Marlowe, C. K.; Lin, P. H.; Hollenbach, S. J. *Eur. J. Pharmacol.* **2000**, *395*, 51. (b) Wong, A. G.; Gunn, A. C.; Ku, P.; Hollenbach, S.; Sinha, U. Thromb. Haemost. **1997**, *77*, 1143. (c) Hollenbach, S.; Sinha, U.; Lin, P. H.; Needham, K.; Frey, L.; Hancock, T. E.; Wong, A.; Wolf, D. L. Thromb. Haemost **1994**, *71*, 357.
- Jones, G.; Willet, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727.