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Abstract 

 

The knowledge of the regioselectivity between different hydroxyl groups of 

glycosyl acceptors is valuable in planning simple strategies for the synthesis of 

oligosaccharides, minimizing the use of protecting groups. With the aim of obtaining 

deeper knowledge on this subject, we analyzed the relative reactivity of the OH-3 and 

OH-4 groups of 2,6-di-O-protected methyl α- and β-glucopyranosides in glycosylation 

reactions. The glycosyl acceptors were prepared by simple procedures, and galacto- 

pyranosyl and furanosyl trichloroacetimidates were evaluated as glycosyl donors. 

Experimental results were contrasted with those obtained by a molecular modeling 

approach. A fair agreement of the molecular modeling and experimental results was 

obtained. It has been shown, that by choosing the right anomer and protecting group, 

either the 1→3 or 1→4 linkage can selectively be installed using the appropriate glucosyl 

acceptor. 

Jo
urn

al 
Pre-

pro
of



3 

 

Introduction 

 

Nowadays, the importance of specific oligosaccharides in biological processes is 

widely known, thus requiring simple and reproducible procedures for their synthesis.1,2
 

Glycosylation reactions are a key factor in this process, though they often appears to 

complicate the synthesis due to the large number of free hydroxyl groups present in 

carbohydrates, many times with similar reactivities. This fact frequently makes it necessary 

to introduce protecting groups which have to be removed at the end, giving rise to a 

tedious, time-consuming and yield-depleting synthetic sequence. However, it is sometimes 

possible to plan selective glycosylations avoiding or minimizing the use of protecting 

groups if the reactivity of one of the hydroxyl groups is much larger than that of other one 

and limiting amounts of glycosyl donors are used. This approach requires comprehensive 

knowledge of the regioselectivity of glycosidation reactions, which are not always well 

understood, as they depend sometimes on subtle factors. Some attempts to rationalize the 

regioselectivity on theoretical basis have been fairly success,3
 although others have failed. 

In a recent work, we analyzed the relative reactivity of the OH-3 and OH-4 of 2,6-O-

diprotected methyl α- and β-galactopyranosyl derivatives in glycosylation reactions with 

different galactosyl donors. As expected, the formation of the 1→3 disaccharides was 

favored, given the equatorial orientation of the OH-3 group vs. the axial one of the OH-4 

group. Nevertheless, the regioselectivities were very different, ranging from very high to 

quite low, depending on the substituents and the anomeric configuration of the acceptors, 

and the reactivities of the donors. The highest regioselectivities were achieved for the 2,6-

di-O-benzylated acceptors and the per-O-benzoylated-galactopyranosyl 

trichloroacetimidate.4 Nevertheless, for some donors derived from 2-phthalilamide-2-

deoxy-glucopyranose the best regioselectivity was observed for a 2,6-di-O-benzoylated 

galactopuranosyl acceptor,5 showing once again that the regioselectivity of glycosylation 

reactions is susceptible to a manifold of factors. Rationalization of the OH-3/OH-4 

reactivities by different molecular modeling approaches agreed with the general trend but 

failed to explain subtler factors governing the difference in regioselectivity between some 

of the acceptors.4  
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The two most common monosaccharide residues in Nature are D-glucose and D-

galactose, and consequently, these units have been used by carbohydrate chemists most 

frequently. Motifs D-Galp-1→3-D-Glcp and D-Galp-1→4-D-Glcp (lactose) are used as 

models for the action of β-galactosidases,6 whereas other disaccharides and higher 

oligosaccharides containing these moieties can have important biological properties. Thus, 

knowledge of the selectivity between O-3/O-4 of glucosyl acceptors is significant in 

planning the synthesis of these oligosaccharides when intending to minimize the use of 

protecting groups. Although many studies related with the regioselective glycosylation of 

“less protected acceptors” have been reported,5,7–9 the case of glucose, with all equatorial 

substituents, has been less attended, usually not involving the O-3/O-4 positions.10–14  

The aim of the present work is to extend our previous study to the case of glucosyl 

acceptors, analyzing the glycosylation of 2,6-di-O-protected methyl glycosides 1α,β and 

2α,β, which differ from the previous study4 in the fact that both free OHs are equatorial 

(Figure 1). Trichloroacemidates 3 and 4 were used as donors, and the experimental results 

were compared with those obtained by molecular modeling. Differences with D-Gal 

acceptors are also analyzed. 

 

 

  

Figure 1. Studied glucosyl acceptors and galactosyl donors 
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1. Results and Discussion 

1.1. Experimental study 

For the objectives of the present study we required D-Glcp derivatives with OH-2 and 

OH-6 blocked. Many efforts have been made to develop simple procedures for the 

preparation of partially substituted derivatives of glucose,13,15–20 which is more difficult to 

achieve, compared with mannose or galactose, due to the fact that all the secondary 

hydroxyl groups are equatorial and display comparable reactivity under various common 

conditions. We synthesized derivatives 1α,βα,βα,βα,β and 2α,βα,βα,βα,β, in order to evidence the possible 

differences between the electron withdrawing/not withdrawing character of the protecting 

groups in the glycosylation regioselectivity. α-Glucopyranosyl acceptors were synthesized 

from commercially available methyl α-D-Glcp (5αααα). For the β-anomers, instead, methyl β-

D-Glcp (5ββββ)21 was prepared by BF3·OEt2 promoted glycosidation22 of per-O-benzoyl-Glcp 

under short reaction time to prevent α-anomerization, followed by Zemplèn de-O-

benzoylation. Benzylated glycosides 1αααα17 and 1ββββ18 were obtained by stannylene acetals-

mediated substitutions, by treatment of 5αααα or 5β β β β with    Bu2SnO under toluene reflux, 

followed by benzylation with benzyl bromide in the presence of TBAB (Scheme 1). The 

general procedure described by Zhou et al.18 was followed. Benzoylated acceptor 

2αααα23,24    was prepared by benzoylation with limited amounts of benzoyl chloride. It is worth 

mentioning, that this procedure was not effective for the β-anomer. Acceptor 2ββββ16 was 

prepared also by stannylene acetals-mediated substitutions, but treatment with Bu2SnO of 

5ββββ was performed under MeOH reflux, followed by benzoylation in chloroform, as 

described by Dong et al.25 (Scheme 1). The regioselective substitutions proceeded by 

formation of the 4,6- and 2,3-stannylene acetals which are then substituted at the most 

reactive O-2 and O-6 possitions.18 
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Scheme 1. Synthesis of D-Glcp glycosyl acceptors 1α,βα,βα,βα,β and 2α,β2α,β2α,β2α,β    

    

With glucosyl acceptors 1α,βα,βα,βα,β and 2α,β2α,β2α,β2α,β    in hand, we assayed glycosylation reactions 

with galactosyl donors 3 and 4, with participating groups at position 2, and thus giving rise 

only to β glycosides. Trichloroacetimidates 526 and 627 were prepared by treatment with 

trichloroacetonitrile and DBU of the corresponding benzoylated hemiacetals. To avoid 

migration during the glycosylations, acetyl groups were not used either in the donors or the 

acceptors.28,29 The coupling reactions were performed in CH2Cl2 solution, at low 

temperature, and the activation of the donor was acchieved with catalytic TMSOTf. The 

molar ratio of acceptor to donor was 1.4:1 to preclude double glycosylation of the 

acceptors.4  

When TLC showed the disappearance of the donor, normally after 2 h of reaction, 

relative yields of the disaccharides were determined by integration of the 1H NMR signals 

of the anomeric or other well-resolved protons of the crude mixtures. Then, the mixtures 

were purified by column chromatography in order to characterize the condensation 

products and to confirm the yields of the isolated regioisomers. The structures of the 

disaccharides were univocally assigned on the basis of NMR spectra. The position of the 

interglycosidic linkages was verified from the deshielding of the 13C NMR signals involved 

in such linkages.30,31 For example, for disaccharide 6ββββ, linked    (1→3), the main product of 

the coupling between 3 with 1ββββ,  signals corresponding to C-3 and C-4 were observed at 
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86.0 and 68.7 ppm, respectively. Instead, for the minor product 7ββββ (1→4) such signals 

were observed at 75.3 (C-3) and 81.4 ppm (C-4). The deshielding effect of the 

glycosidation can be clearly observed in Table 1, where C-3 and C-4 chemical shifts (126 

MHz, Cl3CD) of acceptors 1α,βα,βα,βα,β and 2α,β2α,β2α,β2α,β     and dissacharides 6-13 are listed, as well as the 

∆δ values between the dissacharides and the corresponding acceptor and the difference 

between the ∆δ of C-3 and C-4 (∆∆δ). ∆∆δ values are > 0 for 1→3 dissaccharides and < 0 

for 1→4. Information provided by HMBC experiments and observation in the 1H NMR 

spectrum of the signal corresponding to the free OH and the corresponding 3JH,OH coupling 

constant, also supported the regiochemistry of the products. The stereochemistries of the 

newly formed glycosidic linkages were established from the 3J1’,2’ coupling constants, 

which were around 8 Hz for disaccharides obtained from pyranosic donor 3 and 1-2 Hz for 

those obtained from furanosic donor 4.32 

 

 

Table 1. 13C NMR chemical shifts for C-3 and C-4 of the glycosyl acceptors 1α,βα,βα,βα,β and 

2α,β2α,β2α,β2α,β and the product dissacharides 6666-13131313;    ∆δn: difference between δC-n  οf each 

disaccharide and δC-n of the corresponding acceptor;  ∆∆δ: ∆δ3 − ∆δ4.  

 

Acceptors     

 3αααα 3ββββ 4αααα 4ββββ     

C-3 (δ) 72.9 75.9 71.4 75.2     

C-4 (δ) 70.9 71.5 70.6 70.6     

1→→→→3 Disaccharides  

 6αααα 6ββββ 8αααα 8ββββ 10αααα 10ββββ 12αααα 12ββββ 

C-3 (δ) 84.2 86.0 82.0 85.9 81.3 82.9 79.7 83.0 

Δδ3 11.3 10.1 10.6 10.7 8.4 7.0 8.3 7.8 

C-4 (δ) 68.5 68.7 69.3 68.8 69.5 70.2 69.5 69.5 

Δδ4 -2.4 -2.8 -1.3 -1.8 -1.4 -1.3 -1.1 -1.1 

ΔΔδ 13.7 12.9 11.9 12.5 9.8 8.3 9.4 8.9 

1→→→→4 Disaccharides     

 7αααα 7ββββ 9αααα 9ββββ 11αααα 11ββββ 13αααα 13ββββ 

C-3 (δ) 72.0 75.0 69.9 73.5 71.9 74.9 70.3 73.9 

Δδ3 -0.9 -0.9 -1.5 -1.7 -1.0 -1.0 -1.1 -1.3 

C-4 (δ) 81.4 81.5 82.7 82.3 77.2 77.1 79.8 79.5 

Δδ4 10.5 10.0 12.1 11.7 6.3 5.6 9.2 8.9 

ΔΔδ -11.4 -10.9 -13.6 -13.4 -7.3 -6.6 -10.3 -10.2 
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In the glycosylation reactions, all the acceptors showed the same trend, except 

methyl 2,6-di-O-benzoyl-β-D-Glcp (2ββββ, Table 2). Acceptors 1αααα, 1ββββ and 2αααα were 

preferentially glycosylated at O-3 (Table 2, entries 1-3 and 5-7), although it has been 

stated that both OHs have similar steric hindrance.33 It was observed a higher selectivity 

for the benzylated derivative 1αααα than for the benzoylated derivative 2αααα. For 2ββββ, instead, 

the 1→4 disaccharide 9ββββ was the main product with 3 as glycosyl donor (entry 4), and no 

regioselectivity was observed hen donor 4 was utilized (entry 8). For donor 3, less 

reactive than 4,34,35 higher regioselectivities were achieved (entries 1-4 vs- 5-8).  

These results show that a trend increasing the reactivity of O-4 is observed when 

passing from benzylated derivatives to benzoylated derivatives, and when passing from 

α-anomers to β-anomers. This trend leads to O-4 preferential regioselectivity only for 

compound 2ββββ. Exactly the same trend was observed when assaying the O-3/O-4 

regioselectivity of α-and β-methylglycosides of 2-deoxy-2-dimethylmaleoyl glucosamine 

derivatives protected with benzoyl and benzyl groups at O-6.34 However, in that case, the 

trend led to preferential O-4 reactivity for both β-anomers. The reversal of regioselectivity 

observed in these cases shows that the remote anomeric configuration plays a significant 

role in the O-3/O-4 regioselectivity. 

It is worth noticing that the yield was excellent in all glycosylations, showing once 

again the robustness of the trichloroacetimidate method. 

 

Scheme 2. Glycosylation of D-Glcp acceptors 1α,βα,βα,βα,β and 2α,βα,βα,βα,β with donors 3 and 4. 
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Table 2. Ratios and yields of 1→3 and 1→4 disaccharides obtained by reaction of donors 

3-5 with acceptors 3αααα,,,,ββββ and 4αααα,,,,ββββ 

 
Entry Donor Acceptor Products  Ratioa Yieldsb 

1→3 1→4 1→3 : 1→4 %a %c 
1 3 1αααα 6αααα 7αααα 6.5:1 96 91 
2 3 1ββββ 6ββββ 7ββββ 2:1 96 92 
3 3 2αααα 8αααα 9αααα 2.1:1 71 75 
4 3 2ββββ 8ββββ 9ββββ 1:5.6 100 90 
5 4 1αααα 10αααα 11αααα 3.45:1 92 89 
6 4 1ββββ 10ββββ 11ββββ 1.75:1 90 87 
7 4 2αααα 12αααα 13αααα 2:1 100 92 
8 4 2ββββ 12ββββ 13ββββ 1:1 100 91 
aDetermined from the 1H NMR spectrum of the crude reaction mixture. 
bCombined yield of 1→3 and 1→4 regioisomers. 
cYields refers to isolated pure products after column chromatography on the basis of the 
donor amount used in the reaction. 
 

2.2. Molecular modeling study 

We have carried out molecular modeling calculations in order to determine the 

atomic partial charges and condensed-to-atom Fukui functions36 in an attempt to 

rationalize the observed reactivity of the OH-3/OH-4 groups of acceptors 1α,β and 2α,β, 

as we did with the equivalent galactose acceptors.4 As OH-3 in galactose was equatorial 

and OH-4 was axial, and both are equatorial in glucose, it could be expected a less sharp 

trend shown by modeling. The charge density was calculated for both methods using the 

regular Mulliken charges. 

For the sake of simplicity, instead of acceptors 1α,β and 2α,β, analogs carrying 

acetyl groups instead of benzoyl, and methyl groups instead of benzyl moieties were 

used37
 (Figure 2). The lower energy conformers were found by molecular mechanics 

calculations (MM3), and then optimized with B3LYP/6-311+G**, and then, single-point 

calculations with M06-2X/6-311+G** (Figure A.1 and Table A.1, Electronic 

Supplementary Information File 1). A whole set of low-energy conformers was calculated 

for each of the four compounds, in order to carry out a Boltzmann-averaging to obtain the 
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local charges and Fukui functions (Table A.2 and Table A.3, Electronic Supplementary 

Information File 1). It has been shown that in several systems the electron density 

distribution can define the reactivity, i.e. the position with a larger net charge (q) will be 

that preferably attacked by a hard electrophiles.38 However, in order to describe the 

interaction between nucleophile and electrophile corresponding to a soft–soft interaction 

in the context of the hard and soft acid and base principle (HSAB), the most common 

numerical descriptor is the local Fukui function (f-), related to the electron density in the 

HOMO frontier molecular for an electrophilic attack.36,39–41 It should be expected to 

obtain higher absolute values for q and for f for the more reactive site. Fukui functions 

have already been successfully used in order to assess the reactivity of secondary 

hydroxyl groups of carbohydrate.42–44  

Figure 2 and Table 3 show that the charge and Fukui determinations predict that 

OH-3 should be the more reactive site for the benzylated derivatives 1αααα and 1ββββ, whereas 

OH-4 should be the more reactive site for the benzoylated derivatives 2αααα and 2ββββ. This 

indicates, that the experimental reactivity for the benzylated derivatives is predicted 

correctly by modeling. On the other hand, for benzoylated derivatives, modeling predicts 

correctly the higher HO-4 reactivity of 2ββββ, but fails to perform correctly for 2αααα. The 

highest regioselectivity observed for 1αααα appears not to be predicted either by using 

modeling, suggesting that subtle factors not considered in the charge determinations, or by 

energy errors which might lead to an inadequate Boltzmann-averaging of the low-energy 

conformers can have some influence on the final outcome. The q and f values calculated 

for both oxygens are very similar, much more than in the case of D-Galp acceptors,4 

making the prediction of the regioselectivity less reliable, given the low significance of 

the differences. The recognized limitation of the DFT to reproduce the conformational 

dynamics of flexible systems,45–49 and the influence of the donor structure, not considered 

in the present study, but certainly important,50 could be some reasons for this divergence 

with the experimental results for 1αααα. In any case, a fair agreement of the experimental 

results and the modeling has been determined. 
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Figure 2. Model D-Glcp 3,4-diol acceptors and data obtained with B3LYP. 

 

Table 3. Ratio of charges and Fukui functions on O-3/O-4 observed for analogs of 

acceptors 1-2 (calculations with M06-2X/6-311+G**//B3LYP/6-311+G**) 

 

  qO-3/qO-4 fO-3/fO-4
a 

Analog of 1αααα  1.006 1.12 
Analog of 1ββββ  1.079 1.54 

Analog of 2αααα  0.898 0.93 
Analog of 2ββββ  0.962 0.87 
 

 

2. Conclusions 

 

Glucosyl acceptors 1αααα,β,β,β,β and 2α,α,α,α,ββββ were obtained by simple procedures. For 

alkylated acceptors 1α,βα,βα,βα,β, a higher reactivity for OH-3 was experimentally observed in 

accordance with the theoretical results. For acylated acceptors 2αααα and 2ββββ    modeling predicts 

a slightly higher reactivity of OH-4 which only agrees with the experimental results for 2ββββ. 

A trend towards a relatively enhanced reactivity of O-4 with regards to O-3 in the changes 

α → β and Bz → Bn was observed, in agreement with previous reports. The 

regioselectivities experimentally achieved in some of the cases, could significantly simplify 
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the synthesis of D-Galp-1→3-D-Glcp and D-Galp-1→4-D-Glcp motifs in the synthesis 

relevant molecules. 

 

 

3. Experimental section 

 

4.1 General Methods 

The solvents used were distilled, dried and stored according to standard procedures. 

Analytical thin layer chromatography (TLC) was performed on Silica Gel 60 F254 (Merck) 

aluminium supported plates (layer thickness 0.2 mm). Visualization of the spots was 

effected by exposure to UV light and charring with a solution of 5% (v/v) sulfuric acid in 

EtOH, containing 0.5% p-anisaldehyde. Column chromatography was carried out with 

Silica Gel 60 (230–400 mesh, Merck). Optical rotations were measured with a Perkin-

Elmer 343 digital polarimeter. Nuclear magnetic resonance (NMR) spectra were recorded 

with a Bruker AMX 500 instrument. Chemical shifts (δ) are reported in ppm, with residual 

chloroform (δ 7.26 for 1H and δ 77.16 for 13C) as internal references. Assignments of 1H 

and 13C NMR spectra were assisted by 2D 1H COSY and HSQC experiments. High 

resolution mass spectra (HRMS) were obtained by Electrospray Ionization (ESI) and Q-

TOF detection. 

 

4.2. General procedure for glycosylations using trichloroacetimidates 5 or 6 as glycosyl 

donors 

Powdered 4 Å molecular sieves (0.5 g) were added to a solution of 

trichloroacetimidate 526 or 627 (73 mg, 0.1 mmol) and glycosyl acceptor 1α,βα,βα,βα,β or 2 α,β α,β α,β α,β (0.14 

mmol, 1.4 equiv) in anhyd. CH2Cl2 (8 mL), and the suspension was stirred under Ar for 30 

min. Then, the mixture was cooled to −30 °C and TMSOTf (8 µL, 0.044 mmol) was added. 

When TLC analysis showed optimal conversion (normally 2 h of stirring at −30°C) the 

reaction mixture was quenched with triethylamine, filtered and coevaporated under reduced 

pressure with toluene. The residue was purified by column chromatography, as indicated in 

each case. 
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4.2.2. Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)-2,6-di-O-benzyl-α-D-

glucopyranoside (6αααα) and methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-

2,6-di-O-benzyl-a-D-glucopyranoside (7αααα)  

Obtained according to the general procedure by condensation of 3 with 1αααα. 1H 

NMR spectrum of the crude mixture showed the presence of two regioisomers, 

6αααα    and    7αααα,,,,    in a 6.5:1 ratio according to the integration of the signals corresponding to H-3’ 

of both disaccharides (5.63 and 5.50 ppm). TLC analysis of the crude mixture showed, 

among the excess of 1αααα, a single product of Rf 0.37 (9:1 toluene-EtOAc), which after 

column chromatography purification (90:10→88:12 toluene/EtOAc) was resolved in two 

components with similar Rf. The first fractions afforded a mixture of disaccharides enriched 

in 7αααα (0.03 g, 28%). 1H NMR(500 MHz, CDCl3) signals for 7αααα: δ 8.15-7.18 (m, 30H, 

aromatic), 5.95 (dd, 1H, J4',5' = 0.8 Hz, J3',4' = 3.5 Hz, H-4'), 5.80 (dd, 1H, J1',2' = 8.1 Hz, J2',3' 

= 10.5 Hz, H-2'), 5.50 (dd, 1H, J3',4' = 3.5 Hz, J2',3' = 10.5 Hz, H-3'), 4.86 (d, H, Jgem = 12.4 

Hz, CH2Ph), 4.74 (d, 1H, J1',2' = 8.1 Hz, H-1'), 4.63 (d, H, Jgem = 12.4 Hz, CH2Ph), 4.60 (dd, 

1H, J5',6a' = 4.9 Hz, Jgem = 11.6 Hz, H-6’a), 4.54 (d, 1H, J1,2 = 3.6 Hz, H-1), 4.53 (dd, 1H, 

J5',6b' = 7.9 Hz, Jgem = 11.6 Hz, H-6’b), 4.35 (d, 1H, Jgem = 12.2 Hz, CH2Ph), 4.32 (ddd, 1H, 

J4',5' = 0.8 Hz, J5',6a' = 4.9 Hz, J5',6b' = 7.9 Hz, H-5'), 4.13 (d, 1H, Jgem = 12.2 Hz, CH2Ph), 

4.12 (ddd, 1H, J3,OH = 0.7 Hz, J3,4 = 8.1 Hz, J2,3 = 9.5 Hz, H-3), 4.03 (d, 1H, J3,OH = 0.7 Hz, 

OH-3), 3.69 (dd, 1H, J3,4 = 8.1 Hz, J4,5 = 9.9 Hz, H-4), 3.65 (ddd, 1H, J5,6b = 1.6 Hz, J5,6a = 

3.2 Hz, J4,5 = 9.9 Hz, H-5), 3.47 (dd, 1H, J5,6a = 3.2 Hz, Jgem = 10.8 Hz, H-6a), 3.38 (dd, 

1H, J1,2 = 3.6 Hz, J2,3 = 9.5 Hz, H-2), 3.35 (dd, 1H, J5,6b = 1.6 Hz, Jgem = 10.8 Hz, H-6b), 

3.28 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): δ 101.6 (C-1'), 98.6 (C-1), 81.4 (C-

4), 78.3 (C-2), 73.6 (CH2Ph), 73.1 (CH2Ph), 72.0 (C-3), 71.9 (C-5'), 71.4 (C-3'), 69.6 (C-

2'), 68.4 (C-5), 67.9 (C-4'), 67.7 (C-6), 62.4 (C-6'), 55.3 (CH3O) ppm.  

Further elution of the column afforded syrupy compound 6αααα (0.064 g, 63%), [α]D +65 

(c 1, CHCl3). 
1H NMR (500 MHz, CDCl3): δ 8.12-7.21 (m, 30H, aromatic), 5.99 (dd, 1H, 

J4',5' = 0.8 Hz, J3',4' = 3.5 Hz, H-4'), 5.93 (dd, 1H, J1',2' = 8.1 Hz, J2',3' = 10.4 Hz, H-2'), 5.63 

(dd, 1H, J3',4' = 3.5 Hz, J2',3' = 10.4 Hz, H-3'), 5.11 (d, 1H, J1',2' = 8.1 Hz, H-1'), 4.58 (dd, 1H, 

J5',6a' = 5.1 Hz, Jgem = 11.7 Hz, H-6’a), 4.56 and 4.53 (2d, 2H, Jgem = 12.3 Hz, 2x CH2Ph), 

4.52 (dd, 1H, J5',6b' = 7.7 Hz, Jgem = 11.7 Hz, H-6’b), 4.40 (ddd, 1H, J4',5' = 0.8 Hz, J5',6a' = 

5.1 Hz, J5',6b' = 7.7 Hz, H-5'), 4.31 (d, 1H, Jgem = 12.8 Hz, CH2Ph), 4.25 (d, 1H, J1,2 = 3.6 
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Hz, H-1), 4.01 (d, 1H, Jgem = 12.8 Hz, CH2Ph), 3.95 (dd, 1H, J3,4 = 8.1 Hz, J2,3 = 9.5 Hz, H-

3), 3.89 (br. s, 1H, OH-4), 3.74-3.59 (m, 4H, H-4, H-5, H-6a and H-6b), 3.37 (dd, 1H, J1,2 = 

3.6 Hz, J2,3 = 9.5 Hz, H-2), 3.23 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): 

δ 165.9, 165.4, 165.3 (COPh), 138.2, 138.0, 133.6, 133.36, 133.31, 133.2, 129.9, 129.77, 

129.71, 129.2, 129.0, 128.7, 128.6, 128.5, 128.38, 128.33, 128.27, 128.25, 128.23, 127.8, 

127.6, 127.46, 127.45 (aromatic), 102.1 (C-1'), 98.0 (C-1), 84.2 (C-3), 77.9 (C-2), 73.6 

(CH2Ph), 73.4 (CH2Ph), 71.8 (C-5'), 71.6 (C-3'), 70.3 (C-5), 69.6 (C-2'), 69.0 (C-6), 68.5 

(C-4), 68.0 (C-4'), 62.2 (C-6'), 54.9 (CH3O) ppm. ESIMS: m/z calcd for C55H52NaO15 

[M+Na]+ 975.3198. Found: 975.319547. 

 

4.2.3. Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)-2,6-di-O-benzyl-β-D-

glucopyranoside (6ββββ) and methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-

2,6-di-O-benzyl-β-D-glucopyranoside (7ββββ) 

Obtained according to the general procedure by condensation of 3 with 1ββββ. After 2 h 

TLC analysis showed total consumption of 3 and a single spot of Rf 0.47 (85:15 toluene-

EtOAc) composed, according to the 1H NMR spectrum of the crude mixture, by two 

regioisomers in 2:1 ratio. The products could not be separated by column chromatography 

(0.09 g; 91%) but all the NMR signals could be assigned.  

The major product was identified as 6ββββ. 1H NMR (500 MHz, CDCl3): δ 5.98 (dd, 1H, 

J4',5' = 0.7 Hz, J3',4' = 3.5 Hz, H-4'), 5.88 (dd, 1H, J1',2' = 8.1 Hz, J2',3' = 10.5 Hz, H-2'), 5.62 

(dd, 1H, J3',4' = 3.5 Hz, J2',3' = 10.5 Hz, H-3'), 5.14 (d, 1H, J1',2' = 8.1 Hz, H-1'), 4.63, 4.59 

(2d, 2H, Jgem = 12.2 Hz, CH2Ph), 4.59-4.50 (m, 3H, H-6’a, H-6’b y CH2Ph), 4.38 (ddd, 1H, 

J4',5' = 0.7 Hz, J5',6’a = 5.9 Hz, J5',6’b = 6.8 Hz, H-5'), 4.23 (d, 1H, J1,2 = 7.9 Hz, H-1), 4.19 (d, 

1H, Jgem = 11.5 Hz, CH2Ph), 3.88 (dd, 1H, J5,6a = 1.8 Hz, Jgem = 10.9 Hz, H-6a), 3.71-3.65 

(m, 2H, H-3 y H-6b), 5.98 (t, 1H, J3,4 = 9.3 Hz, J4,5 = 9.3 Hz, H-4), 3.46 (s, 3H, CH3O), 

3.43-3.36 (m, 1H, H-5), 3.29 (dd, 1H, J1,2 = 7.6 Hz, J2,3 = 8.9 Hz, H-2) ppm. 13C NMR (126 

MHz, CDCl3): δ 104.5 (C-1), 101.9 (C-1'), 86.0 (C-3), 80.6 (C-2), 75.2 (C-5), 74.0 

(CH2Ph), 73.5 (CH2Ph), 71.7 (C-5'), 71.5 (C-3'), 69.7 (C-2'), 69.68 (C-6), 68.7 (C-4), 68.0 

(C-4'), 62.0 (C-6'), 57.0 (CH3O) ppm. 

The minor product was identified as 7ββββ. 1H NMR (500 MHz, CDCl3): δ 5.95 dd, 1H, 

J4',5' = 0.7 Hz, J3',4' = 3.4 Hz, H-4'), 5.81 (dd, 1H, J1',2' = 8.1 Hz, J2',3' = 10.4 Hz, H-2'), 5.53 
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(dd, 1H, J3',4' = 3.4 Hz, J2',3' = 10.4 Hz, H-3'), 4.85 (d, 1H, J1',2' = 8.1 Hz, H-1'), 4.80, 4.77 

(2d, 2H, Jgem = 11.2 Hz, CH2Ph), 4.64-4.59 (m, 1H, H-6'a), 4.51 (dd, 1H, J5',6’b = 7.9 Hz, 

Jgem = 11.7 Hz, H-6’b), 4.35-4.31 (m, 1H, H-5'), 4.33 (d, 1H, Jgem = 12.3 Hz, CH2Ph), 4.24 

(d, 1H, J1,2 = 8.0 Hz, H-1), 4.16 (d, 1H, Jgem = 12.3 Hz, CH2Ph), 3.84 (dd, 1H, J2,3 = 8.7 Hz, 

J3,4 = 8.7 Hz, H-3), 4.74-4.69 (m, 1H, H-4), 3.49 (s, 3H, CH3O), 4.74-4.69 (m, 1H, H-4), 

3.46 (s, 1H, H-6a y H-6b), 4.43-4.36 (m, 1H, H-5), 3.29 (dd, 1H, J1,2 = 8.0 Hz, J2,3 = 8.7 

Hz, H-2) ppm. 13C NMR (126 MHz, CDCl3): δ 103.9 (C-1), 101.7 (C-1'), 81.5 (C-4), 81.4 

(C-2), 75.0 (C-3), 74.8 (CH2Ph), 73.4 (C-5), 73.0 (CH2Ph), 72.0 (C-5'), 71.4 (C-3'), 69.64 

(C-2'), 67.99 (C-4'), 67.94 (C-6), 62.4 (C-6'), 57.0 (CH3O) ppm.  

4.2.4. Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)-2,6-di-O-benzoyl-a-

D-glucopyranoside (8αααα) and methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-

(1→4)-2,6-di-O-benzoyl-a-D-glucopyranoside (9αααα) 

Obtained according to the general procedure by condensation of 3 with 2α. α. α. α. The crude 

mixture showed by TLC, among the excess of 2αααα (Rf 0.05, 85:15 toluene/EtOAc), the 

presence of a major product of Rf 0.40 and a minor product of Rf 0.37. According to the 

integration of the 1H NMR signals corresponding to the OCH3 groups (3.31 and 3.34 ppm) 

of both products they were in a 2.1:1.0 ratio.  

Column chromatography purification (92:8 toluene-EtOAc) afforded fractions 

enriched in each regioisomer. The first fractions afforded syrupy compound 8αααα (0.05 g, 

49%), 1H NMR (500 MHz, CDCl3): δ 8.16-7.13 (m, 30H, aromatic), 5.98 (dd, 1H, J4',5' = 

0.9 Hz, J3',4' = 3.5 Hz, H-4'), 5.82 (dd, 1H, J1',2' = 8.0 Hz, J2',3' = 10.5 Hz, H-2'), 5.58 (dd, 

1H, J3',4' = 3.4 Hz, J2',3' = 10.5 Hz, H-3'), 5.04 (d, 1H, J1',2' = 8.0 Hz, H-1'), 5.02 (dd, 1H, 

J1,2 = 3.8 Hz, J2,3 = 9.6 Hz, H-2), 4.98 (d, 1H, J1,2 = 3.8 Hz, H-1), 4.69 (dd, 1H, J5,6a = 1.0 

Hz, Jgem = 12.0 Hz, H-6a), 4.64-4.54 (m, 3H, H-6b, H-6’a and H-6’b), 4.47 (ddd, 1H, J4',5' 

= 0.9 Hz, J5',6a' = 5.5 Hz, J5',6b' = 7.4 Hz, H-5'), 4.20 (dd, 1H, J3,4 = 8.6 Hz, J2,3 = 9.6 Hz, 

H-3), 3.90-3.88 (m, 2H, H-4 and H-5), 3.31 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, 

CDCl3): δ 166.3, 166.1, 165.48, 165.45, 165.14, 165.10 (COPh), 133.7, 133.37, 133.34, 

133.2, 133.0, 132.7, 130.0, 129.97, 129.94, 129.7, 129.6, 129.2, 129.00, 128.69, 128.67, 

128.4, 128.38, 127.35, 128.31, 128.2, 128.1, 127.9 (aromatic), 102.0 (C-1'), 96.6 (C-1), 
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82.0 (C-3), 72.3 (C-2), 71.9 (C-5'), 71.4 (C-3'), 69.38 (C-2'), 69.31 (C-4), 68.6 (C-5), 67.8 

(C-4'), 63.4 (C-6), 61.9 (C-6'), 55.1 (CH3O) ppm. 

Further elution from the column afforded a fraction enriched in 9αααα (0.02 mg, 26%). 
1H NMR (500 MHz, CDCl3) signals for 9αααα: δ 8.14-7.14 (m, 30H, aromatic), 5.97 (d, 1H, 

J3',4' = 3.4 Hz, H-4'), 5.91 (dd, 1H, J1',2' = 8.0 Hz, J2',3' = 10.5 Hz, H-2'), 5.58 (dd, 1H, J3',4' = 

3.4 Hz, J2',3' = 10.5 Hz, H-3'), 5.08 (dd, 1H, J1,2 = 3.7 Hz, J2,3 = 10.0 Hz, H-2), 5.03 (d, 1H, 

J1',2' = 8.0 Hz, H-1'), 4.92 (d, 1H, J1,2 = 3.7 Hz, H-1), 4.67 (d, 1H, J = 7.8 Hz, H-6’a), 4.46-

4.41 (m, 3H, H-5', H-6a and H-6’b), 3.37 (ddd, 1H, J3,OH = 1.6 Hz, J3,4 = 8.4 Hz, J2,3 = 10.0 

Hz, H-3), 4.19 (dd, 1H, J5,6b = 4.1 Hz, Jgem = 12.0 Hz, H-6b), 4.02 (ddd, 1H, J5,6a = 1.6 Hz, 

J5,6b = 4.1 Hz, J4,5 = 9.9 Hz, H-5), 3.83 (dd, 1H, J3,4 = 8.4 Hz, J4,5 = 9.9 Hz, H-4), 3.34 (s, 

3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): δ 166.1, 166.0, 165.5, 165.4, 165.3, 165.2 

(COPh), 133.7, 133.5, 133.3, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.68, 129.66, 

129.62, 129.5, 129.2, 128.8, 128.7, 128.45, 128.40, 128.37, 127.33, 128.31, 128.2, 128.0 

(aromatic), 102.2 (C-1'), 97.1 (C-1), 82.7 (C-4), 72.5 (C-2), 72.4 (C-5'), 71.5 (C-3'), 69.9 

(C-3), 69.4 (C-2'), 67.9 (C-4'), 67.3 (C-5), 62.7 (C-6'), 62.3 (C-6), 55.4 (CH3O) ppm.  

 

4.2.5. Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)-2,6-di-O-benzoyl-β-

D-galactopyranoside (8ββββ) and methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-

(1→4)-2,6-di-O-benzoyl-β-D-glucopyranoside (9ββββ) 

Obtained according to the general procedure by condensation of 3 with 2ββββ.  TLC 

analysis of the crude reaction showed total consumption of 3 and a single spot of Rf 0.57 

(85:15 toluene-EtOAc) composed, according to the 1H NMR spectrum of the crude 

mixture, by two regioisomers in 1:5.6 ratio. The products could not be separated by column 

chromatography (0.08 g; 90%) but all the NMR signals were assigned. 

The minor product was identified as 8ββββ. 1H NMR (500 MHz, CDCl3): δ 5.94 (d, 1H, 

J3',4' = 3.5 Hz, H-4'), 5.82 (dd, 1H, J1',2' = 8.0 Hz, J2',3' = 10.5 Hz, H-2'), 5.51 (dd, 1H, J3',4' = 

3.5 Hz, J2',3' = 10.5 Hz, H-3'), 5.28-5.22 (m, 1H, H-2), 4.93 (d, 1H, J1',2' = 8.0 Hz, H-1'), 

4.77 (dd, 1H, J5,6a = 4.8 Hz, Jgem = 11.5 Hz, H-6a), 4.66 (dd, 1H, J5',6’a = 2.0 Hz, Jgem = 11.8 

Hz, H-6’a), 4.57-4.48 (m, 2H, H-6b y H-6’b), 4.47-4.39 (m, 2H, H-1 y H-5’), 4.25 (d, 1H, 

J4,OH = 0.8 Hz, OH-4), 3.96 (ddd, 1H, J4,OH = 0.8 Hz, J3,4 = 8.3 Hz, J4,5 = 9.6 Hz, H-4), 

3.92-4.87 (m, 1H, H-3), 3.63 (ddd, 1H, J5,6b = 2.0 Hz, J5,6a = 4.8 Hz, J4,5 = 9.6 Hz, H-5), 
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3.36 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): δ102.1 (C-1'); 102.0 (C-1); 85.9 

(C-3); 73.8 (C-5); 72.0 (C-2); 71.9 (C-5'); 71.3 (C-3'); 69.3 (C-2'); 68.8 (C-4); 67.8 (C-4'); 

63.4 (C-6); 62.2 (C-6'); 56.5 (CH3O) ppm. 

The major product was identified as 9ββββ. 1H NMR (500 MHz, CDCl3): δ 8.13-7.01 

(m, 30H, aromatic), 5.96 (d, 1H, J3',4' = 3.4 Hz, H-4'), 5.90 (dd, 1H, J1',2' = 8.0 Hz, J2',3' = 

10.4 Hz, H-2'), 5.58 (dd, 1H, J3',4' = 3.4 Hz, J2',3' = 10.4 Hz, H-3'), 5.23 (dd, 1H, J1,2 = 8.0 

Hz, J2,3 = 9.5 Hz, H-2), 5.03 (d, 1H, J1',2' = 8.0 Hz, H-1'), 4.68 (dd, 1H, J5',6a' = 1.1 Hz, Jgem 

= 9.6 Hz, H-6’a), 4.54 (d, 1H, J3,OH = 1.8 Hz, OH-3), 4.51 (dd, 1H, J5,6a = 1.6 Hz, Jgem = 

12.0 Hz, H-6a), 4.50 (d, 1H, J1,2 = 8.0 Hz, H-1), 4.43-4.36 (m, 2H, H-5' and H-6’b), 4.16 

(dd, 1H, J5,6b = 4.2 Hz, Jgem = 12.0 Hz, H-6b), 4.09 (ddd, 1H, J3,OH = 1.8 Hz, J3,4 = 8.5 Hz, 

J2,3 = 9.5 Hz, H-3), 3.91 (dd, 1H, J3,4 = 8.5 Hz, J4,5 = 9.8 Hz, H-4), 3.75 (ddd, 1H, J5,6a = 

1.6 Hz, J5,6b = 4.2 Hz, J4,5 = 9.8 Hz, H-5), 3.40 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, 

CDCl3): δ 166.1, 165.4, 165.37, 165.30, 165.29, 165.25 (COPh), 133.7, 133.5, 133.3, 

133.2, 133.0, 132.9, 129.99, 129.97, 129.8, 129.76, 129.70, 129.6, 129.59, 129.55, 129.4, 

129.0, 128.7, 128.67, 128.64, 128.42, 128.40, 128.38, 128.34, 128.28, 128.23, 128.20, 

128.19, 128.15, 128.0 (aromatic), 102.3 (C-1'), 101.6 (C-1), 82.3 (C-4), 73.5 (C-3), 72.7 

(C-2), 72.5 (C-5'), 72.0 (C-5), 71.4 (C-3'), 69.4 (C-2'), 67.9 (C-4'), 62.7 (C-6'), 62.2 (C-6), 

56.7 (CH3O) ppm. 

 

4.2.6. Methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)-2,6-di-O-benzyl-a-D-

glucopyranoside (10αααα) and methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→4)-

2,6-di-O-benzyl-a-D-glucopyranoside (11αααα) 

Obtained according to the general procedure by condensation of 4 with 1α. α. α. α.  TLC of 

the crude mixture showed the formation of two regioisomers of Rf 0.46 and 0.50 (85:15 

toluene/EtOAc), which according to the integration of the 1H NMR signals were in a 3.45:1 

ratio. After purification by column chromatography (92:8 toluene/EtOAc) fractions of Rf 

0.50 afforded compound 11αααα (0.02 g; 20%) impurified with 2,3,4,6-O-Bz-α,β-Galp. From 

the mixture, signals corresponding to 11αααα::::    1H NMR (500 MHz, CDCl3): δ 6.01 (dt, 1H, 

J4',5' = 4.0 Hz, J5',6’a = 4.0 Hz, J5',6’b = 6.7 Hz, H-5'), 5.66-5.63 (m, 1H, H-3'), 5.36 (d, 1H, 

J2',3' = 1.4 Hz, H-2'), 5.31 (s, 1H, H-1'), 5.00 (dd, 1H, J4',5' = 4.0 Hz, J3',4' = 5.4 Hz, H-4'), 

5.66-5.63 (m, 3H, H-6'a, H-6'b y CH2Ph), 4.64 (d, 1H, Jgem = 12.1 Hz, CH2Ph), 4.62 (d, 1H, 
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J1,2 = 3.6 Hz, H-1), 4.56, 4.51 (2d, 2H, Jgem = 12.0 Hz, CH2Ph), 4.03 (ddd, 1H, J3,OH = 2.4 

Hz, J3,4 = 8.5 Hz, J2,3 = 9.5 Hz, H-3), 3.87 (dd, 1H, J5,6a = 3.0 Hz, Jgem = 10.8 Hz, H-6a), 

3.83 (dd, 1H, J3,4 = 8.5 Hz, J4,5 = 9.9 Hz, H-4), 3.81-3.77 (m, 1H, H-5), 3.70 (dd, 1H, J5,6b = 

1.7 Hz, Jgem = 10.8 Hz, H-6b), 3.42 (dd, 1H, J1,2 = 3.6 Hz, J2,3 = 9.5 Hz, H-2), 3.34 (s, 3H, 

CH3O), 3.09 (d, 1H, J3,OH = 2.4 Hz, OH-3) ppm. 13
C NMR (126 MHz, CDCl3): δ 106.1 (C-1'), 

101.0 (C-1), 82.3 (C-2'), 81.2 (C-4'), 79.1 (C-2), 77.2 (C-3' y C-4), 73.31 (CH2Ph), 73.30 

(CH2Ph), 71.9 (C-3), 70.4 (C-5'), 69.2 (C-5), 68.0 (C-6), 63.4 (C-6'), 55.2 (CH3O) ppm.  

Fractions of Rf 0.46 afforded syrupy compound 10αααα (0.07 g, 69%), [α]D +1 (c 1, 

CHCl3). 
1H NMR (500 MHz, CDCl3): δ 8.09-7.13 (m, 30H, aromatic), 5.98 (ddd, 1H, J4',5' 

= 4.2 Hz, J5',6a' = 4.4 Hz, J5',6b' = 6.4 Hz, H-5'), 5.67 (s, 1H, H-1'), 5.66-5.63 (m, 2H, H-2' 

and H-3'), 4.89 (dd, 1H, J4',5' = 4.2 Hz, J3',4' = 4.6 Hz, H-4'), 4.77 (dd, 1H, J5',6a' = 4.4 Hz, 

Jgem = 12.0 Hz, H-6'a), 4.76 (d, 1H, Jgem = 12.4 Hz, CH2Ph), 4.71 (dd, 1H, J5',6b' = 6.4 Hz, 

Jgem = 12.0 Hz, H-6'b), 4.62 (d, 1H, Jgem = 12.4 Hz, CH2Ph), 4.60 (d, 1H, J1,2 = 3.6 Hz, H-

1), 4.58 (d, 1H, Jgem = 12.3 Hz, CH2Ph), 4.55 (d, 1H, Jgem = 12.3 Hz, CH2Ph), 3.98 (dd, 1H, 

J3,4 = 8.8 Hz, J2,3 = 9.6 Hz, H-3), 3.73-3.64 (m, 3H, H-5, H-6a and H-6b), 3.60 (ddd, 1H, 

J4,OH = 3.1, J3,4 = 8.8 Hz, J4,5 = 9.5 Hz, H-4), 3.54 (dd, 1H, J1,2 = 3.6 Hz, J2,3 = 9.6 Hz, H-

2), 3.36 (s, 3H, CH3O), 3.21 (d, 1H, J4,OH = 3.1 Hz, OH-4) ppm. 13C NMR (126 MHz, 

CDCl3): δ 166.1, 165.6, 165.5, 165.1 (COPh), 138.0, 137.9, 133.5, 133.3, 133.2, 133.0, 

129.7, 129.5, 129.3, 128.99, 128.96, 128.8, 128.4, 128.36, 128.33, 128.32, 128.2, 128.1, 

128.8, 127.8, 127.5 (aromatic), 107.3 (C-1'), 98.0 (C-1), 81.63 (C-4'), 81.60 (C-2'), 81.3 (C-

3), 78.2 (C-2), 77.6 (C-3'), 73.5 (CH2Ph), 73.4 (CH2Ph), 70.39 (C-5'), 70.30 (C-5), 69.5 (C-

4), 69.2 (C-6), 63.2 (C-6'), 55.1 (CH3O) ppm. ESIMS: m/z calcd for C55H52NaO15 [M+Na]+ 

975.3198. Found: 975.3206 

 

4.2.7. Methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)-2,6-di-O-benzyl-β-D-

glucopyranoside (10ββββ) and methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→4)-

2,6-di-O-benzyl-β-D-glucopyranoside (11ββββ) 

Obtained according to the general procedure by condensation of 4 with 1β. β. β. β. TLC of 

the crude mixture showed the formation of two regioisomers of Rf 0.58 and 0.50 (85:15 

toluene/EtOAc), which according to the integration of the 1H NMR anomeric signals were 

in a 1.75:1 ratio. After purification by column chromatography (9:1 toluene/EtOAc) 
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fractions of Rf 0.58 (85:15 toluene/EtOAc) afforded 11ββββ    (0.03 g, 32%), [α]D -25 (c 1, 

CHCl3). 
1H NMR(500 MHz, CDCl3): δ 8.11-7.11 (m, 30H, aromatic), 6.00 (apparent dt, 

1H, J4’,5’ = 3.8 Hz, J5’,6a’ = 4.1 Hz, J5’,6b’ = 7.0 Hz, H-5’), 5.62 (d, 1H, J3’,4’ = 5.4 Hz, H-3’), 

5.39-5.38 (m, 2H, H-1’ and H-2’), 4.97 (dd, 1H, J4’,5’ = 3.8 Hz, J3’,4’ = 5.4 Hz, H-4’), 4.90 

(d, 1H, Jgem = 11.3 Hz, CH2Ph), 4.78 (dd, 1H, J5’,6a’ = 4.1 Hz, Jgem = 12.1 Hz, H-6’a), 4.71 

(dd, 1H, J5’,6b’ = 7.0 Hz, Jgem = 12.1 Hz, H-6’b), 4.69 (d, 1H, Jgem = 11.3 Hz, CH2Ph), 4.59, 

4.55 (2d, 2H, Jgem = 12.1 Hz, CH2Ph), 4.31 (d, 1H, J1,2 = 7.8 Hz, H-1), 3.86 (dd, 1H, J5,6a = 

3.9 Hz, Jgem = 11.0 Hz, H-6ª), 3.83 (apparent t, 1H, J3,4 = 9.0 Hz, J4,5 = 9.8 Hz, H-4), 3.80 

(dd, 1H, J5,6b = 1.8 Hz, Jgem = 11.0 Hz, H-6b), 3.70 (td, 1H, J3,4 = 9.0 Hz, J2,3 = 9.1 Hz, 

J3,OH = 1.7 Hz, H-3), 3.56 (s, 3H, CH3O), 3.50 (ddd, 1H, J5,6b = 1.8 Hz, J5,6a = 3.9 Hz, J4,5 = 

9.8 Hz, H-5), 3.29 (dd, 1H, J1,2 = 7.8 Hz, J2,3 = 9.1 Hz, H-2), 3.09 (d, 1H, J3,OH = 1.7 Hz, 

OH-3) ppm.13C NMR (126 MHz, CDCl3): δ 166.1, 165.7, 165.6, 165.5 (COPh), 138.4, 

138.1, 133.5, 133.4, 133.3, 133.0, 130.0, 129.88, 129.84, 129.7, 129.5, 129.4, 128.9, 128.7, 

128.6, 128.46, 128.41, 128.40, 128.3, 128.1, 128.0, 127.7, 127.5, 127.4 (aromatic), 106.3 

(C-1’), 104.2 (C-1), 82.2 (C-2’), 81.5 (C-2), 81.2 (C-4’), 77.3 (C-3’), 77.1 (C-4), 74.9 (C-

3), 74.5 (CH2Ph), 74.4 (C-5), 73.2 (CH2Ph), 68.3 (C-5’), 68.3 (C-6), 63.5 (C-6’), 57.0 

(CH3O) ppm. ESIMS: m/z calcd for C55H52NaO15 [M+H]+ 975.3198. Found: 975.3201. 

Fractions of Rf 0.50 afforded compound 10ββββ (0.05 g, 55%), [α]D -8 (c 1, CHCl3). 
1H 

NMR(500 MHz, CDCl3): δ 8.13-7.05 (m, 30H, aromatic), 5.98 (apparent dt ddd, 1H, J4’,5’ = 

4.8 Hz, J5’,6a’ = 4.6 Hz, J5’,6b’ = 6.5 Hz, H-5’), 5.63 (s, 1H, H-1’), 5.60 (dd, 1H, J2’,3’ = 1.4 

Hz, J3’,4’ = 5.1 Hz, H-3’), 5.56 (d, 1H, J2’,3’ = 1.4 Hz, H-2’), 4.87 (dd, 1H, J4’,5’ = 4.0 Hz, 

J3’,4’ = 5.1 Hz, H-4’), 4.83 (d, 1H, Jgem = 10.9 Hz, CH2Ph), 4.74 (dd, 1H, J5’,6a’ = 4.6 Hz, 

Jgem = 11.9 Hz, H-6’a), 4.72 (d, 1H, Jgem = 10.9 Hz, CH2Ph), 4.70 (dd, 1H, J5’,6b’ = 6.5 Hz, 

Jgem = 11.9 Hz, H-6’b), 4.60, 4.57 (2d, 2H, Jgem = 12.3 Hz, CH2Ph), 4.30 (d, 1H, J1,2 = 7.9 

Hz, H-1), 3.77 (dd, 1H, J5,6a = 3.3 Hz, Jgem = 10.6 Hz, H-6ª), 3.67 (apparent t, 1H, J3,4 = 9.0 

Hz, J2,3 = 9.1 Hz, H-3), 3.66 (dd, 1H, J5,6b = 5.3 Hz, Jgem = 10.6 Hz, H-6b), 3.57 (s, 3H, 

CH3O), 3.54 (td, 1H, J4,OH = 2.8 Hz, J3,4 = 9.0 Hz, J4,5 = 9.5 Hz, H-4), 3.43 (ddd, 1H, J5,6a = 

3.3 Hz, J5,6b = 5.3 Hz, J4,5 = 9.5 Hz, H-5), 3.42 (dd, 1H, J1,2 = 7.9 Hz, J2,3 = 9.1 Hz, H-2), 

3.28 (d, 1H, J4,OH = 2.8 Hz, OH-4) ppm. 13C NMR (126 MHz, CDCl3): δ 166.1, 165.6, 

165.5, 165.1 (COPh), 138.1, 138.0, 133.5, 133.3, 133.2, 133.0, 129.95, 129.92, 129.8, 

129.7, 129.5, 129.3, 128.9, 128.8, 128.4, 128.39, 128.38, 128.35, 128.31, 128.26, 128.25, 
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128.1, 127.66, 127.64, 127.5 (aromatic), 106.9 (C-1’), 104.5 (C-1), 82.9 (C-3), 81.69 (C-

2’), 81.66 (C-4’), 80.6 (C-2), 77,5 (C-3’), 74.58 (CH2Ph), 74.54 (C-5), 73.5 (CH2Ph), 70.3 

(C-5’), 70.2 (C-4), 69.9 (C-6), 63.2 (C-6’), 57.1 (CH3O) ppm. ESIMS: m/z calcd for 

C55H52NaO15 [M+H]+ 975.3198. Found: 975.3168. 

 

4.2.8. Methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)-2,6-di-O-benzoyl-a-D-

glucopyranoside (12αααα) and methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→4)-

2,6-di-O-benzoyl-a-D-glucopyranoside (13αααα) 

Obtained according to the general procedure by condensation of 4 with 2αααα. After 2h 

of reaction TLC analysis showed consumption of compound 4 and the formation of 

products of Rf 0.28 and 0.32 (85:15 Toluene-EtOAc). According to the integration of the 
1H NMR signals corresponding to H-4, they were in 2.0:1.0 ratio. 

After purification by column chromatography (9:1 Toluene-EtOAc) fractions of Rf 

0.32 afforded 12αααα (0.04 g; 38%), impurified with 13αααα, 1H NMR (500 MHz, CDCl3): 

δ 8.12-7.21 (m, 30H, aromatic), 5.98 (dt, 1H, J4',5' = 4.1 Hz, J5',6a' = 4.6 Hz, J5',6b' = 6.6 Hz, 

H-5'), 5.68 (dd, 1H, J2',3' = 1.8 Hz, J3',4' = 5.5 Hz, H-3'), 5.49 (dd, 1H, J1',2' = 0.7 Hz, J2',3' = 

1.8 Hz, H-2'), 5.48 (s, 1H, H-1'), 5.07-5.02 (m, 2H, H-1 and H-2), 4.94 (dd, 1H, J4',5' = 4.1 

Hz, J3',4' = 5.5 Hz, H-4'), 4.79 (dd, 1H, J5',6a' = 4.6 Hz, Jgem = 12.0 Hz, H-6’a), 4.78 (dd, 

1H, J5,6a = 1.9 Hz, Jgem = 11.9 Hz, H-6a), 4.69 (dd, 1H, J5,6b = 4.4 Hz, Jgem = 11.9 Hz, H-

6b), 4.68 (dd, 1H, J5',6b' = 6.6 Hz, Jgem = 12.0 Hz, H-6’b), 4.31 (td, 1H, J3,OH = 3.2 Hz, J3,4 

= 8.8 Hz, J2,3 = 8.9 Hz, H-3), 4.14 (ddd, 1H, J5,6a = 1.9 Hz, J5,6b = 4.4 Hz, J4,5 = 10.0 Hz, 

H-5), 3.88 (dd, 1H, J3,4 = 8.8 Hz, J4,5 = 10.0 Hz, H-4), 3.64 (d, 1H, J3,OH = 3.2 Hz, OH-3), 

3.42 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): δ 166.19, 166.12, 165.65, 165.61, 

163.5 (COPh), 133.6, 133.4, 133.3, 133.2, 133.1, 133.0, 129.9, 129.88, 129.85, 129.7, 

129.6, 129.3, 129.1, 128.9, 128.7, 128.6, 128.49, 128.40, 128.35, 128.34 (aromatic), 107.5 

(C-1'), 97.1 (C-1), 82.7 (C-2'), 81.6 (C-4'), 79.8 (C-4), 77.1 (C-3'), 73.4 (C-2), 70.3 (C-3), 

70.3 (C-5'), 67.9 (C-5), 63.0 (C-6), 62.9 (C-6'), 55.5 (CH3O) ppm. 

Fractions of Rf 0.28 afforded a sample enriches in 13αααα (0.05 g; 54%). 1H NMR (500 

MHz, CDCl3): 8.10-7.13 (m, 30H, aromatic), 5.96 (ddd, 1H, J4',5' = 4.3 Hz, J5',6a' = 4.7 Hz, 

J5',6b' = 6.3 Hz, H-5'), 5.62 (dd, 1H, J2',3' = 1.9 Hz, J3',4' = 5.5 Hz, H-3'), 5.55 (s, 1H, H-1'), 

5.42 (dd, 1H, J1',2' = 0.8 Hz, J2',3' = 1.9 Hz, H-2'), 5.14 (dd, 1H, J1,2 = 3.7 Hz, J2,3 = 10.0 
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Hz, H-2), 5.07 (d, 1H, J1,2 = 3.7 Hz, H-1), 4.9 (dd, 1H, J4',5' = 4.3 Hz, J3',4' = 5.5 Hz, H-4'), 

4.79 (dd, 1H, J5',6a' = 4.7 Hz, Jgem = 11.9 Hz, H-6’a), 4.72 (dd, 1H, J5',6b' = 6.3 Hz, Jgem = 

11.9 Hz, H-6’b), 4.65-4.57 (m, 2H, H-6a and H-6b), 4.25 (dd, 1H, J3,4 = 9.0 Hz, J2,3 = 

10.0 Hz, H-3), 3.98 (ddd, 1H, J5,6a = 2.9 Hz, J5,6b = 4.6 Hz, J4,5 = 9.9 Hz, H-5), 3.71 (dd, 

1H, J3,4 = 9.0 Hz, J4,5 = 9.9 Hz, H-4), 3.64 (br. s, 1H, OH-4), 3.39 (s, 3H, CH3O) ppm. 13C 

NMR (126 MHz, CDCl3): δ 166.6, 166.2, 165.8, 165.6, 165.5, 164.8 (COPh), 133.5, 

133.3, 133.2, 133.17, 133.13, 133.0, 129.96, 129.92, 129.88, 129.82, 129.7, 129.46, 

129.40, 129.3, 129.0, 128.7, 128.5, 128.4, 128.3, 128.27, 128.23, 128.20, (aromatic), 

107.4 (C-1'), 97.0 (C-1), 81.9 (C-2'), 81.6 (C-4'), 79.7 (C-3), 77.05 (C-3'), 72.7 (C-2), 70.3 

(C-5'), 69.7 (C-3), 69.5 (C-4), 63.6 (C-6), 63.0 (C-6'), 55.2 (CH3O) ppm.  

 

4.2.9. Methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)-2,6-di-O-benzoyl-β-

D-glucopyranoside (12ββββ) and methyl 2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-

(1→4)-2,6-di-O-benzoyl-β-D-glucopyranoside (13ββββ) 

Obtained according to the general procedure by condensation of 4 with 2β. β. β. β. 1H NMR 

spectrum of the crude mixture    evidenced the formation of two disaccharides in a 1:1 ratio, 

according to the integration of the H-3’ signals. After purification by column 

chromatography (9:1 toluene-hexane) fractions of Rf 0.47 (85:15 toluene-hexane) 

afforded compound 13ββββ (0.04 g, 42%), [α]D -46 (c 1, CHCl3). 
1H NMR (500 MHz, 

CDCl3): 
1H NMR (500 MHz, CDCl3): δ 8.11-7.12 (m, 30H, aromatic), 5.95 (ddd, 1H, J4',5' 

= 4.1 Hz, J5',6a' = 4.6 Hz, J5',6b' = 6.5 Hz, H-5'), 5.66 (dd, 1H, J2',3' = 1.8 Hz, J3',4' = 5.5 Hz, 

H-3'), 5.47 (dd, 1H, J1',2' = 0.6 Hz, J2',3' = 1.8 Hz, H-2'), 5.45 (s, 1H, H-1'), 5.18 (dd, 1H, 

J1,2 = 8.0 Hz, J2,3 = 9.1 Hz, H-2), 4.92 (dd, 1H, J4',5' = 4.1 Hz, J3',4' = 5.5 Hz, H-4'), 4.83 

(dd, 1H, J5,6a = 1.9 Hz, Jgem = 12.1 Hz, H-6a), 4.76 (dd, 1H, J5',6a' = 4.6 Hz, Jgem = 12.0 Hz, 

H-6’a), 4.66 (dd, 1H, J5',6b' = 6.5 Hz, Jgem = 12.0 Hz, H-6’b), 4.65 (dd, 1H, J5,6b = 4.4 Hz, 

Jgem = 12.1 Hz, H-6b), 4.57 (d, 1H, J1,2 = 8.0 Hz, H-1), 3.99 (ddd, 1H, J3,OH = 3.6 Hz, J3,4 

= 8.7 Hz, J2,3 = 9.1 Hz, H-3), 3.94 (apparent t, 1H, J3,4 = 8.7 Hz, J4,5 = 9.3 Hz, H-4), 3.85 

(ddd, 1H, J5,6a = 1.9 Hz, J5,6b = 4.4 Hz, J4,5 = 9.3 Hz, H-5), 3.75 (d, 1H, J3,OH = 3.6 Hz, 

OH-3), 3.48 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): δ 166.11, 166.10, 165.7, 

165.6, 165.58, 165.54 (COPh), 133.5, 133.39, 133.30, 133.15, 133.11, 132.9, 129.95, 

129.93, 129.91, 129.86, 129.83, 129.7, 129.6, 129.3, 129.1, 129.0, 128.7, 128.46, 128.44, 
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128.38, 128.36, 128.33, 128.31, 128.30, 128.2 (aromatic), 107.5 (C-1'), 101.7 (C-1), 82.6 

(C-2'), 81.6 (C-4'), 79.5 (C-4), 77.1 (C-3'), 73.9 (C-3), 73.8 (C-2), 72.6 (C-5), 70.3 (C-5'), 

2 x 68.3 (C-6 and C-6'), 56.8 (CH3O) ppm. ESIMS: m/z calcd for C55H48NaO17 [M+H] + 

1003.2784. Found: 1003.2771. 

Fractions of R f 0.43 (85:15 toluene-hexane) afforded compound 12ββββ    0.05 g, 47%), 

[α]D +8 (c 1, CHCl3). 
1H NMR (500 MHz, CDCl3): δ 8.11-7.13 (m, 30H, aromatic), 5.93 

(ddd, 1H, J4',5' = 4.3 Hz, J5',6a' = 4.8 Hz, J5',6b' = 6.2 Hz, H-5'), 5.59 (dd, 1H, J2',3' = 1.9 Hz, 

J3',4' = 5.4 Hz, H-3'), 5.43 (s, 1H, H-1'), 5.35 (dd, 1H, J1',2' = 0.8 Hz, J2',3' = 1.9 Hz, H-2'), 

5.32 (dd, 1H, J1,2 = 8.0 Hz, J2,3 = 9.5 Hz, H-2), 4.86 (dd, 1H, J4',5' = 4.3 Hz, J3',4' = 5.4 Hz, 

H-4'), 4.78 (dd, 1H, J5',6a' = 4.8 Hz, Jgem = 11.9 Hz, H-6’a), 4.67 (dd, 1H, J5',6b' = 6.2 Hz, 

Jgem = 11.9 Hz, H-6’b), 4.64 (dd, 1H, J5,6a = 2.2 Hz, Jgem = 12.0 Hz, H-6a), 4.57 (dd, 1H, 

J5,6b = 5.1 Hz, Jgem = 12.0 Hz, H-6b), 4.50 (d, 1H, J1,2 = 8.0 Hz, H-1), 3.91 (dd, 1H, J3,4 = 

8.7 Hz, J2,3 = 9.6 Hz, H-3), 3.73 (ddd, 1H, J4,OH = 3.3 Hz, J3,4 = 8.7 Hz, J4,5 = 9.6 Hz, H-4), 

3.67 (ddd, 1H, J5,6a = 2.2 Hz, J5,6b = 5.1 Hz, J4,5 = 9.6 Hz, H-5), 3.66 (d, 1H, J3,OH = 3.3 Hz, 

OH-4), 3.48 (s, 3H, CH3O) ppm. 13C NMR (126 MHz, CDCl3): δ 166.6, 166.1, 165.59, 

165.54, 165.1, 164.7 (COPh), 133.5, 133.3, 133.2, 133.1, 132.8, 132.9, 129.99, 129.92, 

129.8, 129.78, 129.74, 129.6, 129.4, 129.2, 129.0, 128.9, 128.7, 128.59, 128.51, 128.45, 

128.41, 128.3, 128.2, 128.1 (aromatic), 107.4 (C-1'), 101.9 (C-1), 83.0 (C-3), 82.0 (C-2'), 

81.7 (C-4'), 76.8 (C-3'), 74.0 (C-5), 72.4 (C-2), 70.3 (C-5'), 69.5 (C-4), 63.6 (C-6), 62.9 (C-

6'), 56.8 (CH3O) ppm.  ESIMS: m/z calcd for C55H48NaO17 [M+H]+ 1003.2784. Found: 

1003.2808. 

 

4.3. Computational methods 

Molecular mechanics calculations were carried out using the program MM3(92) 

(QCPE, Indiana, USA)51,52 Quantum mechanical calculations were carried out using 

Gaussian 09W (rev. C.01),53 with standard termination options. 

From a given rotamer, an automated routine was used to generate the starting 

conformations produced by rotation of ± 120º for each of the exocyclic dihedrals. Those 

conformers within the first 10 kcal/mol were submitted to DFT optimizations at the 

B3LYP/6-311+G** level and then to single point calculations with M06-2X at the same 

level. Charges were then obtained with M06-2X at the same level of theory, for both the 
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ground molecule and the radical cation, using the Mulliken charge distribution. Condensed-

to-atom Fukui functions and charges were then obtained as Boltzmann average ratios  

Stationary points were characterized by frequency calculations in order to verify that 

the minima had no imaginary frequencies. Population analysis was carried out using the 

Boltzmann equation, with a temperature of 298 K and using electronic energies for DFT. 
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� Glucopyranosyl acceptors 2,6-di-O-protected were efficiently synthesized.  

� Relative reactivity of O-3/O-4 of glucopyranosides in glycosylation reactions was 
analyzed.  

� The α-anomers are preferentially glycosylated at O-3. The benzoylated β-anomer is 
preferentially glycosylated at O-4. 

� Experimental regioselectivities and molecular modeling were compared. 

� 1→3 or 1→4 Linkages can selectively be installed using the appropriate glucosyl 
acceptor. 
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