Friedel-Crafts Acylation with 2-Methyl- or 2-Benzylbutanedioic Anhydride

Iwao Назнімото

Department of Industrial Chemistry, Wakayama Technical College, Noshima, Nada-cho, Gobo 649-15 (Received January 8, 1981)

The AlCl₃-catalyzed acylation of benzene Synopsis. with 2-methylbutanedioic anhydride afforded a mixture of 3-benzoyl-2-methylpropanoic acid and 3-benzoylbutanoic acid. The intramolecular acylation of 2-benzylbutanedioic anhydride in the presence of AlCl₃ gave a mixture of 4-oxo-1,2,3,4-tetrahydro-2-naphthoic acid and 3-oxo-2-indanacetic acid. The results were discussed in terms of the solvent effect on the acylations.

We have previously reported^{1,2)} that the AlCl₃catalyzed acylations of benzene with 2-phenyl-butanedioic or -pentanedioic anhydride proceeded by means of competitive inter- and intramolecular acylations, where an electron-attracting phenyl group in the anhydrides had a strong influence on the direction of each acylation. A more detailed mechanism of the acylation with unsymmetrical dibasic acid anhydrides may be get by introducing an electron-donating methyl group into the dibasic acid anhydride and by treating individually the inter- and intramolecular acylations. The present paper deals with the acylation of benzene with 2methybutanedioic anhydride (1) in the presence of AlCl₃ as an example of the intermolecular acylation, and with the AlCl₃-catalyzed condensation of 2-benzylbutanedioic anhydride (2) as an intramolecular example.

Table 1. AlCl₃-catalyzed acylation with 2-methyl- or 2-BENZYLBUTANEDIOIC ANHYDRIDE AT 30 °C FOR 5 h

Anhydride	Solvent (20 cm)	[AlCl ₃]	$\frac{[C_6H_6]}{mmol}$	Product yields ^{a)} %	
		mmol	11111101		
1				3	4
		20	250ъ)	62	39
		10	250 ^{b)}	28	14
	$(ClCH_2)_2$	20	10	61	34
	(ClCH ₂) ₂	10	10	14	6
	C ₆ H ₅ NO ₂	30	10°)	21	2
	C ₆ H ₅ NO ₂	20	10°)	12	1
2				5	6
		20	250^{d}	37	63
		10	250 ^{d)}	28	37
		e)	250^{d}	65	1
		_n	250 ^{d)}	34	66
	$(ClCH_2)_2$	20	10	34	59
	$(ClCH_2)_2$	10	10	26	35
	$(ClCH_2)_2$	20	0	32	60
	C ₆ H ₅ NO ₂	30	10	81	5

a) Calculated on the basis of the amount of anhydride used. b) At 40 °C for 2 h. c) For 24 h. d) At 40 °C. e) Two hundred mmole of concd H2SO4 were used as the catalyst. f) Twenty mmol of AlBr3 were used as the

Several investigators^{3,4)} have isolated only 2-aroyl-2methylpropanoic acid in the condensations of some aromatic compounds with 1 in the presence of AlCl₃. However, when 10 mmol of 1 was condensed in the

presence of 20 mmol of AlCl₃ with benzene, which was used in a large excess as a reactant and as a solvent, a mixture of 3-benzoyl-2-methylpropanoic acid (3) and the isomeric 3-benzoylbutanoic acid (4) was obtained; the yield of 3 was about twice that of 4. The predominant formation of 3 was also observed in the cases using a limited amount (10 mmol) of benzene in 1,2-dichloroethane or in nitrobenzene. The lower yield of the keto acids in nitrobenzene may be a complex formation between AlCl₃ and nitrobenzene. The small solvent effect on the acylation of benzene with 1 suggests that the actual acylating agent in this acylation is a type of oxonium compound (3a and 4a); since they are less polarized than the acylium ions, the solvent effect on them appears smaller.

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CO} \\ \text{CH}_{3}\text{CH}_{2}\text{CO} \\ \text{CH}_{3}\text{CH}_{2}\text{CO} \\ \text{CH}_{3}\text{CH}_{2}\text{CO} \\ \text{CH}_{3}\text{CH}_{2}\text{CO} \\ \text{CH}_{3}\text{CH}_{2}\text{CO} \\ \text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CO}_{2}\text{AICI}_{2} \\ \text{CH}_{2}\text{C}_{2}\text{C}_{6}\text{H}_{5} \\ \text{O:AICI}_{3} \\ \text{O:AICI}_{3} \\ \text{Scheme 1.} \end{array}$$

The electron-donating effect of a methyl group reduces the electrophilic reactivity of the C=O located closely to the methyl group; hence, the production of 3 is more favored than that of 4.

The acylation with 2 in the presence of two equivalents of AlCl₃ in a large excess of benzene proceeded only intramolecularly to yield two isomeric keto acids, 4oxo-1,2,3,4-tetrahydro-2-naphthoic acid (5) and 3-oxo-2-indanacetic acid (6), in a predominant yield, although early workers⁵⁻⁸⁾ in an analogous case succeeded in isolating only 5. Similar results were also observed in 1,2-dichloroethane, whereas an overwhelming yield of 5 was obtained in nitrobenzene. Since the polarity of the solvent appears to affect markedly the relative yields between 5 and 6, a reaction path including either the oxonium compounds (5a and 6a) or the acylium ions (5b and 6b) as the actual acylating agents may be formulated for the intramolecular acylation of 2 in the presence of AlCl₃.

The formation of 6a is probably more favored than that of 5a due to the electron-donating effect of a benzyl group, 9) although the electrophilic reactivity of $\check{\mathrm{C}}$ –O of **5b** to a benzene nucleus may be greater than that of 6b; a higher concentration of 6a results in a predominant yield of 6. On the other hand, in a polar

solvent such as nitrobenzene or in the presence of a large amount of concd H₂SO₄, the acylium ions bearing a more positive charge than the oxonium compounds may be greatly stabilized by solvation; therefore, a more reactive **5b** should give **5** in an overwhelming yield.

The product ratio obtained above dose not result from the thermodynamic equilibrium, since no isomerization between 5 and 6 was observed in the presence of two equivalents of AlCl₃ in 1,2-dichloroethane.

Experimental

Materials. 2-Methylbutanedioic anhydride: bp 238—240 °C. 2-Benzylbutanedioic anhydride was prepared by the method of Haworth et al.: mp 98.5 °C (lit,7) mp 95—97 °C).

Acylation Procedures. The general procedure was as previously described. A mixed solution of diethyl ether and methyl acetate was used to extract the keto acids.

Analyses of the Products. The acylation products of benzene with 2-methylbutanedioic anhydride, after being esterfied with an ethereal solution of diazomethane, were analyzed by GLC employing a Yanagimoto G-180 F model on a 1.5 m×3 mm column packed with Ucon Oil 50 LB 550 X (3 wt %) on Uniport KS of 60—80 mesh at 180 °C. GC analyses of the intramolecular acylation products of 2-benzylbutanedioic anhydride in the presence of AlCl₃ were

made by using a column packed with Apiezon Grease L (3 wt %) at 170 °C or Ucon Oil 50 LB 550 X (3 wt %) at 171 °C. The compounds, **3**, **4** and **5**, were synthesized according to the method described in the literature: 3-benzoyl-2-methylpropanoic acid (**3**): mp 142 °C (lit,¹⁰) mp 140.5 °C); 3-benzoylbutanoic acid (**4**): mp 55 °C (lit,¹¹) mp 59 °C); 4-oxo-1,2,3,4-tetrahydro-2-naphthoic acid (**5**): mp 149 °C (lit,⁵) mp 149 °C).

3-Oxo-2-indanacetic Acid (6). A solution of 2-benzylbutanedioic anhydride (1.90 g) in benzene (12.1 cm³) was treated with AlBr₃ (5.34 g) in benzene (10 cm³) at 30 °C for 5 h. The reaction mixture was then work up in a usual manner. The crude keto acid was repeatedly recrystallyzed from acetic acid and then methyl acetate-petroleum ether: mp 150.5—151 °C; IR (KBr disk), 1750 (C=O), 1669, 1600 cm⁻¹; MS (methyl ester) m/e (%) 204 (M⁺, 30), 173, 172 $(M^+-OCH_3, 25), 145 (M^+-COOCH_3, 75), 131 (M^+$ $-\text{CH}_2\text{COOCH}_3$, 49), 116 (100); ¹H-NMR [(CD₃)₂CO] δ 7.4—7.7 (m, 4H, arom.), 3.5 (q, 1H, J=8), 3.0 (m, 2H), 2.7 (q, 2H, J=8); ¹³C-NMR [(CD₃)₂CO] δ 209.0 (s, C=O), 175.5 (s, -COOH), 156.0 (s, C-9), 139.0 (s, C-4), 137.0, 129.5, 129.0 and 125.5 (d, C-arom.), 45.0 (d, C-2), 35.5 (t, CH₂-COOH), 34.0 (t, C-3); Found: C, 69.43; H, 5.31%. Calcd for $C_{11}H_{10}O_3$: C, 69.46; H, 5.30%.

The author wishes to thank Professor Yoshiro Ogata, Nagoya University, for his valuable discussions.

References

- 1) I. Hashimoto and R. Takatsuka, Bull. Chem. Soc. Jpn., 50, 2495 (1977).
 - 2) I. Hashimoto, Bull. Chem. Soc. Jpn., 52, 251 (1979).
- 3) W. Cocker, A. K. Fateen, and C. Lipman, J. Chem. Soc., 1951, 926.
 - 4) W. Cocker and D. H. Hayes, J. Chem. Soc., 1951, 844.
- 5) A. J. Attwood, A. Stevenson, and J. F. Thorpe, J. Chem. Soc., 123, 1764 (1923).
- 6) E. L. Speight, A. Stevenson, and J. F. Thorpe, J. Chem. Soc., 125, 2185 (1924).
- 7) R. D. Haworth, B. Jones, and Y. M. Way, J. Chem. Soc., 1943, 10.
 - 8) J. V. Braum, Ber., 61, 2602 (1927).
- 9) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic Reactions," Wiley, New York (1963), p. 222.
- 10) E. R. Alexander and A. Mudrak, J. Chem. Soc., 72, 3195 (1950).
- 11) L. Higginbotham, A. Lapworth, and C. Simpson, J. Chem. Soc., **125**, 2342 (1924).